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A New Approach to the Potential Energy of Solids

Abstract

A general theory is developed to investigate the expression for potential energy without using (i) empirical
results and (ii) process of parameterizing. The simple approach of thermodynamics is adopted to obtain
the expressions for the interaction energy of solids in terms of interatomic separation and crystal volume.
The new findings have been applied to obtain the expressions for bulk modulus and pressure. The
variation of the potential energy function, which provides a means to understand the stability of a crystal
has been found in excellent agreements to the earlier results. The use of obtained harmonic and
anharmonic force constants may be of much help to understand the dynamical behavior of solids with
special reference to the many-body theories.
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1. Introduction

The potential energy of a system always leaves the
utmost possibility of handling the problem at the ease
of the condensed matter physicists [1—9]. In addition
to purely electrostatic interactions the interaction en-
ergy between pairs of particles (atoms, ions) chiefly
arises due to the long- and short-range interactions. In
gaseous or liquid systems, the possibility of nearest
approach cannot be ignored. But, in case of solids,
especially, in crystalline solids the particles are stiffly
bound to their lattice sites and hence the possibility of
their contacting each other is completely ruled out. Of
course, the lattice vibrations ensure their small dis-
placements u<<a, a is the lattice constant. In solid,
liquid and gaseous systems nature has adjusted the
forces between the particles in such a way that when
they come closer to each other it becomes repulsive so
that the atoms would prevent from collapsing to
maintain the stability of the system. On the other hand,
when the particles go far from each other the potential
is so balanced that the system would not expand
considerably and remain stable. The potential in this
situation appears to be attractive. Further, due to the
reduced nuclear shielding and electron density, the
overlapping electron clouds also leads to the strong
short-range repulsive interactions increasing the
Coulomb repulsion between positively charged ions or
nuclei.

The potential energy function ¢(r) for a many-body
system can be written as

¢(r):Z¢ij(r)+Z¢ijk(r)+z¢ijkl(r)+"’ (1)

ik ikl

here, the indices (i, j,), (i, j, k), (i, j, k, [) refer to atom
pairs, all-atom triplets and all atom quartuplets,
respectively. The potential energy function ¢(r) has
been discussed [1,8—10] in a large number of forms,
namely;  Born  potential  [¢g(ry) =  a;/rjl;
Born—Mayer potential [¢py,(r;j) = A,-je”ff/”i/]; Buck-
ingham potential [¢pg,(ry) = Aye i/Pi — C,-j/rfj];
Leonard—Jones [ (ry) = (aij/r}jz) —
(83/r5)l; potential [Bar0(rij) =
D;j(1 — e 7¢5=))?]; Linnett potential [¢,y(ry) =
Aji/ i — Bje Cii]; Huggin's potential; etc. These po-

potential
Morse

tentials have been thoroughly studied but their roots of
development are purely based on empirical findings and
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most of the concrete and systematic development of
theory is missing. In the present work, the development
of the potential energy is based on the simple thermo-
dynamic results with careful critical evaluation.

The pressure P and bulk modulus B in a thermo-
dynamic system can be given by

oF oP
P=—-—=);B=-V|{— 2
(), 2= (&) @
The Helmholtz free energy F can be expressed as
F=¢(r) + Fp (3)

where ¢(r) is the potential energy associated with the
inter-atomic interactions and F,, is the phonon contri-
bution to energy or energy associated with the lattice
vibrations. The contribution due to the individual lattice
modes f to F;, can be calculated from the partition
function of the simple harmonic oscillator [1].

th:ka = —Zﬁ"an
T T

_ Zk: B e + 67" In(1 —exp(— ﬁhwk))]

4)

Substituting Eqs. (3) and (4) into Eq. (2) and
making use of the Gruneisen parameter y=0(In wk)/
0(In V) one can readily obtain

=] ) e
and
B= Va;q:/(;) +VE (6)

where £ is the phonon mode contribution given as
1 ~
= ny('y + 1) {n(wk) + §:| hwy — ﬁ(thk)Zn(wk)
k

(7)

with 7' = kzT and 7(wi) = n(wi)n(wy) + 1]

In above equations, Z is the partition function and
n(wy) is the Bose—Einstein distribution function for
phonons of frequency (wy) of polarization index k, Vis
the volume of the cell whose sides are represented by
a,b,c lattice vectors such that
V=lab x ¢| = |b.c x a|] = |c.a X b| = abc which for
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a cubic cell of side a is V=a’. In order to retain
the simplicity of the problem, the cell Volume V
is replaced by the sphere of an equivalent volume
V:(4/3)7rr3 with radius r. Substitution of V and dV/dr
in Eq. (6) yields

S 6(r) 2 000)

£ (8)

T 12w \r 0r 2 Or 4713

which after rearrangement of the terms leads to describe
the representative potential energy equation in the form

2
9 gi(Zr) — 2r—a¢;ir) —ar’ + 96, =0; 9)

r2

with o = 127B. The physically acceptable appropriate
solution of the above equation may at least give the
form of potential energy.

2. Possible form of potential energy

2.1. Potential energy as a function of inter-atomic
separation

In order to obtain the solution of Eq. (9) first, let us
take advantage of generally existing forms of potential
energy curve to furnish suitable boundary conditions.
The curve drops rapidly from positive (repulsive) value
to negative (attractive) value with a dip and gradually
rising towards zero value of potential energy with
increasing interparticle separation. In the dip region
potential energy minimum appears at r = ry with
0¢(r)/0r|ro = 0, at which the system is found most
stable. Also, r = r; is the point at which the potential
energy curve crosses the r-axis, i.e., ¢(r;) = 0 de-
scribes the neutral interface of attractive and repulsive
interactions slightly below r; (lower vicinity of r;) very
strong repulsion and marginally above r; (upper vi-
cinity of r;) a strong attraction emerges. The solution
of the representative potential energy equation can be
obtained in the form

#(r) =

1
9(3C0—a)r3—|—§(ar3—|—35k)lnr+ C (10)

This solution in its present form may be of strictly
mathematical or academic interest that needs its
suitable evaluation and interpretation for a viable
solution applicable to the problems of physics, where
the importance of initial and boundary value problems
enter in the scenario. In obtaining the above solution
the function £ has been taken independent of r and the

arbitrary constants Cy and C; are obtainable from the
systematic boundary conditions useful in describing
the stability of the system. The equilibrium condition
gives Co= —(arg® Inrg + 38)ro ;. ¢(r)],, =0 and

Ci= (1/9)(ri/ro)’ Bard Inrg+ 95+ ard) —
(1/3)(ar? + 98)Inry. Thus the possible form of po-
tential energy function can take the form

¢(r)=3&In <rL> + <%+g> (F - )

1 0

sin(@) () .

We can reasonably ignore the phonon mode
contribution to potential energy (which, however, in
reality doesn't seem to be much justified). Under this
situation, the potential energy equation reduces to the

form
Fo(r) 20¢(r) _
or ror Y70 (12)

with the solution arranged as
3

(j)(r):% {a(lnr—%) +Co] +C (13)

Now, Cy and C; are inter-atomic separation depen-
dent parameters, which enables one to define the
following form of potential energy

¢(r)=ar’Inr Cy(r) +C; (r) (14)
Using the appropriate boundary condition i.e.

o(r) = 0, one can readily obtain

Ci(r)= —ar} Inr Co(r) and generalizing the result,

potential energy expression takes the form

o(r) :ac[r3 lnr—rf lnrl]CO(r) (15)

Now, the closest approach of the atomic particles
restricts » not less than the contact radius r. = r, +
r, <ry, where r, and r, are the radii of the two
particles or atoms at and below r. suggests that the
potential function ¢(r) is infinitely high and varies as
#(r) ~exp(r;!). Hence, under this reasonable
approximation, the value of Cy(r) is suggested as the
simple exponential function of the distance between
the atomic centers, i.e.,Co(r) = r~!exp(— r/ry), in
which r; can be arbitrarily but reasonably chosen.
This yields the potential energy function in the form

o(r) :%[r3 lnr—r? lnrl]exp(—r/rl) (16)
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Table 1

The various orders of force constants with inter-atomic separation.

r(A) ¢"(r) x 10"*(Dyn cm™~?) #" (r) x 10*'(Dyn cm™3) #" (r) x 10®(Dyn cm ™)
1.0 48.95 —115.0 426.4
2.0 8.182 —15.13 20.06
3.0 —0.043 —3.510 6.192
4.0 —1.446 —0.070 1.485
5.0 —1.097 0.534 0.051
6.0 —0.604 0.412 —0.199
7.0 —0.288 0.227 —0.155
8.0 —0.126 0.108 —0.085
9.0 —0.052 0.047 —0.041
10.0 —0.021 0.019 —0.018

In order to investigate the nature of the new form
of the potential energy function based on completely
theoretical backgrounds, we have taken the case of
high temperature superconducting very complex
crystal of YBa,Cu3;0; ;. The computation of newly
obtained results is carried out using various physical
constants for YBa,CuzO;_; furnished in Table 2 [11]
with r;, = 085 A, y=14 and B= 46x
10" Dyn e¢m™2. The variation of potential energy
function with inter-atomic separation is depicted in
Fig. 1, which successfully describes the nature of
attractive and repulsive interactions in a model
crystal and is in excellent agreement with widely
existing experimental observations in literature. ¢(r)
exhibits a sharp decrease and describes a minimum
negative value at r = 1.89 A and afterward, a
peculiar rise is established with its negative value in
the close vicinity of zero heralding the stability of
the solids.

2.2. Potential energy as a function of volume

Since high-temperature superconducting cuprates
have all different lattice constants a # b # c with a
large number of atoms per unit cell and the potential
energy ¢(r) may be more conveniently expressed as a
function of volume [12,13]. In the present formulation
the unit cell of sides a, b, ¢, can be observed as a sphere
of radius r and volume V, such that V = (4/3)7r°. Using

Table 2

Physical constants for YBasCuszO7_s crystal.

Symbols  Values Symbols Values

a 3827 A ¢7(r) 4302 x 105 dyn cm™2

b 3.8872 A &"(r) —3.953 x 10" dyn cm™
c 11.6802 A ¢"(r) 3.618 x 10% dyn cm™

T 92 K vy 371 x 10° cm 57!

g 0.7 ) 1.1783 x 10" 57!

this concept with considerable

tions Eq. (9) takes the form:

Fe(V)
2
v ov?

—61V+6,=0

algebraic simplifica-

(17)

where, 8, = «/127 and (§, = &;. The solution of Eq.

(17) is given as:

(V)= (8:V +B,)In(V) = 8,V + VCo + C, (18)

Using earlier simplifications for phonon mode
contribution to the potential energy with volume-
dependent arbitrary parameter formalism, the solution
of the above equation can be devised as

$(V)=6VInVCo(V) + Ci(V)

which leads

C()(V) =y-! exp(—V/Vl)

_A

o) =1

(19)

Ci(V)=—=BVi InV,Co(V),
and
dependent potential energy takes the form

thus the volume

(VInV —VyInV))exp(—V/V;) (20)

here V; is the volume corresponding to the distance r;.
This form of potential energy has been plotted for
volume variation and the outcome is furnished as Fig. 1

101
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o
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\

\_— |

0 2 4 6 8 10 12
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3
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Fig. 1. Variation of ¢(r) with inter-atomic separation (Inset: Volume

dependence of ¢(V)).
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Fig. 2. Variation of pressure (Inset: Absolute pressure) vs. r.

[in inset] which qualitatively resembles with the trend
exhibited by Fig. 1 for varying r.

3. Pressure dynamics

The pressure [1] P = —d¢(r)/dV expressed in
terms of the Gruneisen parameter [11] P= —
yrV=ld¢(r)/dr can be obtained with the help of Eq.
(5) in the new form

showing that the pressure becomes inevitably the
function of inter-atomic spacing, volume and lattice
energy. The results exactly showing the same trend as
available in literature has been portrayed in Fig. 2,
along with potential energy contours in Fig. 3 in
spherical symmetry. The three-dimensional spherical
coordinate view of potential energy is shown in Fig. 4.
The various orders of force constants play a pivotal
role in describing the dynamical behavior of crystalline
solids. The theory of harmonic force constants
(¢'(r) = d*¢(r)/dr®); however, explains various
dynamical properties of solids [1] but unfortunately
enters the process of parameter fitting and inadequacies
of explaining temperature dependence of experimental
data. This discrepancy could be addressed in the
framework of many particle physics [2—4,12,13] and
the inevitable role of anharmonic force constants,
respectively given as

(@ (r) = d*¢(r)/dr, ¢"(r) = d*p(r)/dr*) is well
established. The values of harmonic, cubic and quartic
force constants at different inter-atomic separations are
furnished in Table 1. Further, the effect of inter-atomic

. " .
spacing on second order force constant ¢ (r) is shown

P=—(y/V)|aexp(—r/r)(r’ + 2 Inr — (r* /r))Inr+ rinr (1+ (i /r))) — Zhwk(n(wk) +(1/2)) (21)

o o
[

@& (rad)

;‘-u“ o
Brad) 3 T

- —

| ey

0

Fig. 3. Energy contour view of ¢(r, 6, ¢).

in Fig. 5 and similar results are shown for cubic force
constant ¢ (r) in the inset.

4. The phonon spectrum of high-temperature su-
perconductor YBa,Cu3;0;._s

The phonon density of states (PDOS) N,(w) is one
of the most important quantity that inevitably plays a
substantial role in determining the dynamical proper-
ties of crystalline solids and with the help double time
temperature dependent phonon Green's functions
evaluated with the help of many-body quantum dy-
namics via a model Hamiltonian this can be obtained
in the form [4,5,14—19].

Ny(w) = Ny(0); +N,(0),4 (22)

The diagonal N,(w), and non-diagonal N,(w),,
components of PDOS are given by
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202 T () In the above equations, I'y(w) is phonon line width,
Np(w), = Ev/k—_zdw; Ay (w) is the shift in phonon frequency, C( — k,k")and
(wz - W ) D(—k,k') are the mass and force constant change

parameter emerging due to the presence of impurities
in the crystals. Also, Q = k + q (k, q represent phonon

2
No(w),, = 42, / ol (w)C(—k, k') do (23) anfi electron wave vecFors, re.:specti.vel.y), w; and w‘Q are
(w2 — 5%4) pairon frequencies with pairon distribution functions
n:(q) and n.(Q). All the other details of above symbols
with £, = V/m%3, @2, = 0% + 2w d (w) where V is are available in the references elsewhere
; D the r - 14—16.18.19] and the reproduction of them is need
the volume of the unit cell and v,, is the phonon velocity. [ ;18,19] and the reproduction of them is need-
In the above equations wy, @y, and @y, stand for less. The renormalized, perturbed mode frequencies, as
phonon, renormalized phonon and perturbed mode well as the life-times, depend on the various orders of
phonon frequencies, respectively given in the form potential functions ¢”'(r). ¢"'(r) and ¢'V(r) which

evidently reveal the dependence of PDOS on potential

> energy. In order to investigate the role of the newly
wkq_(’)k +°J (24) formulated potential energy function we focus the
numerical computation on the representative high-

~2_ 2 D A AD

0 = w; — o (0] + 0} + ") (25) temperature  superconductor YBa,Cu3;0;_; having

O = o (2 6) layered structure. The Y-ion has been taken at the
q — "k%ep center of a mesh of 67 atoms has distributed number of

wep = — 8wy |ge [N(Q1) +N(g1) +N(Q,) +N(q,)] +322|gk|2

X [(8&); + 20@) n.(0) + (Swg + 2w“Q>nC(q) + 3wQTN(;T) (27)
+3leN(Q1) +3wQTN(qT) + (4(‘)% +2le)N(ql)}

—=8D(ky, —k)+8C(ky, —k) +32w; ' C(k, —k)D(ky, — k1) +32w;
ch , —ki)D(ky, —k) 432w Zc , —k1)D(ky, — k) + 128w,

ch ky, —ki)Clky, —k)D(k,, —kl)

various atoms as Y-5, Ba-6, Cu-24, and O-32 ions with
various layer structures: Cu-O layer- (Cu2+, 0> ions);
Cu-0O, layer-(Cu”, 0>~ ions) and Ba-O layer-(Ba”,
(29) 0% ions). The detailed calculation of renormalized

o :4822—?C(k1, — k1 )Va(ky ko kg — k) coth(Bhay, /2)
kl ,kz 1

0f? =1920,"Y 24 C(ky, — ki) Vi, ko, ki —K)coth(Bhax, /2)

i Pk
64w, "> " Clhr, — ki) Va(ki ka, ki — k) +2560, Y " Clki, — k) (30)
ky ko ky ko

X Vy(ki kay —ky —ky)
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frequencies in three different directions results in the
spectrum shown in Fig. 6 that greatly modifies the
harmonic phonon frequencies wy(inset) exhibiting the
effect of potential energy. The various parameters and
constants used in the computation are given in Table 2.

After very careful use of renormalized phonon fre-
quency spectrum the PDOS N,(w) can be estimated
with the help of Eq. (22) and the result compared with
the experimental results of Arai [20] which are

Fotential Bnergy (v, 8,4
o

©
=
=2

L ooy e
g (rad) o2

Fig. 4. The 3D view of potential energy.

—_— 0
s <
=
805
E £
— 3
) ~ 1.0
g3 =
= ul
T 2f B 15
= 2 ) 1
g 1k 0 2 4 6 . 8 10 12 14 ]
®. r(A)
0
1 \/
0 3 4 3 3 10 12 11

r(A)

Fig. 5. Nature of d?¢(r)/dr* (Inset: d>¢(r)/dr?) vs r.

furnished in Fig. 7. The positions of several peaks
based on present formulation closely resembles to the
experimental results and a large number of additional
peaks appear in the spectrum needs further in-depth
evaluation to explore more condensed matter physics.

5. Discussion and conclusions

Since the dynamical properties of the crystalline
solids can be well described by the phonon density of
states, we investigated the phonon spectrum of YBa,.
Cu3;07.5 via present formulation using Eq. (22).
Further, the comparison of total PDOS with experi-
mental data of inelastic neutron scattering demon-
strated by Arai. et. al [20] as shown in Fig. 7 exhibit
enthusiastic results with a fair agreement between ex-
periments and theory. Next, we figure out the PDOS
corresponding to the peak energy values set side by

Kk (x10” cm™)

Fig. 6. The renormalized frequency spectrum of FBZ along with
normal mode frequency (inset).

0.035

0.030

0.025

Np(w)(mev™)
o o
S =
o S

0.010

0.005

0.000
0

40

£(meV)

Fig. 7. Comparison of total PDOS by present calculations with
experimental points (black dots).
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Table 3
Energy and PDOS for YBa;Cu3O7_; crystal.

Total PDOS (present calculations) Total PDOS'

Experimental PDOS?

Energy(meV) PDOS(meV™") Energy(meV) PDOS(meV™") Energy(meV) PDOS(meV ')

15.71 0.0253 15.48 0.0207 13.6 0.0106

18.61 0.0241 20.0 0.0892 20.7 0.0267

23.77 0.0109 25.89 0.0077 24.5 0.0247

32.13 0.0238 32.2 0.0034 324 0.0199

34.89 0.0242 37.48 0.0039 37.7 0.0145

42.95 0.0249 43.6 0.2152 439 0.0226

49.17 0.0304 47.88 0.0232 48.0 0.0128

51.11 0.0213 54.67 0.0311 54.1 0.0136

57.23 0.0234 57.6 0.0331 57.3 0.0106

59.98 0.0243 62.0 0.0599 61.4 0.0116

66.92 0.0496 68.61 0.1943 68.3 0.0118

67.84 0.0249 69.7 0.1951 70.9 0.0114

74.27 0.0282 72.71 0.0362 73.8 0.0120

76.41 0.0079 78.83 0.0266 78.0 0.0058

85.08 0.0243 85.15 0.0815 86.9 0.0073
obtained as a function of inter-ionic distance based on
purely ab initio theoretical basis are believed to be

0.20 | = Arai. et. al [20]

= A. Gupta et. al [19]
= Present calculations

0.15

0.10

Np(w)(mev™)

0.05

0.00

20 30 40 50 60 70 80
£(meV)

Fig. 8. Comparison of total phonon density of states using present
calculations (red curve) with Arai. et. al [20] (black curve) and A.
Gupta et. al [19] (blue curve) results.

side the PDOS estimated by A. Gupta et. al [19] and
experimental observations as shown in Table 3.

These results are illustrated in Fig. 8, from which it
can be speculated that the PDOS evaluated with pre-
sent formulation is showing a far better agreement with
the experimental curve than those evaluated in earlier
calculations.

The derivation of range of viability of repulsive
potential appears as a central problem for investigation,
i.e., the achievement of the range of effectiveness for
repulsive potential energy and that of the position and
the range of dominance of attractive potential energy
succeeds to take charge. Next, as a new concept, we
consider the potential energy as a function of volume
Eq. (20) instead of inter-atomic separation suitably
applicable to the unit cells consisting of a large number
of atoms or ions. The results of the potential energy

even better than those computed earlier on empirical
findings and successfully explains the attractive,
neutral and repulsive behavior of a solid leading to the
concept of its stability. The thermodynamic quantities
like pressure, bulk modulus, thermal expansions as
well as dynamical properties of solids can also be
carried out on the basis of present work. It emerges
from the present formulation that it is equally appli-
cable to other cuprates, other families of supercon-
ductors and many more crystalline solids. However, the
suitability of this potential is still to be verified for the
clusters and surfaces.
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