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Abstract Abstract 
Dynamic behaviour of free vibration of rectangular plate is investigated. This study considered an 
analytical approach to investigation of free vibration of thin rectangular plate immersed in fluid, resting on 
Winkler and Pasternak foundations.The governing nonlinear partial differential equation is analyzed using 
two-dimensional differential transform method. The accuracy of the analytical solutions obtained is 
verified with existing results in literature and confirmed in excellent agreement. Thereafter, the analytical 
solutions are used for investigation of effect of elastic foundation, fluid and aspect ratio on vibrating 
plate.From the result, it is observed that, increase elastic foundation parameters increases natural 
frequency, increase aspect ratio increase natural frequency, influence of fluid decreases the natural 
frequency of the plate.Hopefully the present study will contribute to existing knowledge in field of 
vibration. 

Keywords Keywords 
Free vibration; natural frequency; Winkler and Pasternak foundations; virtual added mass; two-
dimensional differential transform method; 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 
License. 

Cover Page Footnote Cover Page Footnote 
The author expresses sincere appreciation to the university of Lagos, Nigeria, for providing material 
supports and good environmental for this study. 

This research paper is available in Karbala International Journal of Modern Science: https://kijoms.uokerbala.edu.iq/
home/vol5/iss3/2 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://kijoms.uokerbala.edu.iq/home/vol5/iss3/2
https://kijoms.uokerbala.edu.iq/home/vol5/iss3/2


1. Introduction

The use of thin rectangular plate in recent years has
gain an increment due to its high strength, ability to
withstand high stress, reduction in weight due to its
small cross-sectional area and thin thickness while
serving the intending purpose. Rectangular plates are
used in aircraft fuselage, automobiles, ship deck and
hull in naval, railway, buried pipelines, highway and
structural constructions in civil engineering. It is
therefore important for design engineers to have a
broad understanding on the dynamic behaviour of thin
plate when submerged in fluid and when it is rested on
an elastic foundation. In the study of free vibration of
rectangular plates, Zhous and Ji [1] applied exact
method to determine the analytical solution. Merneedi
and Raonalluri [2] investigated vibration analysis of
plate with cut-out using semi-analytical method. Plates
resting on foundation is an important subject to the
geotechnics engineers. Generally, modelling of foun-
dation with only Winkler type of foundation have
proven to be less accurate, due to the deficiencies
in shear interaction between the spring elements.
This phenomenon led to the adoption of Winkler
and Pasternak foundation modelling as a reasonable
alternative. Winkler's idealization represents the soil
medium as a system of identical but mutually in-
dependent, closely spaced, discrete, linearly elastic
spring's deformation of foundation, due to the
confined applied load on the loaded regions alone. The
pressureedeflection relation at any point is obtained
with linear relation formula. Meanwhile, for Pasternak
foundation, the existence of shear interaction among
the spring elements is assumed and this is accom-
plished by connecting the ends of the springs to the
plate, which undergoes only a transverse shear defor-
mation. The loadedeflection relationship is obtained
by considering the vertical equilibrium of a shear layer.
Hence, the pressureedeflection relationship is given by
incorporation of shear layer factor to the existing
Winkler formula. The Pasternak foundation therefore,
accounts for the deficiency part of the Winkler foun-
dation. Wang et al. [3] adopted exact method in the
dynamic analysis of rectangular plate with initial stress
resting on Pasternak foundation. In a related work of
wang et al. [4], an investigation was conducted on
rectangular Reddy plates on Winkler-Pasternak foun-
dation. In a further study, Gupta et al. [5] determined
the effect of Winkler and Pasternak foundation on

vibration analysis of varying thickness orthotropic
rectangular plate.

Much attention is being given to plates under fluidic
interaction in recent time due to its importance and
application in ship building, marine, nuclear and ocean
engineering. The study of plateefluid interaction in
engineering is justified for safety and design purpose.
Literature survey reveal extensive studies on the
characteristic of immersed and submerged plate in
fluid. For instance, Lamb [6] carried out an analytical
approach into the investigation of fluid-plate coupled
system. He determined the natural frequency of
clamped circular plate in contact with water using
Rayleigh's method, the results obtained were validated
with experimental results of Powell et al. [7]. In
another work, Dhananjay and Junye [8] investigated
the effect of temperature dependent internal source on
the onset of convection and heat transfer in a porous
layer saturated by a non-newtonian nanofluid. It was
observed that the effect of increasing heat source have
a destabilizing impact on the stability. In a further
work, Yadav et al. [9] studied the effect of hall current
on the criterion for the onset of MHD convection in a
porous medium layer saturated by a nanofluid. Like-
wise, Yadav et al. [10] analysed thermal convection in
a horizontal layer of a porous medium saturated with a
viscoelastic nanofluid. Research into heat convection
and fluid is also studied by Refs. [11e13].

Based on previous studies, several methods have
been used for solving free vibration of plates, some of
which are numerical and analytical. Although, nu-
merical method being very effective in handling
nonlinear problems, is still associated with stability
and convergence issues, which has corresponding ef-
fect on computational time and cost. Similarly,
analytical methods suffer a setback in its inability to
handle nonlinear problems. However, in the past few
years, several semi-analytical methods have been
developed to handle nonlinear and linear problems
taking into consideration the deficiencies of both nu-
merical and analytical methods, using few iterations in
arriving at solutions. Notable examples are Galerkin,
Adomian decomposition method (ADM) and Homo-
topy perturbation method (HPM). The HPM is applied
to nonlinear forced vibration of orthotropic circular
plate on elastic foundation [14], however, it is associ-
ated with difficulty of finding small parameters.
Similarly, Ragesh et al. [15] determined the vibration
analysis of plates resting on elastic foundation using
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the Galerkin method. Also, Keshmiri et al. [16] applied
ADM to free vibration response of nonlinear tappered
beam, however, the rigour of finding the Adomian
polynomial in ADM is a difficulty that is overcomed
by Differential transform method (DTM). The DTM,
introduced by Zhou [17] has proven to be very effec-
tive in handling vibration problem with little iterations
and very accurate results. The edge of DTM over other
semi-analytical methods in aspect of precision and
accuracy of result, calls for its application in this study.

To author's best knowledge, the analytical approach
to investigation of free vibration of thin rectangular
plate immersed in fluid, resting on Winkler and Pas-
ternak foundations using two-dimensional differential
transformation method has not been attempted in the
past works. Therefore, the present study focuses on the
use of two-dimensional DTM to investigate free vi-
bration of thin rectangular plate of uniform thickness
resting on two-parameter foundations. Analytical so-
lutions obtained were used for parametric studies.
Some practical application of the present study in en-
gineering can be seen in water storage tank and culvert
cover.

2. Problem formulation and mathematical
analysis

The present study considers, a thin rectangular plate
of uniform thickness resting on a linear-, nonlinear
Winkler- and Pasternak foundations under different
edge conditions. The boundary edge of the plate may
be free, clamped, simply supported or combination of
all, as shown in Fig. 1. The following assumptions
according to Refs. [18,19] are made for the develop-
ment of the governing equation:

1) Normal to the undeformed, mid surface remain
straight and normal to the deformed, mid surface is
with the same length.

2) Thickness of plate is smaller compared to the other
dimensions.

3) Rotary inertia and shear deformation effect is
negligible.

4) Normal stresses sz in the transverse direction to the
plate are considered negligibly small.

Assuming the stresses vary in the z� directionover
the plate thickness h. Then, the shear force intensities
per unit length is defined as [19].

Qx¼
Zh

2

�h
2

sxzdz; and Qy ¼
Zh

2

�h
2

syzdz; ð1Þ

Bending moment intensities per unit length is
defined as

Mx¼
Zh

2

�h
2

sxzdz; and My ¼
Z h

2

�h
2

syzdz; ð2Þ

Also, twisting moment intensities per unit length is
defined as

Mxy¼
Z h

2

�h
2

sxyzdz; Mxy ¼Myx and Myx ¼
Z h

2

�h
2

syxzdz;

ð3Þ

Stressestrain Cartesian coordinates is defined as

sx¼ E

1� n2

�
ex þ ney

�
; sy ¼ E

1� n2

�
ey þ nex

�
and sxy

¼ Gexy;

ð4Þ

Substituting Eq. (4) into Eq. (2) gives:

Mx¼
Zh

2

�h
2

E

1� n2

�
ex þ ney

�
zdz; My

¼
Z h

2

�h
2

E

1� n2

�
ey þ nex

�
zdz and Mxy ¼

Z h
2

�h
2

2Gexyzdz;

ð5Þ

Fig. 1. Showing rectangular plate resting on two-parameter foundations.
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Where strains are:

ex¼vu

vx
; ey ¼ vv

vy
; ez ¼ vw

vz
; exy ¼ 1

2

�
vu

vy
þ vv

vx

�
; exz

¼ 1

2

�
vu

vz
þ vw

vx

�
; eyz ¼ 1

2

�
vv

vz
þ vw

vy

�
; ð6Þ

The equilibrium in the x-direction without body
forces.

vsx

vx
þvsxy

vy
þ vsxz

vz
¼ 0; ð7Þ

Multiplying Eq. (7) by z and integrating over the
plate thickness gives in x and y direction results to,

vQx

vx
þvQy

vy
þ qðx;yÞ ¼ 0; ð8Þ

Which later becomes,

v4w

vx4
þ2

v2w

vx2vy2
þ v4w

vy4
þ q

D
¼ 0; ð9Þ

2.1. Formulation of plate coupled fluid governing
equation

Similarly, considering a rectangular plate immersed
in a fluid as shown in Figs. 2 and 3 respectively the
following assumptions are considered for fluid pressure
Dp[20],:

1) Vibration is considered linear, plate is of uniform
density and thickness

2) Flow of fluid is potential, irrotational and
homogenous.

3) Fluid is assumed incompressible.
4) Fluid pressure is normal to the plate surface; shear

force is ignored, because the flow is inviscid.
5) The motion is considered small.
6) Effect of water dynamic loading has an insignifi-

cant effect on mode shapes.
7) The system is conservative.

Dp¼upper pressure� lower pressure

upper pressure¼

� rf

m

�
1þCe2mh1

1�Ce2mh1

�
v2w

vt2
and lower pressure

¼�rf

m

�
1þ e�2mh2

1� e�2mh2

�
v2w

vt2
; ð10Þ

Dp¼ madd

v2w

vt2
; ð11Þ

where; virtual added mass due to fluid for horizontal

submerged plate

madd ¼�rf

m

�
1þCe2mh1

1�Ce2mh1
� 1þ e�2mh2

1� e�2mh2

�
ð12Þ

Similarly, virtual added mass due to fluid for
vertically submerged plate

Fig. 2. Showing horizontal submerged plate.

Fig. 3. Showing vertically immersed plate.
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madd ¼ � rf

m

�
1þ e2md1

1� e2md1
� 1þ e�2md2

1� e�2md2

�
ð13Þ

Where C ¼ gm�u2

gmþu2,
v2w
vt2

represents the surrounding fluid
inertia, uis the natural frequency in the vacuum,rf is the
fluid density, g represents acceleration due to gravity.
According to Kerboua et al. [20], for linear vibration of
plate and fluid, C tends to be asymptotical toward �1.m
represents the plane wave number, which represents
magnitude of wave motion, it can be determined by

m¼ p

ffiffiffiffiffiffiffiffiffiffiffiffi
1

l21
þ 1

l22

s
; for the horizontally submerged plate

ð14Þ

m ¼ p
ffiffiffiffiffiffiffiffiffiffiffi
1
l21
þ 1

z2
2

q
; for the vertically immersed plate, z2

is the immersed depth of plate under fluid. Based on
the above assumptions, the governing differential
equation for thin isotropic rectangular plate as reported
by Dumir [21] is:

DV4wðx;y; tÞþ kwwðx;y; tÞ � kpw
3ðx;y; tÞ

� gsV
2wðx;y; tÞ

¼ rh
v2wðx;y; tÞ

vt2
þDp; ð15Þ

where in Cartesian coordinates

V4¼ v4

vx4
þ 2

v4

vx2vy2
þ v4

vy4
; ð16Þ

Then wðx; y; tÞis the transverse deflection, V4is the
biharmonic operator,kw, kpandgsare foundation pa-
rameters (Winkler's, nonlinear Winkler's and shear
parameter of Pasternak foundation respectively),
randD are mass density and flexural rigidity of the
plate respectively, V2is the Laplace operator, Dpis the
fluid dynamic pressure difference on submerged plate
in fluid, nis the Poisson's ratio and Eis the Young's
modulus of the rectangular plate.

D¼ Eh3

12ð1� n2Þ; ð17Þ

In free vibration analyses, based on Kantorovich-
type approximations, the resulting solution of Eq. (15)
may be represented in the following form [22],

w¼ wðx;yÞeiut; ð18Þ

whereuis the natural frequency.
Presenting the solution in a more convenient form,

these dimensionless parameters are defined:

W¼ w

wmax

;X ¼ x

a
;Y ¼ y

b
ð19Þ

Therefore, Eq. (15) may be written in terms of the
dimensionless parameters as:

where, U; gs and Kw;Kp are the dimensionless nat-
ural frequency, dimensionless Pasternak's Shear stiff-
ness and dimensionless Winkler's normal stiffness and
nonlinear Winkler's respectively:

U2¼rha4

D
u2; Kw ¼ kwa

4

D
; gs ¼ gsa

2

D
; Madd

¼ madda
4

D
u2; andKp ¼ a4kpw

2
max

D

ð21Þ

The governing equation of the thin rectangular
plate resting on linear, nonlinear Winkler and Pas-
ternak foundations with fluid-interaction in dimen-
sionless form is presented in Eq. (20). Assuming the
two opposite edges of the rectangular plate Y ¼ 0
and Y ¼ 1 in Fig. 1 to be simply supported,
deflection function can be represented as follows to
obtain the corresponding nonlinear ordinary differ-
ential equation.

W ¼WðXÞsinðmpYÞ; ð22Þ

v4Wðx;yÞ
vX4

þ 2l2
v4Wðx;yÞ
vX2vY2

þ l4
v4Wðx;yÞ

vY4
� �

U2 þmadd �Kw

�
Wðx;yÞ �KpW

3ðx;yÞ � gs
v2Wðx;yÞ

vX2
� gs

v2Wðx;yÞ
vY2

¼ 0;

ð20Þ

d4WðXÞ
dX4

� 2l2m2p2d
2WðXÞ
dX2

� �
U2 þMadd �Kw � l4m4p4

�
WðXÞ �KpW

3ðXÞ � gs
v2Wðx;yÞ

vX2
¼ 0; ð23Þ
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Substitute Eq. (22) into governing differential Eq.
(20), we have

2.2. Boundary conditions

The rectangular plate are subjected to the following
boundary conditions.

� Simply supported

W¼v2W

vX2
¼ 0 at x¼ 0;1 W ¼ v2W

vY2
¼ 0 at y¼ 0;1;

ð24Þ

� Free edge supported

v2W

vX2
þ n

v2W

vY2
¼ v3W

vX3
þ ð2� nÞ v3W

vXvY2
¼ 0;on x¼ 0;

ð25Þ

� Clamped supported

W¼vW

vX
¼ 0 on x¼ 0;1 W ¼ vW

vY
¼ 0 on y¼ 0;1;

ð26Þ

3. Method of solution: differential transform
method

In order to obtain analytical solution to the gov-
erning differential equation, two-dimensional differ-
ential transformation method is employed. The two-
dimensional differential transform of ðm; nÞth deriva-
tive of bivariate function wðx; yÞin ðx0; y0Þis defined as

Wðm;nÞ ¼ 1

m!n!

�
vmþnwðx;yÞ
vxmvyn

�
x¼x0;y¼y0;

ð27Þ

Then the inverse is defined as,

wðx;yÞ ¼
X∞
m¼0

X∞
n¼0

Wðm;nÞðx� x0Þmðy� y0Þn; ð28Þ

The relation (14) and (15) implies that,

Table 1

Operational properties of two-dimensional differential transformation method [23,24].

S/N Function Differential transform

1 wðx; yÞ±f ðx; yÞ Wðk; hÞ±Fðk; hÞ
2 awðx; yÞ aWðk; hÞ
3

dwðx; yÞ
dx

ðkþ 1ÞWðkþ 1; hÞ

4
dwðx; yÞ

dy
ðhþ 1ÞWðk; hþ 1Þ

5
dmþnwðx; yÞ
dxmdyn

ðk þ mÞ!
k!

ðhþ nÞ!
h!

Wðkþ m; hþ nÞ

6 wðx; yÞf ðx; yÞ Pk
l¼0

Ph
p¼0

Wðl; h� pÞFðk� l; pÞ

7 xmyn dðk� m; h� nÞ0 1 k ¼ m; h ¼ n
0 ksm:hsn

8 ½wðx; yÞ�3 Pk
l¼0

Pk�l

p¼0

Ph
r¼0

Ph�r

s¼0

Wðl; h� r� sÞWðp; rÞWðk� l� p; sÞ

Application of two-dimensional differential transformation method to the nonlinear equation under investigation.

wðx;yÞ ¼
X∞
m¼0

X∞
n¼0

1

m!n!

�
vmþnwðx;yÞ
vxmvyn

�
x¼x0;y¼y0;

ðx� x0Þmðy� y0Þn; ð29Þ
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3.1. Transformation of the nonlinear governing
equation

Using the theorem in Table 1, the transformation of
the governing Eq. (21) becomes,

Simplifying Eq. (30) using the theorem in Table 1
results

3.2. Transformation of the boundary condition

For a fourth-order differential equation, four con-
ditions are required for the analysis. To avoid repetition
of transformations and calculation, simply supported
free edge (SSSF) boundary condition is analysed here,
while same technique is adopted in analysing the other
two boundary conditions, simply supported-simply
supported condition (SSSS) and simply supported-
clamped edge condition (SSSC). Transforming the
conditions in Eq. (24) by using the theorem in Table 1
for condition at x ¼ 0 we have

Simply supported

Wðk;hÞ¼0 Wð0;hÞ ¼ 0; ð32Þ
ðkþ 1Þðkþ 2ÞWðkþ2;hÞ¼0 Wð2;hÞ ¼ 0; ð33Þ

While the remaining two conditions required are
considered as unknown.

Wðk;hÞ¼a Wð1;hÞ ¼ a; ð34Þ

ðkþ1Þðkþ2ÞWðkþ2;hÞ¼b Wð3;hÞ ¼ b

6
; ð35Þ

The transformed boundary condition Eq. (24) may
be written as

Wð0;hÞ ¼ 0;

Wð1;hÞ ¼ a;

Wð2;hÞ ¼ 0; h¼ 0; 1; 2; 3…N

Wð3;hÞ ¼ b

6
;

ð36Þ

4. The solutions

The transformed non-linear, Eq. (31), is solved
iteratively along with the transformed boundary con-
ditions Eq. (36) at x ¼ 0while the conditions at the
edge,x ¼ 1, are used to determine the unknowns
introduced into the boundary condition. Three support
conditions are investigated; simply supported atx ¼ 0,
clamped edge support atx ¼ 1, simply supported at
both edges and simply supported atx ¼ 0, free edge

ðkþ 1Þðkþ 2Þðkþ 3Þðkþ 4ÞWðkþ 4;hÞ þ 2l2ðkþ 1Þðkþ 2Þðhþ 1Þðhþ 2ÞWðkþ 2;hþ 2Þþ
l4ðhþ 1Þðhþ 2Þðhþ 3Þðhþ 4ÞWðk;hþ 4Þ � �

U2 þmadd

�
Wðk;hÞ þKwWðk;hÞþ

Kp

Xk

l¼0

Xk�l

p¼0

Xh

r¼0

Xh�r

s¼0

Wðl;h� r� sÞWðp; rÞWðk� l� p; sÞ � gsðkþ 1Þðkþ 2ÞWðkþ 2;hÞ�
gsðhþ 1Þðhþ 2ÞWðk;hþ 2Þ ¼ 0;

ð30Þ

Wðkþ4;hÞ ¼

�

0
BBB@

�
2l2ðkþ 1Þðkþ 2Þðhþ 1Þðhþ 2ÞWðkþ 2;hþ 2Þ þ l4ðhþ 1Þðhþ 2Þðhþ 3Þðhþ 4ÞWðk;hþ 4Þ�
þKwWðk;hÞ þKp

Xk

l¼0

Xk�l

p¼0

Xh

r¼0

Xh�r

s¼0

Wðl;h� r� sÞWðp; rÞWðk� l� p; sÞ � gsðkþ 1Þðkþ 2Þ

Wðkþ 2;hÞ
��

U2 þmadd

�
Wðk;hÞ � gsðhþ 1Þðhþ 2ÞWðk;hþ 2Þ

1
CCCA

ðkþ 1Þðkþ 2Þðkþ 3Þðkþ 4Þ ;

ð31Þ
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conditionx ¼ 1. To avoid repetition of transformations
and calculation, simply supported edge at x ¼ 0and
free conditionx ¼ 1at the edge are presented here:

Wð5;0Þ¼ � 1

30
l2b� 1

5
l4aþ gsa

60
�Kwa

120

þ ðU2 þmaddÞa
120

þ gsb

120
; ð37Þ

Wð5;1Þ¼ � 1

10
l2b� l4a�Kwa

120
þ ðU2 þmaddÞa

120
þ gsb

120

þ gsa

20
;

ð38Þ

Wð5;8Þ¼ � 3

2
l2b� 99l4a�Kwa

120
þ ðU2 þmaddÞa

120

þ gsb

120
þ 3gsa

4
;

ð39Þ

Applying the definition of DTM, we have

Wðx;yÞ ¼
Xm
j¼0

Xn

l¼0

wðj; lÞxjyl ð44Þ

The analytical solution of Eq. (15) is written as,

Applying condition at the free edge supportx ¼ 1; the
result is validated by substituting the following param-
eters, integer m ¼ 1, Poisson's ration ¼ 0:3, Winkler
foundationkw and kp, Pasternak foundation gs, virtual
mass of immersed plate due to surrounding fluid madd, as

Wð7;0Þ ¼ � 2

21
l2w5;2 � l4b

210
� Kwb

5040
�Kpa

3

840
þ ðU2 þmadd

�
b

5040
þ

1

42
gs

�
� 1

30
l2b� 1

5
l4a�Kwa

120
þ ðU2 þmadd

�
a

120
þ gsb

120
þ gsa

60

�
þ gsb

2520
;

ð40Þ

Wð7;4Þ ¼ �10l2w5;6

7

1

3
l4b� Kwb

5040
�Kpa

3

56
þ ðU2 þmadd

�
b

5040
þ

1

42
gs

�
� 1

2
l2b� 14l4a�Kwa

120
þ ðU2 þmadd

�
a

120
þ gsb

120
þ gsa

4

�
þ gsb

168
;

ð41Þ

Wð10;0Þ ¼ �2l2w8;2

45
� l4w6;4

210
þKwl

2w4;2

37800
� ðU2 þmadd

�
l2w4;2

37800
þ

gs
90

�
� l4w4;4

70
� gsl

2w4;2

420
� 1

14
l2w6;2 þ gsw4;2

840

�
þ gsw6;2

2520
;

ð42Þ

Wð8;10Þ¼ � 2

3
l2w8;6 � 1

3
l4w6;8 þKwl

2w4;6

2520
� ðU2 þmaddÞl2w4;6

2520
þ gs
90

�
� l4w4;8 � 1

28
gsl

2w4;6 � 15l2w6;6

14

�
; ð43Þ
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zero into Eq. (45). For varying step of y, different

analytical solutions are obtained, substitutingy ¼ 0:05
the following simultaneous equations are obtained:�
78483

4421
þ 8221U2

59272

�
aþ

�
28565

23881
þ 2245U2

251942

�
b¼ 0;

ð46Þ�
187525

618
þ 24737U2

70538

�
aþ

�
275879

36839
þ 5178U2

104887

�
b¼ 0;

ð47Þ

(46) and (47) in matrix form

2
6666664

�
78483

4421
þ 8221U2

59272

� �
28565

23881
þ 2245U2

251942

�
�
187525

618
þ 24737U2

70538

� �
275879

36839
þ 5178U2

104887

�

3
7777775

8><
>:

a

b

9>=
>;¼

8><
>:

0

0

9>=
>;;

ð48Þ

Non-trivial solution requires that the determinant is
equated to zero:

Wðx;yÞ ¼ axy2 þ axyþ axy3 þ axy4 þ axy5 þ axy6 þ axy7 þ 1

6
bx3yþ 1

6
bx3y2 þ 1

6
bx3y3 þ 1

6
bx3y4 þ 1

6
bx3y5 þ 1

6
bx3y6þ

�
� 1

30
l2b� 1

5
l4a�Kwa

120
þ ðU2 þmadd

�
a

120
þ gsb

120
þ gsa

60

�
x5 þ 1

6
bx3y7þ

0
BBBBBBB@

� 2

21
l2
�
� 1

5
l2b� 3l4a�Kwa

120
þ ðU2 þmadd

�
a

120
þ gsb

120
þ 1

10
gsa

�
� l4b

210
� Kwb

5040
�Kpa

3

840
þ ðU2 þmadd

�
b

5040
þ

1

42
gs

�
� 1

30
l2b� 1

5
l4a�Kwa

120
þ ðU2 þmadd

�
a

120
þ gsb

120
þ gsa

60

�
þ gsb

2520

1
CCCCCCCA
x7þ

0
BBBBBBB@

�2

7
l2
�
� 1

3
l2b� 7l4a�Kwa

120
þ ðU2 þmadd

�
a

120
þ gsb

120

�
� 1

42
l4b� Kwb

5040
�Kpa

3

280
þ ðU2 þmadd

�
b

5040
þ

1

42
gs

�
� 1

10
l2b� l4a�Kwa

120
þ ðU2 þmadd

�
a

120
þ gsb

120

�

1
CCCCCCCA
x7yþ

�
� 1

10
l2b� l4a�Kwa

120
þ ðU2 þmadd

�
a

120
þ gsb

120
þ gsa

20

�
x5yþ

0
BBBBBBB@

�1

5
l2b� 3l4a�Kwa

120
þ ðU2 þmadd

�
a

120

þgsb

120
þ gsa

10

1
CCCCCCCA
x5y2 þ…

ð45Þ
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2
666664

�
78483

4421
þ 8221U2

59272

� �
28565

23881
þ 2245U2

251942

�
�
187525

618
þ 24737U2

70538

� �
275879

36839
þ 5178U2

104887

�
3
777775

¼ 0;

ð49Þ

The Eigenvalue obtained is

5639U2

59968
þ125057

9909

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:27� 1015U4 þ 8:95� 1017U2 þ 9:7� 1020

p
5:0� 108

;

ð50Þ

Solving quadratic Eq. (50) gives natural frequencies

U¼ 11:60056007I ð51Þ

Substitute the natural frequencies obtained in Eq.
(51) into Eq. (50), gives:2
666664
�35487

38873
� 457

151762

1281994

5003

40568

47995

3
777775
8<
:a

b

9=
;

ð1Þ

¼
8<
:0

0

9=
;; ð52Þ

Setting a ¼ 1, then findb,

8<
:a

b

9=
;

ð1Þ

¼

8>><
>>:

1

�1011636

3337

9>>=
>>;; ð53Þ

The deflection series solution of the governing
equation mode 1 is given as,

4.1. Nonlinear natural frequency

Applying the Galerkin decomposition method to
separate the temporal and spatial part of the displace-
ment function.

wðx; tÞ ¼ fðxÞuðtÞ; ð55Þ

where the generalized coordinate of the system is
uðtÞand the trial function that satisfies the natural
boundary condition and geometric is fðxÞ.

Applying one-parameter Galerkin solution on Eq.
(56) to Eq. (23). We have,

Z1

0

Rðx; tÞfðxÞdx; ð56Þ

Where

Rðx; tÞ ¼ v4WðX; tÞ
vX4

� 2l2m2p2v
2WðX; tÞ
vX2

�ðMadd �Kw � l4m4p4
�
WðX; tÞ

�gs
v2Wðx;yÞ

vX2
�KpW

3ðX; tÞ ¼ a4rh

D

v2wðX; tÞ
vt2

;

ð57Þ

We have

M €usðtÞþKusðtÞ þVu3s ðtÞ ¼ 0; ð58Þ

Where

M¼
Z1

0

f

�
�a4rh

D
f

1
Adx; ð59Þ

wðx;yÞ ¼ xþ 28400x7

6833
þ 63015x5

7174
� 1954927x7y7

2109
� 586868x7y5

1455
� 628043x7y6

990

� 168606x3y7

3337
� 168606x3y6

3337
� 168606x3y4

3337
� 168606x3y5

3337
� 168606x3y3

3337

� 168606x3y2

3337
þ 1734614x5y7

5847
þ xy5 þ xy2 þ xy6 þ xy3 þ xy4 � 168606x3y

3337

þ xyþ xy7 þ 307274x5y5

1653
þ 15109x5y6

63
þ 240018x5y

8513
� 55330x7y

4923
� 291185x7y3

2459

� 350191x7y4

1500
þ 284183x5y3

3058
þ 542281x5y4

3974
þ 166309x5y2

2943
� 259991x7y2

5391
� 168606x3

3337
þ…;

ð54Þ
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K ¼
Z1

0

f

�
d4f

dx4
� 2l2m2p2d

2f

dx2
� gs

d2f

dx2
� �

Madd �Kw

� l4m4p4
�
f

�
dx;

ð60Þ

V ¼
Z1

0

f
�� kpf

3
�
dx; ð61Þ

4.2. The initial and boundary conditions

The rectangular plate may be subjected to any of the
following boundary conditions.

� ClampedeClamped support

fðxÞ¼ coshbnx� cosbnx�
�
sinhbnLþ sinbnL

coshbnL� cosbnL

�
ðsinhbnx� sinbnxÞ

ð62Þ

wherebnare the roots of the equation

cosbnLcoshbnL¼ 1

The initial and boundary conditions are:

wð0;xÞ¼a; _wð0;xÞ ¼ 0; ð63Þ
wð0; tÞ¼w0ð0; tÞ ¼ 0; wðL; tÞ ¼ w0ðL; tÞ ¼ 0

Alternatively, polynomial function of the form Eq.
(64) can be applied for this type of support system.

fðxÞ¼25:20� �
x2�2x3þ x4

�
; ð64Þ

� Simply- Supported:

fðxÞ ¼ sinbnx ð65Þ

sinbL¼00bn ¼
np

L

The initial and boundary conditions are

wð0;xÞ¼a; _wð0;xÞ ¼ 0; ð66Þ
wð0; tÞ¼w

00 ð0; tÞ ¼ 0; wðL; tÞ ¼ w
00 ðL; tÞ ¼ 0

Alternatively, polynomial function of the form Eq.
(67) can be applied for this type of support system.

fðxÞ¼3:20� �
x�2x3þ x4

�
; ð67Þ

4.3. Determination of natural frequencies

The dynamic response of the structural analysis is
carried out under the transformation:

t¼ eiwt; ð68Þ

Applying Eq. (68) on Eq. (58), we have

Mu2 €uðtÞþKuðtÞ þVu3s ðtÞ ¼ 0; ð69Þ

In order to find the periodic solution of Eq. (69),
assume an initial approximation for zero-order defor-
mation as;

u0ðtÞ ¼ A cos t; ð70Þ

Substitute Eq. (70) into Eq. (69), we have

�Mu2
0A cos tþKA cos tþVA3 cos3 t¼ 0; ð71Þ

Which gives

�Mu2
0A cos tþKA cos tþVA3

�
3 cos tþ cos 3 t

4

�
¼ 0;

ð72Þ

Collecting like terms, we have:�
KA�Mu2

0Aþ 3VA3

4

�
cos t�1

4
VA3 cos 3 t¼ 0;

ð73Þ

Eliminating the secular term, we have:�
KA�Mu2

0Aþ 3VA3

4

�
¼ 0; ð74Þ

Thus, zero-order nonlinear natural frequency
becomes:

u0z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

M
þ 3VA2

4M

r
; ð75Þ

Therefore, the ratio of zero-order nonlinear natural
frequency, u0to the linear frequencyub;

u0

ub

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3VA2

4K
;

r
ð76Þ
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5. Results and discussion

The analytical solutions of thin rectangular plate
immersed in fluid and resting on Winkler and Pas-
ternak foundation are analysed using two-dimensional
differential transformation method. Square aluminium
isotropic rectangular plates l1 ¼ 1 and l2 ¼ 1 are
considered. It is observed that, the more the iteration
increases, the more the computation time increases and
the higher mode natural frequency attained. This is
peculiar to vibration problem. The material constants
for the simulation and parametric studies are taken
from Ref. [25] and presented in Table 2. The first-three
mode natural frequencies comparison of present re-
sults, with that of previous works [26,28] are illustrated

in Tables 3e5. Based on the results presented in Table
3, it can be concluded that the results obtained are in
good harmony with the published work. Furthermore,
variation of elastic foundation and aspect ratio on
natural frequencies are shown in Table 6. Figs. 4e6
presented the variation effects of foundation parame-
ters on natural frequency. Also, the variation of natural
frequencies with aspect ratio of the rectangular plate
are shown in Figs. 7e9. The first-three modal shape of
the thin rectangular plate are illustrated in Figs. 10e12.
Based on the results, it is deduced that the natural
frequency vary linearly and increase with increase in
foundation parameters and aspect ratio. It is also
observed from the results that, submerging the plate in
water decreases the natural frequency.

Table 2

Showing parameters.

Material

density

Young's
modulus

Density of

fluid

Poison's
ratio

gravity Reservoir

tank dimension

Plate

thickness

r(kg/m3) E (Gpa) rf (kgm
�3) n g (m) h (m)

2700 69 1000 0.3 9.8 5 � 5 x 5 0.01

Table 3

Validation of results with exact method.

Edge

Condition/Dimensionless

natural frequency

Simply Supported (SSSS) Simply Supported-clamped (SSSC) Simply Supported-free (SSSF)

Aspect ratio l ¼ 1

Leissa [26] Present Leissa [26] Present Leissa [26] Present

U1 19.7392 19.7392 23.6463 23.6463 11.6845 11.600

U2 49.348 49.348 58.6464 58.6464 27.7563 27.7563

U3 98.696 98.6822 113.2281 113.179 61.8606 61.8606

Table 4

Validation of results for first-three modes.

Edge

Condition/Dimensionless

natural frequency

Aspect ratio Simply Supported (SSSS) % Diff. Simply Supported-clamped (SSSC) % Diff.

l Leissa [26] Present Leissa [26] Present

U1 19.7392 19.7392 0 23.6463 23.6463 0

U2 1 49.348 49.348 0 58.6464 58.6464 0

U3 98.696 98.682 0.014 113.228 113.179 0.049

Table 5

Validation of results for first-three modes.

Edge

Condition/Dimensionless

natural frequency

Aspect ratio Simply Supported-free (SSSF) % Difference

l Leissa [26] Present

U1 1 11.6845 11.6 0.0845

U2 27.7563 27.7563 0

U3 61.8606 61.8606 0
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Table 6

Showing Variation of Aspect ratio and foundation coefficient.

Edge Condition Natural frequency l ¼ 0.5 l ¼ 1.5

Mode kw ¼ 10 kw ¼ 50 kw ¼ 100 kw ¼ 10 kw ¼ 50 kw ¼ 100

SSSS U1 12.7358 14.2198 15.8809 32.2317 32.8464 33.5989

U2 42.0649 42.5376 43.1214 61.766 62.089 62.4903

U3 91.3334 91.5521 91.8248 111.0663 111.2461 111.4707

SSSC U1 17.6179 18.7187 20.0097 35.1935 35.7573 36.4497

U2 52.1938 52.5756 53.049 69.9843 70.2695 70.6244

U3 106.4681 106.6556 106.8899 124.635 124.7947 124.9952

SSSF U1 5.1255 8.1407 10.7829 24.2175 25.0297 26.0093

U2 19.0847 20.1053 21.3125 41.2952 41.7767 42.3709

U3 53.1197 53.4948 53.9602 75.885 76.1481 76.4756

Fig. 4. Variation of foundation parameter on SSSS Boundary conditions.

Fig. 5. Variation of foundation parameter on SSSC Boundary conditions.
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Fig. 6. Variation of foundation parameter on SSSF Boundary conditions.

Fig. 7. Variation of Aspect ratio on SSSF boundary condition.

Fig. 8. Variation of Aspect ratio on SSSS boundary condition.
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Fig. 9. Variation of Aspect ratio on SSSC boundary condition.

Fig. 10. First-three mode shapes under SSSF boundary supports.

Fig. 11. First three mode shapes under SSSS boundary supports.
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5.1. Effect of foundation parameter on natural
frequency

To investigate the effect of foundation parameters
on natural frequency, the derived governing equation is
analysed and the natural frequencies obtained are
presented in Table 6. In addition, to have the under-
standing of the numerical results, the natural fre-
quencies are presented in Figs. 4e6. It clearly shows
that, for the three boundary conditions SSSS, SSSC,
SSSF the foundation parameter has considerable in-
fluence on natural frequency, i.e., increasing the values
of the foundation parameter increases the natural fre-
quency. This is as a result of increase in stiffness,
which is directly proportional to the natural frequency.
Therefore, the observation is justified based on the
theorem of classical vibration.

5.2. Effect of variation of aspect ratio on natural
frequency

In order to illustrate the effect of aspect ratio on the
natural frequency, the mathematical model presented in
Eq. (15) is analysed and the natural frequencies ob-
tained are shown on Table 6. The influence of aspect
ratio on the natural frequency is examined and

scrutinized in Figs. 7e9, which illustrates the variation
of the natural frequencyU, with the aspect ratiol. Based
on the presented results, it can be deduced from the
figures that, aspect ratio has a direct influence on nat-
ural frequency. It is also shown that, increase value of
aspect ratio leads to increase in the natural frequency.
This can be attributed to the fact that an increase in
aspect ratio amount to an increase in stiffness of the
plate.

5.3. Effect of submerging the plate in fluid

Table 7 illustrates the effect of fluid in contact with
vibrating isotropic rectangular plate. The fluid in
consideration is water. From the results presented, it
can be deduced that the natural frequency of the plate
when submerged in fluid decreases as compared to
condition without fluid. This is as a result of increase in
the kinetic energy of the entire system, i.e., when the
kinetic energy of the fluid is added to that of the plate
without increase in strain energy. This becomes an
added mass to the vibrating plate. Consequently, as the
plate vibrates, its mass increases by the addition of
fluid mass, hence, the natural frequency decreases.
From the theorem of classical vibration, mass has an
indirectly proportional effect to natural frequency.

Fig. 12. First three mode shapes under SSSC boundary supports.

Table 7

Showing comparison of plate natural frequency when immersed in fluid to when outside the fluid.

Edge

condition/dimensionless

natural frequency

Simply Supported (SSSS) Simply Support-Clamped (SSSC) Simply Support-Free (SSSF)

Outside fluid [27] In fluid Outside fluid [27] In fluid Outside fluid [27] In fluid

U1 19.7392 18.0635 23.6463 22.2667 11.7195 8.5547

U2 49.3481 48.7020 58.6465 58.1038 27.7563 26.5908

U3 99.3042 98.3607 113.522 112.8986 61.8606 61.3465
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Again, it is also observed from Figs.10e12 that, the
mode shapes for the first-three natural frequencies
considered, has no significant changes when compared
to the condition when the plate is not submerged in
fluid. This finding is authenticated with established
reports presented in literature [6].

5.4. Effect of Pasternak foundation on nonlinear
natural frequency

To obtain the nonlinear natural frequency, the gov-
erning equation is transformed into Duffing equation
and the frequency ratio determined. The variation of
nonlinear frequency with amplitude is shown for the
fundamental mode of vibration in Figs. 13e15. The
frequencies are calculated, taking into consideration

the value of aspect ratiol as unity. It is deduced from
Fig. 13 that, as nonlinear Winkler foundation increases,
the nonlinear vibration frequency ratio decreases. This
is a case of softening nonlinearity properties. Fig. 14
depicts the variation of the frequency ratio of the
plate under different boundary conditions. From the
result, it is observed that frequency ratio is higher in
clampedeclamped supported than in simpleesimple
supported due to the higher stiffness of clamped
boundary condition. However, it is noticed from the
figures that, the nonlinear frequency is a function of
amplitude, since the larger the amplitude, the more
significant the discrepancies between the linear and
nonlinear frequency.

Fig. 15 illustrate the comparisons and the combine
effect of Winkler and Pasternak foundations. Likewise,

Fig. 13. Effect of Pasternak foundation on the nonlinear amplitude frequency response curve of the isotropic rectangular plate.

Fig. 14. Effect of boundary conditions on the nonlinear amplitude frequency response curve of the isotropic rectangular plate.
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it is establishes the fact that nonlinear natural fre-
quency has higher values when the plate is resting on
Pasternak foundation. Therefore, parameters can be
used to control the nonlinearity of the plate.

6. Conclusion

The present study provides analytical approach to
investigation of dynamic behaviour of isotropic rectan-
gular plates resting on Winkler and Pasternak founda-
tions when submerged in a fluid. The governing
nonlinear partial differential equation is solved without
conversion to nonlinear ordinary differential equation
(ODE), in order to eliminate any form of error that
might be introduced. The nonlinear partial differential
equation was analysed using two-dimensional differen-
tial transformation method. The nonlinear fundamental
natural frequencies are also determined. The accuracy of
the analytical solutions obtained were ascertained by
comparing the obtained results with the results from
previous studies. The obtained analytical solutions were
used to examine the effects of foundation parameters,
fluid and aspect ratio. From the parametric studies, the
following conclusions were drawn:

1) As the value of elastic foundation parameter
increases, the foundation of the plate become stiffer
and consequently increases the natural frequency.

2) Increase in aspect ratio results in an increase in
stiffness of the plate, which invariably leads to
increase in natural frequency.

3) Submerging the plate in fluid lowers the natural
frequency. This is due to the added mass effect.

4) Mode shape remain the same as in fluid and
without fluid.

5) From the result, it is observed that frequency
ratio is higher in clampedeclamped than
simpleesimple supported condition due to the
higher stiffness of clamped boundary conditions.
Also, it is noticed that, the nonlinear frequency is
a function of amplitude, since the larger the
amplitude the more significant the discrepancies
between the linear and nonlinear frequency.

6) It is observed that, as nonlinear Winkler foun-
dation increases, the nonlinear vibration fre-
quency ratio decreases. This is a case of
softening nonlinearity.

From the present study it can be concluded that
DTM is a very powerful tool and at the same time very
robust when dealing with eigenvalue problems
involving rectangular plates.
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Nomenclature

t Time
x;y space coordinate along the dimension of thin

plate

Fig. 15. Effect of Winkler and Pasternak foundation parameters on the nonlinear natural frequency.

143O.M. Sadiq et al. / Karbala International Journal of Modern Science 5 (2019) 127e145

mailto:Image of Fig. 15|tif


EI Young modulus of elasticity
m Integer
d
dx;

d
dy Differential operator

kw Winkler foundation parameter
kp Nonlinear Winkler foundation parameter
gs Pasternak foundation parameter
madd Virtual added mass
Dp Fluid dynamic pressure difference

Symbols
n Poisson’ ratio
U Frequency of vibration
wðx;yÞ Deflection of rectangular plate
r Mass density
l Aspect ratio
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