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1. Introduction and preliminaries

Modular spaces are extensions of Lebesgue, Riesz,
and Orlicz spaces of integrable functions. A general
theory of modular linear spaces was founded by
Nakano in Ref. [1], where he developed a spectral
theory in semi ordered linear spaces (vector lattices)
and established the integral representation for pro-
jections acting in his modular space; Nakano's modu-
lars on real linear spaces are convex functionals.
Nonconvex modulars and the corresponding modular
linear spaces were constructed by Musielak and Orlicz
[2]. Orlicz spaces and modular linear spaces have
already become classical tools in modern nonlinear
functional analysis. Recent work indicates that
modular metric space fixed point results are well
adapted to certain types of differential equations [3].
Finally, we refer to Ref. [4] for a detailed study of
nonlinear superposition operators on modular metric
spaces of functions [5e8]. In the formulation given by
Khamsi [9]:

Definition 1.1
Let m be a linear space over Fð¼ R or ℂÞ. A func-

tion g : m/½0;∞� is called modular if

(i) g ðvÞ ¼ 0 if and only if v¼0,
(ii) gðavÞ ¼ aðvÞ for F with jaj ¼ 1, for all, v2 m

(iii) gðavþ buÞ � gðvÞþgðuÞ Iffa; b � 0,aþ b ¼ 1
for all u; v2M .

If (iii) replaced by
(iii) 'gðavþ buÞ � agðvÞþbgðuÞ, fora;b � 0, aþ

b ¼ 1, for all u, v 2M, then g is called convex
modular.

Definition 1.2 [1]
A modular g defines a corresponding modular

space, mg, given by

mg ¼ fv2m : gðavÞ/0whenever a/0g

Many works can be found in Ref. [10e12].
Definition 1.3 [13]
The g-ball, BrðuÞ centered at u 2mg with radius r>

0 asBrðuÞ ¼ fv 2mg;gðu� vÞ< rg.
The class of all g-balls in a modular space mg

generates a topology which makes mg Hausdorff to-
pological linear space. Every g-ball is a convex set,
therefore every modular space is locally convex
Hausdorff topological vector space [6].

Definition 1.4 [6] Let Mg be a modular space.

(a) A sequence fvng3Mg is said to be g-convergent
tov 2 Mg and write vn/

g
vif gðvn � vÞ/0 as

n/∞.
(b) A sequence fvng is called g Cauchy whenever

gðvn � vmÞ/0 as n;m/∞.
(c) Mgs is called g complete if any g Cauchy sequence

in Mgs is g convergent.
(d) A subset B3Mg is called g closed if for any

sequence fvng3B is g convergent to a point in B
(e) A g closed subset B3Mg is called g compact if

any sequence fvng3B has a g convergent
subsequence.

(f) A subset B3Mgis said to be g bounded if
daimgðBÞ<∞; where daimg(B)¼sup
{g(v�u);v,u2B} is called the g diameter of B.

(g) The distance between v 2 Mg and B3Mg is gðv�
BÞ ¼ inffgðv� uÞ; u 2 Bg.

Definition 1.5 [14]
Let mg be a modular space, and A;B are two non e

empty subsets of mg. Let HgðA;BÞ denotes the Haus-
dorff distance of A and B that is defined as the
following: HgðA; BÞ¼ max fsupaJAgða e B Þ;
supbJB gðb e AÞg.
Lemma 1.6 [15]
Let T : A / 2A be a modular space, AnBn se-

quences in CBðmgÞ Then we can choose an in An ; bnin
Bn such that

g ðan� bn Þ ¼ Hg ð An ; Bn Þ þ en; lim
n/∞

en ¼ 0 ð1Þ

Let A be a non-empty subset of mg, Abed and
Abduljabbar [15,16] introduced the following iterative
sequence of two-step type for multivalued mapping T :
A / 2A u0 2A and fung3A is defined by
unþ1 2ð1 e anÞun þ anTvn

vn2 ð1�bnÞun þ bnTun; ∨ n � 0 ð2Þ

or

unþ1 ¼ ð1eanÞun þ anmn;mn 2 Tvn; n � 0
vn ¼ ð 1� bnÞun þ bnxn;xn2 Tun n � 0

ð3Þ

The following iterative sequence of multivalued
mappings S; T : A/2A u0 2A is defined by

unþ12ð1eanÞun þ anSvn
vn2ð1� bnÞun þ bnTun;∨ n � 0

ð4Þ

or
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unþ1 ¼ ð1� anÞun þanzn; zn2Svn;c n� 0
vn ¼2ð1� bnÞ un þ bnxn;
xn2Tun

ð5Þ

In this article, It is assumed that the iterative se-
quences (1.3) and (1.5) converge.Moreover, it converges
to a fixed point of T. Also, some results that are special
cases of these theorems are presented. Here, mg is a
complete convex real modular space (shortly, CCRMS).

2. A fixed point theorem for multivalued mappings

We begin with the following
Theorem (2.1)
Let mg be a CCRMS, ØsA3M, A be convex

T : A/CBðAÞ , and {un} as in (3) satisfying
lim
n/∞

inf an > 0 ∍ fung converges to p. Suppose that d

a; b;m; d> 0; b< 1 H for all n sufficiently large

HyðTun;TvnÞ � agðun�mnÞ þ bgðun� xnÞ ð6Þ
HðTn;TunÞ � agðun�pÞ þ mdyðun;TunÞ þ ddyðp;TunÞ
þ bmax

�
dg
�
p;Tp

�
;dgðun;TPÞ

�
ð7Þ

where anþ bn ¼ 1for all n. Then p is a fixed point of T
Proof:
Use condition (3) unþ1 ¼ ð1eanÞun þ anmn; mn2

Tvn; n � 0 q31. Sincegðxn� mnÞ � HgðT un ;
T vnÞþ en
Also, then lim

n/∞
un ¼ 0 Which means

that lim
n/∞

mn ¼ p
By conditions (1) and (6) we have:

gðun � pÞ þ gðun � xnÞ þ agð un � pÞ þ gðun � xnÞþ
dgðp� xnÞ þ bmaxfdg ðp; TpÞ ;gðun � p Þ; dg ðp; TpÞg
� agðun � mn Þ þ bgðun � xnÞ þ en

Which implies that lim
n/∞

xn ¼ p. Using (7) to have

dg ðp;TpÞ � g ðun � pÞ þ dg ðun;TunÞ
þHg ðTp;TunÞ � g ðun � pÞ þ gðun � xnÞ
þagðun � pÞ þ mdgðun; TunÞ þ ddgðp;TunÞ
þbmaxfdg ðp;TpÞ;dgðun;TpÞg � g ðun � pÞ
þgðun � xnÞ þ agðun � pÞ þ gðun � xnÞ

þdgðp� xnÞþ
bmaxfdg ðp;TpÞ; gðun � pÞ;dg ðp;TpÞg

Taking the limit as n/∞ yields. dg ð p; T pÞ �
b dg ð p; T pÞ Which implies that p 2Tp. p 2 Tp

Corollary (2.2)

Let Mg be a CCRMS , ∅sA3 Mg , A be convex
T : A /CBðAÞ satisfying
Hg ðTu ; TvÞ � qmaxfkg ðu�v Þ; dg ðv ; T vÞ; dgðu ; TvÞ
þ dg ðv ; TuÞ

ð8Þ

where q31.

å lim
n/∞

infan > 0 and lim
n/∞

bn ¼ 0 ;

converges to p , then p is a fixed point of T .
Proof:
It is sufficient to show that T satisfies conditions (6)

and (7). From the condition (8), we get

Hg ðTun;Tvn Þ � qmaxfkgð un� vn Þ;dgðun;TunÞ
þ dgðvn;Tvn Þ;dgðun;TvnÞ þ dgðvn ;TunÞg ð9Þ

From condition (3),

vn ¼ ð 1� bnÞun þ bnxn; xn2Tun for all n

We have

gðun� vn Þ¼ bngðun� xnÞ
dgðvn;TunÞ�gðvn� xnÞ¼gðð1�bnÞunþbnxn� xnÞ
¼gðð1�bnÞun� ð1�bnÞ xnÞ
¼ ð1�bnÞgðun� xnÞ;
dgðvn;TvnÞ�gðvn;mnÞ; mn2Tvn

�gðun� vnÞþgðun�mnÞ� bngðun� xnÞþgðun�mnÞ
dgðun;TunÞ�gðun� xnÞ;xn2Tun

And dgð un ; TvnÞ � g ðun� mnÞ. Substituting
into (9) gives

Hg ðTun;TvnÞ � qmaxfkbngðun� xnÞ;gðun� xnÞ
þ bngðun� xnÞ þ gðun�mnÞ;gðun�mnÞ
þ ð1�bnÞgðun� xnÞg
� qgðun�mnÞ þ maxfkq bn;q ð1þ bnÞggðun� xnÞ

R Since bn /0 as n /∞. So, there exists n0 large
enough to make maxf k q bn ; q ð1þ bnÞg < 1 And
(6) is satisfied. Again from (8), we obtain

HgðT un ; TpÞ �qmaxf k gðun� pÞ; dgðun; TunÞþ
dgðp; TpÞ ; dgðun; TpÞþ dgðp; TunÞg � q k g ðun�
pÞþ qdgð un; TunÞþ q ðp; TunÞþ qmaxf dgðp; TpÞ;
dgðun; TpÞg. It is clear that

ifa ¼ qk ; m ¼ d ¼ b ¼ q < 1 then (8) is satisfied.
Corollary (2.3)
LetMg be a CCRMS, ∅sA3 Mg A be convex T :

A /CBðAÞ satisfying
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For all, u; v in A if there exists u0 2A such that {un}
in condition (3) satisfying 0 < an ; bn � 1,
lim
n/∞

infan > 0 ; lim
n/∞

sup bn < 1 and condition (1)
converges to p , then p is a fixed point of T .

Proof: From (10), we obtain

But from the condition (3), we have

gðun � vnÞ ¼ bngðun � xnÞ;
dgðvn;TunÞ � ð1� bnÞgðun � xnÞ;
dgðvn;TvnÞ � bngðun � xnÞ þ g ðun � mnÞ
dgðun;TunÞ � gðun � xnÞ and dgðun;TvnÞ � gðun � mnÞ

Substituting into (11) yields:

Since lim
n/∞

sup bn < 1 then we can choose n0 large

enough to make max

�
bn ;

1þbn
2

�
< 1 and condition

(6) is satisfied. From (10)

HgðTun;TpÞ �maxfgðun � pÞ;
dgðun;TunÞ þ dgðp;TpÞ

2
;

dgðun;pÞ þ dgðp;TunÞ
2

�

� gðun � pÞ þ dgðun;TunÞ
2

þ dgðp;TunÞ
2

þ1

2
maxfdgðp;TpÞ;dgðun;pÞg

so, a ¼ 1;m ¼ d ¼ b ¼ 1
2 and condition (2.2) is

satisfied.
Corollary(2.4):
Let Mg be a CCRMS, ∅sA3 Mg , A be; convex,

T : A /CBðAÞ satisfying

d u; v in A where 0 < q < 1 : If there exists u0 in A
Hfungsatisfying condition (3) and (1) for an þ bn ¼
1 lim

n/∞
infan > 0 and lim bn ¼ 0, converges to p , then p

is a fixed point of T.
Proof: From (12), we obtain

Form condition (3),

vn � mn ¼ ð1�bnÞun þ bnxn � bnmn � ð1�bnÞmn

So,

gðvn�mnÞ � ð1�bnÞgðun�mnÞ þ bn gðxn�mnÞ
� ð1�bnÞgðun�mnÞ þ bn½gðun�mnÞ

þ gðun� xnÞ�
¼ gðun�mnÞ þ bn gðun� xnÞ

Also, from condition (3), g ðunþ1� unÞ ¼ an gðun�
mnÞ

HgðTun;TvnÞ �max

�
gðun� vnÞ;dgðun;TunÞ þ dgðvn;TvnÞ

2
;
dgðun;TvnÞ þ dgðvn;TunÞ

2

�
ð11Þ

HgðTun;TvnÞ � max

�
bngðun� xnÞ;

gðun � xnÞ þ bn gðun � xnÞ þgðun � mnÞ
2

;
gðun � mnÞ þ ð1� bn Þ gðun � xnÞ

2

�

�max

�
bn;

1þ bn

2

�
gðun� xnÞ þ

1

2
gðun�mnÞ

HgðTu;TvÞ � qmax

�
gðu� vÞ;dgð v;TvÞ½ 1þ dgðu;TuÞ�

1þ gðu� vÞ ;
dgðu;TvÞ½1þ dgðu;TuÞ þ dgðv;TuÞ�

2½1þ gðu� vÞ�
�

ð12Þ

HgðTu;TvÞ �max

�
gðu� vÞ;dgðu;TuÞ þ dgðv;TvÞ

2
;
dgðu;TvÞ þ dgðv;TuÞ

2

�
ð10Þ
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Since un is convergent lim
n/∞

gðunþ1� unÞ ¼ 0and
from lim

n/∞
infan > 0 Yields lim

n/∞
gðun � mnÞ ¼ 0 .

Therefore, for all n sufficiently large,

gðun�mnÞ þ bn gðun� xnÞ � 1þ bn gðun� xnÞ:

Thus, for all n sufficiently large and from in-
equalities in the proof of corollary (6), we have

Since

vn � xn ¼ ð1�bnÞun þ bnxn � bnxn � ð1�bnÞxn
So,

gðvn� xnÞ ¼ ð1�bnÞ gðun� xnÞ

Since

gðun �mnÞ½1þ gðun � xnÞ þ gðvn � xnÞ�
2½1þ bngðun � xnÞ�

¼ gðun � mnÞ½1þ ð2� bnÞ gðun � xnÞ
2½1þ bngðun � xnÞ�

� 1

2
½gðun�mnÞ þ ð2�bnÞgðun� xnÞ�

Then for all n sufficiently large, we get:

HgðTun;TvnÞ � qmaxfbngðun � xnÞ;
ð1þ bnÞgðun � xnÞ þ gðun � mnÞ;
1

2

�
gðun � mnÞ þ ð2� bnÞgðun � xnÞ

�

�maxfqbn; qð1þ bnÞ;qð2� bnÞ=2g gðun � xnÞ
þq gðun � mnÞg

And (6) is satisfied, since lim
n/∞

bn ¼ 0 Again from
(12), we get

HgðTun;TpÞ � qmax

�
g

	
un � p



;

dgðp;TpÞ½1þ gðun � xnÞ�
1þ gðun � pÞ ;

dgðun;TpÞ½1þ gðun � xnÞ þ gðp� xnÞ�
2½1þ gðun � pÞ�

�
� qgðun � pÞ

þqmax

�
1þ gðun � xnÞ
1þ gðun � pÞ ;

1þgðun � xnÞ þ gðp� xnÞ
2½1þ gðun � pÞ�

�

max fdgðp;TpÞ;dgðun;TpÞg

Since the condition (6) is satisfied

gðun� xn Þ � gðun�mnÞ þ gðmn� xnÞ
� gðun�mnÞ þ HgðTun;TvnÞ þ en

� gðun�mnÞ þ a gðun�mnÞ þ b gðun� xnÞ
þ enan;b<0 and b< 1

� qmax

�
gðun� vnÞ;gðun � mnÞ½1þ gðun � xnÞ�

1þ gðun � xnÞ
;
gðun � mnÞ½1þgðun � xnÞ þ gðvn � xnÞ�

2½1þ gðun � xnÞ�
�

gðvn � mnÞ½1þ gðun � xnÞ�
1þ bn gðun � xnÞ

� gðvn�mnÞ þ
gðvn � mnÞgðun � xnÞ
1þ bngðun � xnÞ

� gðvn�mnÞ þ gðun� xnÞ

� gðun�mnÞ þ bn gðun� xnÞ þ gðun� xnÞ ¼ ð1�bnÞgðun� xnÞ þ gðun�mnÞ

HgðTun;TvnÞ � qmax

�
gðun� vnÞ; dgðvn;TvnÞ½1þ dgðun;TunÞ�

1þ gðun � vnÞ ;
dgðun;TvnÞ½1þ dgðun;TunÞ þ dgðvn;TunÞ�

2½1þ gðun � vnÞ�
�
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since lim
n/∞

gðun� mnÞ ¼ 0, we have

lim
n/∞

sup gðun � xnÞ � b lim
n /∞

sup gðun � xnÞ ;
since 0 � b � 1; which implies that
lim
n/∞

gðun � xnÞ ¼ 0

n/∞

since gðp� xnÞ � gðp� unÞ þ

gðun � xnÞ; it follows that

lim
n/∞

max

�
1þgðun�xnÞ
1þgðun�pÞ ;

1þgðun�xnÞþgðp�xnÞ
2½1þgðun�pÞ�

�

¼max

�
1;
1

2

�
¼

1:

3. Common fixed point for a pair of mappings

We replace the condition (6), (7)and (1) by taking
xn2Tun andmn2Svn, n2N

gðxn�mnÞ � HgðTun;SvnÞ þ en with lim
n/∞

en ¼ 0 ð13Þ

HgðTun;SvnÞ � a gðun�mnÞ þ b gðun� xnÞ ð14Þ
HgðSp;TunÞ � agðun�pÞ þ gdgðun;TunÞ

þ ddgðp;TunÞ
þ bmaxfdgðp;SpÞ;dgðun;SpÞg ð15Þ

Also, assume that

HgðSp;TpÞ � b½dgðp;TpÞ þ dgðp;SpÞ� ð16Þ

Theorem (3.1)
Let mg be a CCRMS; ∅sA 3 mg and A be convex

S; T : A/CBðAÞ. Suppose that {un} as in (5) con-
verges to point p, where an þ bn ¼ 1; cnand
lim
n/∞

infan > 0 {xn},{mn} satisfying (13). If for all n

sufficiently large, S and T satisfy (14), (15) and (16).
Then p is a common fixed point for S and T

Proof: Use condition (5) unþ1 ¼ ð1� anÞunþ anmn;
mn2Svn. We have gðunþ1 � unÞ ¼ angðun � mnÞ

since lim
n/∞

un ¼ pthen lim
n/∞

ðunþ1 � unÞ ¼ 0 .

Also, since lim
n/∞

infan ¼ 0 then which means that
lim
n/∞

mn ¼ p: Using condition (13) and (14), we have:

gðxn � mnÞ � HgðTun;SvnÞ þ en
� agðun � mnÞ þ bgðun � xnÞ þ en

Taking limit as n /∞ yields,
lim gð
n/∞

xn � pÞ � b lim
n/∞

gðp� xnÞ , which implies that

lim
n/∞

xn ¼ p

Using condition (15) to have:

dgðp;SpÞ�gðun�pÞþdgðun;TunÞþHgðSp;TunÞ
�gðun�pÞþgðun� xnÞþagðun�pÞþgdgðun;TunÞþ
ddgðp;TunÞþbmaxfdgðp;SpÞ;dgðun;SpÞg
�gðun�pÞþgðun� xnÞþagðun�pÞþ mðun� xnÞ

þdgðp� xnÞþbmaxfdgðp;SpÞ;gðun �pÞþdgðp;SpÞg
� ð1þaÞgðun �pÞþð1þgÞgðun� xnÞþdgðp� xnÞ
þbmaxfdgðp;SpÞ;gðun�pÞþdgðp;SpÞg

Taking limit as n /∞ yields
dgðp; SpÞ � b dgðp; SpÞ which implies that p2Sp. To
show that p is also a fixed point of T, using condition
(16)

dgðp;TpÞ � HgðSp;TpÞ � b½dgðp;SpÞ þ dgðp;TpÞ�
¼ bdgðp;TpÞ

So, p must be an element of Tp
Corollary (3.2)
Let mg be a CCRMS; ∅sA 3 mg be convex S; T :

A/CBðAÞ satisfying
HgðTu;SvÞ � qmaxfkgðu� vÞ ;dgðu;TuÞ
þ dgðv;SvÞ; dgðu;SvÞ þ dgðv;TuÞg ð17Þ

d u; v in A where K � 0 and 0< q< 1. If there exists
u0 in AHfun g satisfying (5) and (13) for an þ bn ¼
1 lim

n/∞
infan > 0 and lim

n/∞
bn ¼ 0; converges to p then p

is a fixed point of T .
Proof: It is sufficient to show that T satisfies con-

ditions (14), (15) and (16) from (17), we obtain

HgðTun;SvnÞ � qmaxfkgðun � vnÞ;
dgðun;TunÞ þ dgðvn;SvnÞ;
dgðun;SvnÞ þ dgðvn;TunÞg

ð18Þ

From condition (3),
vn ¼ ð1� bnÞun þ bnxn; xn2Tun for all n. We have
gðun � vnÞ ¼ bgðun � xnÞ;
dgðvn;Tun Þ � gðvn � xnÞ ¼ gðð1� bnÞun þ bnxn � xnÞ
¼ gðð1� bnÞun � ð1� bnÞxnÞ
¼ ð1� bnÞ gðun � xnÞ;dgðvn;SvnÞ
� gðvn � mnÞ ;mn2Svn

� gðun � vnÞ þ gðun � mnÞ
� bngðun � xnÞ þ gðun � mnÞdgðun;TunÞ
� gðun � xnÞ;xn2Tun
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And dgðun ; SvnÞ � gðun � mnÞ.
Substituting into (18) gives

HgðTun;SvnÞ � qmaxfkbngðun � xnÞ;
gðun � xnÞ þ bngðun � xnÞ þ gðun � mnÞ;
gðun � mnÞ þ ð1� bnÞgðun � xnÞg � qgðun � mnÞþ
maxfkqbn; qð1þ bnÞggðun � xnÞg

because bn/∞ as n/∞ So, there exists n0 large
enough to make maxfkqbn; qð1þ bnÞg< 1 and (14) is
satisfied. Again from (17)

HgðTun;SpÞ � qmaxfkgðun � pÞ;
dgðun;TunÞ þ dgðp;SpÞ;
dgðun;SpÞ þ dgðp;TunÞg � qk gðun � pÞ þ qdgðun;TunÞ
þqdgðp;TunÞ þ qmax fdgðp;SpÞ;dgðun;SpÞg

It is clear that, if a ¼ qk; m ¼ d ¼ b ¼ q< 1, then
(15) is satisfied from (17)

HgðTp; SpÞ � qmaxfkgðp�pÞ;dgðp;TpÞ þ dgðp;SpÞ;
dgðp; SpÞþ dgðp; TpÞg � qmaxf0; dgðp; TpÞ; dgðp; SpÞg
and (16) is satisfied with b ¼ q< 1:

Corollary (3.3)
Let mg be a CCRMS; ∅sA 3 mg be convex S; T :

A/CBðAÞ satisfying

HgðTu;SvÞ � max

�
gðu� vÞ;dgðun;TunÞ þ dgðvn; SvnÞ

2
;

dgðun;SvnÞ þ dgðvn;TunÞ
2

�
ð19Þ

d u; v in A.If there exists a point u0 2A Hfun gin (5)
satisfying
an þ bn ¼ 1;cn lim

n/∞
infan > 0; lim

n/∞
supbn < 1 and

(13), converges to p; then p is a fixed point of T :
Proof: from (19), we get

But from the condition (5), we have
gðun � vnÞ ¼ bn gðun � xnÞ;
dgðvn;TunÞ � ð1� bnÞgðun � xnÞ;
dgðvn;SunÞ � bngðun � xnÞ þ gðun � mnÞ;

dgðun ; Tun Þ � gðun � xnÞ and dgðun ; SvnÞ � gðun �
mnÞ. Substituting into (20) yields003A

Since lim
n/∞

supbn < 1 then we can choose n0 large

enough to make max

�
bn;

1�bn
2

�
< 1 and condition

(14) is satisfied from (19), we obtain

HgðTun; SpÞ �maxfgðun � pÞ;
dgðun;TunÞ þ dgðP;SPÞ

2
;
dgðun;SpÞ þ dgðp;TunÞ

2

�

� gðun � pÞ þ dgðun;TunÞ
2

þ dgðp;TunÞ
2

þ1

2
maxfdgðP; SPÞ; dgðun;SpÞg

So, a ¼ 1; m ¼ d ¼ b ¼ 1
2; and condition (15) is

satisfied
Finally, from (19), we get

HgðTp;SpÞ �maxfgðp� pÞ;
dgðp;TpÞ þ dgðp; SpÞ

2
;

dgðp;SpÞ þ dgðp;TpÞ
2

�

¼
�
dgðp;TpÞ

2
þ dgðp; SpÞ

2

�

¼ 1

2
fdgðp;TpÞ þ dgðp; SpÞg

and the condition (16) is satisfied.
Corollary (3.4)
Letmg be aCCRMS; ∅sA 3 mgbe con-

vex S; T : A/CBðAÞ satisfies
HgðTu; SvÞ � qmaxfgðu� vÞ;

dgðv;SvÞ½1þdgðu;TuÞ�
1þgðu�vÞ ;

dgðu;SvÞ½1þdgðu;TuÞþdgðv;TuÞ�
2½1þgðu�vÞ�

�

ð21Þ

d u; v in A where 0< q< 1: If there exists an u0 in
AHfung satisfying (5) and (13) foran þ bn ¼ 1

HgðTun; SvnÞ �max

�
gðun� vnÞ;dgðun;TunÞ þ dgðvn;SvnÞ

2
;
dgðun;SvnÞ þ dgðvn;TunÞ

2

�
ð20Þ

HgðTun;SvnÞ � max

�
bngðun � xnÞ;

gðun � xnÞ þ bn gðun � xnÞ þ gðun � mnÞ
2

;
gðun � mnÞ þ ð1� bnÞgðun � xnÞ

2

�

�max

�
bn;

1� bn

2

�
gðun � xnÞ þ

1

2
gðun�mnÞ
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lim
n/∞

infan > 0; lim
n/∞

bn ¼ 0; converges to p, there p is

a fixed point of T .
Proof: Using (21), we get

From condition (5),

vn � mn ¼ ð1�bnÞun þ bnxn � bnmn � ð1�bnÞmn

So,

gðvn�mnÞ � ð1�bnÞgðun�mnÞ þ bngðxn�mnÞ
� ð1�bnÞgðun�mnÞ þ bn½gðun�mnÞ

þ gðun� xnÞ�
¼ gðun�mnÞ þ bngðun� xnÞ

Also, from condition (5) gðunþ1� unÞ ¼ angðun�
mnÞ . Since fung is convergent, lim

n/∞
gðunþ1 � unÞ ¼ 0

and from lim
n/∞

infan > 0 . Yields lim
n/∞

gðun� mnÞ ¼ 0.

Therefore, for all n sufficiently large,

gðun�mnÞ þ bngðun� xnÞ � 1þ bngðun� xnÞ:

Thus, for all n sufficiently large and from in-
equalities in the proof of corollary (13), we have

Since,

vn � xn ¼ ð1�bnÞun þ bnxn � bnxn � ð1�bnÞxn
So,

gðvn� xnÞ ¼ ð1�bnÞgðun� xnÞ

Since

Then for all n sufficiently large, we get:

HgðTun;SvnÞ � qmaxfbngð1þbnÞgðun� xnÞ

þ gðun�mnÞ;
1

2
½gðun�mnÞ þ ð2�bnÞgðun� xnÞ�

�maxfqbn;qð1þbnÞ;qð2�bnÞ=2ggðun� xnÞ þ qg

ðun� mnÞ
and (14) is satisfied, since lim

n/∞
bn ¼ 0. Again from

(21), we get

Since (14) is satisfied

HgðTun;SvnÞ � qmax

�
gðun� vnÞ;dgðvn;SvnÞ½1þ dgðun;TunÞ�

1þ gðun � vnÞ ;
dgðun;SvnÞ½1þ dgðun;TunÞ þ dgðvn;TunÞ�

2½1þ gðun � vnÞ�
�

� qmax

�
gðun� vnÞ;gðun � mnÞ½1þ gðun � xnÞ�

1þ gðun � xnÞ
;
gðun � mnÞ½1þ gðun � xnÞ þ gðvn � xnÞ�

2½1þ gðun � xnÞ�
�

gðvn � mnÞ½1þ gðun � xnÞ�
1þ bngðun � xnÞ

� gðvn � mnÞ þ
gðvn � mnÞgðun � xnÞ
1þ bngðun � xnÞ

� gðvn � mnÞ þ gðun � xnÞ

� gðun � mnÞ þ bngðun � xnÞ þ gðun � xnÞ ¼ ð1þ bnÞgðun � mnÞ þ gðun � mnÞ

gðun � mnÞ½1þ gðun � xnÞ þ gðvn � xnÞ�
2½1þ bngðun � xnÞ�

¼ gðun � mnÞ½1þ ð2� bnÞgðun � xnÞ�
2½1þ bngðun � xnÞ�

� 1

2
½gðun�mnÞ þ ð2�bnÞgðun� xnÞ�
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gðun � xnÞ � gðun � mnÞ þ gðmn � xnÞ
� gðun � mnÞ þHgðTun;SvnÞ þ en � gðun � mnÞ

þagðun � mnÞ þ bgðun � xnÞ þ en

where a; b> 0 and b< 1 Since lim
n/∞

gðun � mnÞ ¼ 0;
we have
lim
n/∞

sup gðun � xnÞ � b lim
n/∞

supgðun � xnÞ;
since 0 � b< 1; which implies that
lim
n/∞

gðun � xnÞ ¼ 0 since

gðp� xnÞ � gðp� unÞ þ gðun � xnÞ it follows that

lim
n/∞

max

�
1þ gðun � xnÞ
1þ gðun � pÞ ;

1þ gðun � xnÞ þ gðp� xnÞ
2½1þ gðun � pÞ�

�

¼max

�
1;
1

2

�
¼ 1

Therefore, for all n sufficiently large (15) is satis-
fied. Since (14) and (15) are satisfied, then by theorem
(13) pis a fixed point of S from (21), we obtain

HgðSp;TpÞ � qmax

�
0;dgðp;SpÞ½1

þ dgðp;TpÞ�;1
2
dgðp;SpÞ½1þ dgðp;TpÞ þ dgðp;TpÞ�

�

¼ 0

and (16) is satisfied trivially.
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HgðTun;SpÞ � qmax

�
gðun � pÞ;dgðp;SpÞ½1þ gðun � xnÞ�

1þ gðun � pÞ ;
dgðun;SpÞ½1þ gðun � xnÞ þ gðp� xnÞ�

2½1þ gðun � pÞ
�

� qgðun � pÞ þ qmax

�
1þ gðun � xnÞ
1þ gðun � pÞ ;

1þ gðun � xnÞ þ gðp� xnÞ
2½1þ gðun � pÞ�

�
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