

Karbala International Journal of Modern Science

[Volume 6](https://kijoms.uokerbala.edu.iq/home/vol6) | [Issue 2](https://kijoms.uokerbala.edu.iq/home/vol6/iss2) Article 3

Approximating fixed points in modular spaces

Salwa Salman Abed university of Baghdad, salwaalbundi@yahoo.com

Meena Fouad Abduljabbar university of Baghdad

Follow this and additional works at: [https://kijoms.uokerbala.edu.iq/home](https://kijoms.uokerbala.edu.iq/home?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol6%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Biology Commons](https://network.bepress.com/hgg/discipline/41?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol6%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages), [Chemistry Commons,](https://network.bepress.com/hgg/discipline/131?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol6%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages) [Computer Sciences Commons](https://network.bepress.com/hgg/discipline/142?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol6%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages), and the [Physics Commons](https://network.bepress.com/hgg/discipline/193?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol6%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Abed, Salwa Salman and Abduljabbar, Meena Fouad (2020) "Approximating fixed points in modular spaces," Karbala International Journal of Modern Science: Vol. 6 : Iss. 2 , Article 3. Available at: <https://doi.org/10.33640/2405-609X.1353>

This Research Paper is brought to you for free and open access by Karbala International Journal of Modern Science. It has been accepted for inclusion in Karbala International Journal of Modern Science by an authorized editor of Karbala International Journal of Modern Science. For more information, please contact [abdulateef1962@gmail.com.](mailto:abdulateef1962@gmail.com)

Approximating fixed points in modular spaces

Abstract

A generic two theorems for the two step iterative sequence of multivalued mappings are proved in a complete convex real modular space, and then cite some corollaries that are special cases of these theorems.

Keywords

Multivalued mappings; Fixed points; Iterative sequences; Uniformly convex real modular spaces.

Creative Commons License

This work is licensed under a [Creative Commons Attribution-Noncommercial-No Derivative Works 4.0](http://creativecommons.org/licenses/by-nc-nd/4.0/) [License](http://creativecommons.org/licenses/by-nc-nd/4.0/).

Cover Page Footnote

The authors would like to thank the referees for giving fruitful advices.

1. Introduction and preliminaries

Modular spaces are extensions of Lebesgue, Riesz, and Orlicz spaces of integrable functions. A general theory of modular linear spaces was founded by Nakano in Ref. [\[1](#page-9-0)], where he developed a spectral theory in semi ordered linear spaces (vector lattices) and established the integral representation for projections acting in his modular space; Nakano's modulars on real linear spaces are convex functionals. Nonconvex modulars and the corresponding modular linear spaces were constructed by Musielak and Orlicz [\[2](#page-9-1)]. Orlicz spaces and modular linear spaces have already become classical tools in modern nonlinear functional analysis. Recent work indicates that modular metric space fixed point results are well adapted to certain types of differential equations [\[3](#page-9-2)]. Finally, we refer to Ref. [[4\]](#page-9-3) for a detailed study of nonlinear superposition operators on modular metric spaces of functions $[5-8]$ $[5-8]$ $[5-8]$. In the formulation given by Khamsi [[9\]](#page-9-5):

Definition 1.1

Let μ be a linear space over $F(=R \text{ or } \mathbb{C})$. A function $\gamma : \mu \rightarrow [0, \infty]$ is called modular if

(i) $\gamma(v) = 0$ if and only if $v=0$,

- (ii) $\gamma(\alpha v) = \alpha(v)$ for F with $|\alpha| = 1$, for all, $v \in \mu$
- (iii) $\gamma(\alpha v + \beta u) \leq \gamma(v) + \gamma(u)$ Iff $\alpha, \beta \geq 0, \alpha + \beta = 1$ for all $u, v \in M$.

If (iii) replaced by

(iii) $\gamma(\alpha v + \beta u) \leq \alpha \gamma(v) + \beta \gamma(u)$, for $\alpha, \beta \geq 0$, $\alpha +$ $\beta = 1$, for all u, $v \in M$, then γ is called convex modular.

Definition 1.2 [\[1](#page-9-0)]

A modular γ defines a corresponding modular space, μ_{γ} , given by

 $\mu_{\gamma} = {\nu \in \mu : \gamma(\alpha \nu) \rightarrow 0 \text{ whenever } \alpha \rightarrow 0}$

Many works can be found in Ref. $[10-12]$ $[10-12]$ $[10-12]$. **Definition 1.3** [\[13](#page-9-7)]

The γ -ball, $B_r(u)$ centered at $u \in \mu_\gamma$ with radius r > 0 as $B_r(u) = \{v \in \mu_\gamma; \gamma(u-v) < r\}.$

The class of all γ -balls in a modular space μ_{γ} generates a topology which makes μ_{γ} Hausdorff topological linear space. Every γ -ball is a convex set, therefore every modular space is locally convex Hausdorff topological vector space [\[6\]](#page-9-8).

Definition 1.4 [\[6](#page-9-8)] Let M_{γ} be a modular space.

- (a) A sequence $\{v_n\} \subset M_\gamma$ is said to be γ -convergent to $v \in M_{\gamma}$ and write $v_n \stackrel{\gamma}{\rightarrow}$ vif $\gamma(v_n - v) \rightarrow 0$ as $n \rightarrow \infty$.
- (b) A sequence $\{v_n\}$ is called γ Cauchy whenever $\gamma(v_n - v_m) \rightarrow 0$ as $n, m \rightarrow \infty$.
- (c) $M_{\gamma s}$ is called γ complete if any γ Cauchy sequence in $M_{\gamma s}$ is γ convergent.
- (d) A subset $B \subset M_{\gamma}$ is called γ closed if for any sequence $\{v_n\} \subset B$ is γ convergent to a point in B
- (e) A γ closed subset $B \subset M_{\gamma}$ is called γ compact if any sequence $\{v_n\} \subset B$ has a γ convergent subsequence.
- (f) A subset $B \subset M_{\gamma}$ is said to be γ bounded if $\frac{d\text{dim}_{\gamma}(B) < \infty}{d\text{dim}_{\gamma}(B) = \text{supp}\sqrt{d\text{dim}_{\gamma}(B)}$
 $\frac{d\text{dim}_{\gamma}(B)}{d\text{dim}_{\gamma}(B)}$ is called the γ diameter of B $\{\gamma(v-u);v,u\in B\}$ is called the γ diameter of B.
The distance between $v \in M$ and $B \subset M$ is $\gamma(v)$.
- (g) The distance between $v \in M_{\gamma}$ and $B \subset M_{\gamma}$ is $\gamma(v B$) = inf{ $\gamma(v-u); u \in B$. Definition 1.5 [\[14](#page-9-9)]

Let μ_{γ} be a modular space, and A, B are two non – empty subsets of μ_{γ} . Let $H_{\gamma}(A, B)$ denotes the Hausdorff distance of A and B that is defined as the following: $H_{\gamma}(A, B) = \max \{ \sup_{a \in A} \gamma(a - B),$ $sup_{bJB} \gamma(b-A)$.

Lemma 1.6 [\[15](#page-9-10)]

Let $T : A \rightarrow 2^A$ be a modular space, A_nB_n sequences in $CB(\mu_{\gamma})$ Then we can choose a_n in A_n , b_n in B_n such that

$$
\gamma\left(a_{n}-b_{n}\right)=H_{\gamma}\left(A_{n},B_{n}\right)+\epsilon_{n},\lim_{n\to\infty}\epsilon_{n}=0\qquad(1)
$$

Let A be a non-empty subset of μ_{γ} , Abed and Abduljabbar [\[15](#page-9-10),[16\]](#page-9-11) introduced the following iterative sequence of two-step type for multivalued mapping T : $A \rightarrow 2^A$ $u_0 \in A$ and $\{u_n\} \subset A$ is defined by $u_{n+1} \in (1 - a_n)u_n + a_nTv_n$

$$
v_n \in (1 - \beta_n)u_n + \beta_n T u_n, \ \forall \ n \ge 0 \tag{2}
$$

or

$$
u_{n+1} = (1 - a_n)u_n + a_n \mu_n, \mu_n \in Tv_n, \quad n \ge 0
$$

$$
v_n = (1 - \beta_n)u_n + \beta_n \xi_n, \xi_n \in Tu_n \quad n \ge 0
$$
 (3)

The following iterative sequence of multivalued mappings $S, T : A \rightarrow 2^A$ $u_0 \in A$ is defined by

$$
u_{n+1} \in (1-a_n)u_n + a_nSv_n
$$

\n
$$
v_n \in (1-\beta_n)u_n + \beta_nTu_n, \forall n \ge 0
$$
\n(4)

or

<https://doi.org/10.33640/2405-609X.1353>

²⁴⁰⁵⁻⁶⁰⁹X/© 2020 University of Kerbala. This is an open access article under the CC BY-NC-ND license ([http://creativecommons.org/licenses/](http://creativecommons.org/licenses/by-nc-nd/4.0/) [by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/).

$$
u_{n+1} = (1 - \alpha_n)u_n + \alpha_n \zeta_n, \zeta_n \in Sv_n, \forall n \ge 0
$$

\n
$$
v_n = \in (1 - \beta_n) u_n + \beta_n \zeta_n,
$$

\n
$$
\zeta_n \in Tu_n
$$
\n(5)

In this article, It is assumed that the iterative sequences (1.3) and (1.5) converge. Moreover, it converges to a fixed point of T. Also, some results that are special cases of these theorems are presented. Here, μ_{γ} is a complete convex real modular space (shortly, CCRMS).

2. A fixed point theorem for multivalued mappings

We begin with the following Theorem (2.1)

Let μ_{γ} be a CCRMS, $\varnothing \neq A \subset M$, A be convex $T : A \rightarrow CB(A)$, and $\{u_n\}$ as in (3) satisfying lim inf $\alpha_n > 0$ ∍ $\{u_n\}$ converges to *p*. Suppose that \exists α , β , μ , δ > 0, β < 1 \Rightarrow for all n sufficiently large

$$
H_{y}(Tu_{n},Tv_{n}) \leq \alpha \gamma (u_{n}-\mu_{n}) + \beta \gamma (u_{n}-\xi_{n})
$$
\n
$$
H(T_{n},Tu_{n}) \leq \alpha \gamma (u_{n}-p) + \mu d_{y}(u_{n},Tu_{n}) + \delta d_{y}(p,Tu_{n})
$$
\n
$$
(6)
$$

$$
+\beta \max\{d_{\gamma}(p,T_p), d_{\gamma}(u_n,TP)\}\tag{7}
$$

where $\alpha_n + \beta_n = 1$ for all *n*. Then *p* is a fixed point of T Proof:

Use condition (3) $u_{n+1} = (1-a_n)u_n + a_n\mu_n, \mu_n \in$ Tv_n , $n \geq 0$ $q<1$. Since $\gamma(\xi_n - \mu_n) \leq H_{\gamma}(Tu_n$, $T v_n$)+ ϵ_n
Also,

then $\lim u_n = 0$ Which means that lim $\mu_n = p$

 $By \dddot{\text{conditions}}(1)$ and (6) we have:

$$
\gamma(u_n - p) + \gamma(u_n - \xi_n) + \alpha \gamma(u_n - p) + \gamma(u_n - \xi_n) +
$$

\n
$$
\delta \gamma(p - \xi_n) + \beta \max \{d_\gamma(p, Tp), \gamma(u_n - p), d_\gamma(p, Tp)\}
$$

\n
$$
\leq \alpha \gamma(u_n - \mu_n) + \beta \gamma(u_n - \xi_n) + \epsilon_n
$$

Which implies that $\lim_{n\to\infty} \xi_n = p$. Using (7) to have $d_{\gamma}(p, Tp) \leq \gamma (u_n - p) + d_{\gamma}(u_n, T u_n)$ H_{γ} $(Tp, Tu_n) \leq \gamma (u_n - p) + \gamma (u_n - \xi_n)$ $+\alpha\gamma(u_n-p)+\mu d_\gamma(u_n, Tu_n)+\delta d_\gamma(p, Tu_n)$ $+\beta \max\{d_{\gamma}(p, Tp), d_{\gamma}(u_n, Tp)\} \leq \gamma(u_n - p)$ $+\gamma(u_n-\xi_n)+\alpha\gamma(u_n-p)+\gamma(u_n-\xi_n)$ $+\delta\gamma(p-\xi_n)+$

 β max $\{d_{\gamma}(p, Tp), \gamma(u_n - p), d_{\gamma}(p, Tp)\}\$

Taking the limit as $n \rightarrow \infty$ yields. d_{γ} (p, T p) \leq βd_{γ} (p, T p) Which implies that $p \in T_p$. $p \in T_p$ Corollary (2.2)

Let
$$
M_{\gamma}
$$
 be a *CCRMS*, $\emptyset \neq A \subset M_{\gamma}$, A be convex
\n $T : A \rightarrow CB(A)$ satisfying
\n $H_{\gamma}(Tu, Tv) \leq qmax\{k\gamma(u-v), d_{\gamma}(v, Tv), d_{\gamma}(u, Tv) + d_{\gamma}(v, Tu)$ (8)

where $q<1$.

 $\lim_{n\to\infty} \inf \alpha_n > 0$ and $\lim_{n\to\infty} \beta_n = 0$,

converges to p , then p is a fixed point of T .

Proof:

It is sufficient to show that T satisfies conditions (6) and (7). From the condition (8), we get

$$
H_{\gamma} (Tu_n, Tv_n) \leq q \max\{k\gamma (u_n - v_n), d_{\gamma}(u_n, Tu_n)
$$

+ $d_{\gamma}(v_n, Tv_n), d_{\gamma}(u_n, Tv_n) + d_{\gamma}(v_n, Tu_n)\}$ (9)

From condition (3),

$$
\nu_n = (1 - \beta_n)u_n + \beta_n \xi_n, \qquad \xi_n \in T u_n \text{ for all } n
$$

We have

$$
\gamma(u_n - v_n) = \beta_n \gamma(u_n - \xi_n)
$$

\n
$$
d_\gamma(v_n, T u_n) \le \gamma(v_n - \xi_n) = \gamma((1 - \beta_n)u_n + \beta_n \xi_n - \xi_n)
$$

\n
$$
= \gamma((1 - \beta_n)u_n - (1 - \beta_n) \xi_n)
$$

\n
$$
= (1 - \beta_n)\gamma(u_n - \xi_n),
$$

\n
$$
d_\gamma(v_n, T v_n) \le \gamma(v_n, \mu_n), \quad \mu_n \in T v_n
$$

\n
$$
\le \gamma(u_n - v_n) + \gamma(u_n - \mu_n) \le \beta_n \gamma(u_n - \xi_n) + \gamma(u_n - \mu_n)
$$

\n
$$
d_\gamma(u_n, T u_n) \le \gamma(u_n - \xi_n), \xi_n \in T u_n
$$

And $d_{\gamma}(u_n, Tv_n) \leq \gamma (u_n - \mu_n)$. Substituting into (9) gives

$$
H_{\gamma} (Tu_n, Tv_n) \leq q \max \{k\beta_n \gamma (u_n - \xi_n), \gamma (u_n - \xi_n)
$$

+ $\beta_n \gamma (u_n - \xi_n) + \gamma (u_n - \mu_n), \gamma (u_n - \mu_n)$
+ $(1 - \beta_n) \gamma (u_n - \xi_n) \}$
 $\leq q \gamma (u_n - \mu_n) + \max \{kq \beta_n, q (1 + \beta_n)\} \gamma (u_n - \xi_n)$

R Since $\beta_n \rightarrow 0$ as $n \rightarrow \infty$. So, there exists n_0 large enough to make max $\{ k q \beta_n, q (1 + \beta_n) \}$ <1 And (6) is satisfied. Again from (8), we obtain

 $H_\gamma(T u_n, T_p) \leq q \max\{k \gamma(u_n-p), d_\gamma(u_n, Tu_n)+\}$ $d_{\gamma}(p, Tp), d_{\gamma}(u_n, Tp) + d_{\gamma}(p, T u_n) \leq q k \gamma (u_n$ p + $qd_{\gamma}(u_n, Tu_n)$ + $q(p, Tu_n)$ + $qmax{d_{\gamma}(p, Tp)}$,
 $d_{\gamma}(u_n, Tp)$ }. It is clear that $d_{\gamma}(u_n, T_p)$. It is clear that
 $f_{\alpha} = a k, u = \delta = \beta = a \le 1$ then (8) is satisfied if $\alpha = qk$, $\mu = \delta = \beta = q < 1$ then (8) is satisfied.
Corollary (2.3) Corollary (2.3)

Let M_{γ} be a CCRMS, $\varnothing \neq A \subset M_{\gamma}$ A be convex T : $A \rightarrow CB(A)$ satisfying

$$
H_{\gamma}(Tu,Tv) \le \max\left\{\gamma(u-v), \frac{d_{\gamma}(u,Tu) + d_{\gamma}(v,Tv)}{2}, \frac{d_{\gamma}(u,Tv) + d_{\gamma}(v,Tu)}{2}\right\}
$$
(10)

For all, u, v in A if there exists $u_0 \in A$ such that $\{u_n\}$ in condition (3) satisfying $0 < \alpha_n$, $\beta_n \le 1$,
lim $\inf \alpha_n > 0$, $\limsup \beta_n < 1$ and condition (1) converges to p, then p is a fixed point of T.

Proof: From (10), we obtain

so, $\alpha = 1, \mu = \delta = \beta = \frac{1}{2}$ and condition (2.2) is satisfied satisfied.

Corollary(2.4):

Let M_{γ} be a CCRMS, $\varnothing \neq A \subset M_{\gamma}$, A be; convex, $T : A \rightarrow CB(A)$ satisfying

$$
H_{\gamma}(Tu_n, Tv_n) \leq \max\left\{\gamma(u_n-v_n), \frac{d_{\gamma}(u_n, Tu_n) + d_{\gamma}(v_n, Tv_n)}{2}, \frac{d_{\gamma}(u_n, Tv_n) + d_{\gamma}(v_n, Tu_n)}{2}\right\}
$$
(11)

But from the condition (3), we have

Substituting into (11) yields:

 $\gamma(u_n - v_n) = \beta_n \gamma(u_n - \xi_n),$ $d_{\gamma}(v_n, Tu_n) \leq (1-\beta_n)\gamma(u_n-\xi_n),$ $d_{\gamma}(v_n, Tv_n) \leq \beta_n \gamma(u_n - \xi_n) + \gamma (u_n - \mu_n)$ $d_{\gamma}(u_n, Tu_n) \leq \gamma(u_n - \xi_n)$ and $d_{\gamma}(u_n, Tv_n) \leq \gamma(u_n - \mu_n)$

 $\exists u, v \text{ in } A$ where $0 < q < 1$. If there exists u_0 in A \Rightarrow {u_n} satisfying condition (3) and (1) for $\alpha_n + \beta_n =$ 1 lim inf $\alpha_n > 0$ and lim $\beta_n = 0$, converges to p, then p is a fixed point of T.

Proof: From (12), we obtain

$$
H_{\gamma}(Tu_n, Tv_n) \leq \max\left\{\beta_n\gamma(u_n-\xi_n), \frac{\gamma(u_n-\xi_n)+\beta_n\gamma(u_n-\xi_n)+\gamma(u_n-\mu_n)}{2}, \frac{\gamma(u_n-\mu_n)+(1-\beta_n)\gamma(u_n-\xi_n)}{2}\right\}
$$

$$
\leq \max\left\{\beta_n, \frac{1+\beta_n}{2}\right\}\gamma(u_n-\xi_n)+\frac{1}{2}\gamma(u_n-\mu_n)
$$

$$
H_{\gamma}(Tu,Tv) \le q\max\left\{\gamma(u-v),\frac{d_{\gamma}(v,Tv)[1+d_{\gamma}(u,Tu)]}{1+\gamma(u-v)},\frac{d_{\gamma}(u,Tv)[1+d_{\gamma}(u,Tu)+d_{\gamma}(v,Tu)]}{2[1+\gamma(u-v)]}\right\}
$$
(12)

Since $\lim_{n\to\infty}$ sup $\beta_n < 1$ then we can choose n_0 large enough to make max $\begin{cases} \beta_n, & \frac{1+\beta_n}{2} \end{cases}$ $\}$ < 1 and condition (6) is satisfied. From (10) $H_{\gamma}(Tu_n, Tp) \leq \max{\gamma(u_n - p)},$ $\frac{d_{\gamma}(u_n,Tu_n)+d_{\gamma}(p,Tp)}{2},$ $\frac{d_{\gamma}(u_n,p)+d_{\gamma}(p,Tu_n)}{2}$ \mathcal{L} $\leq \gamma(u_n-p)+\frac{d_\gamma(u_n,Tu_n)}{2}+\frac{d_\gamma(p,Tu_n)}{2}$ þ 1 $\frac{1}{2}$ max $\{d_{\gamma}(p,Tp), d_{\gamma}(u_n, p)\}$

Form condition (3), $v_n - \mu_n = (1 - \beta_n)u_n + \beta_n \xi_n - \beta_n \mu_n - (1 - \beta_n)\mu_n$ So, $\gamma(v_n-\mu_n)\leq (1-\beta_n)\gamma(u_n-\mu_n)+\beta_n\gamma(\xi_n-\mu_n)$ $\leq (1-\beta_n)\gamma(u_n-\mu_n)+\beta_n[\gamma(u_n-\mu_n)]$ $+\gamma(u_n-\xi_n)]$ $= \gamma(u_n - \mu_n) + \beta_n \gamma(u_n - \xi_n)$

Also, from condition (3), γ ($u_{n+1} - u_n = \alpha_n \gamma (u_n \mu_n)$

$$
H_{\gamma}(Tu_n, Tv_n) \leq q\max\left\{\gamma(u_n-v_n), \frac{d_{\gamma}(v_n, Tv_n)[1+d_{\gamma}(u_n, Tu_n)]}{1+\gamma(u_n-v_n)}, \frac{d_{\gamma}(u_n, Tv_n)[1+d_{\gamma}(u_n, Tu_n)+d_{\gamma}(v_n, Tu_n)]}{2[1+\gamma(u_n-v_n)]}\right\}
$$

$$
\leq q\max\bigg\{\gamma(u_n-v_n),\frac{\gamma(u_n-\mu_n)[1+\gamma(u_n-\xi_n)]}{1+\gamma(u_n-\xi_n)},\frac{\gamma(u_n-\mu_n)[1+\gamma(u_n-\xi_n)+\gamma(v_n-\xi_n)]}{2[1+\gamma(u_n-\xi_n)]}\bigg\}
$$

Since u_n is convergent $\lim_{n \to \infty} \gamma(u_{n+1} - u_n) = 0$ and
m $\lim_{n \to \infty} \gamma(u_n - u_n) = 0$ from $\lim_{n\to\infty} \inf \alpha_n > 0$ Yiel $\lim_{n\to\infty} \gamma(u_n - \mu_n) = 0$. Therefore, for all n sufficiently large,

 $\gamma(u_n-\mu_n)+\beta_n\,\gamma(u_n-\xi_n)\leq 1+\beta_n\,\gamma(u_n-\xi_n).$

Thus, for all n sufficiently large and from inequalities in the proof of corollary (6), we have

And (6) is satisfied, since $\lim_{n \to \infty} \beta_n = 0$ Again from (12) , we get

$$
\frac{\gamma(\nu_n-\mu_n)[1+\gamma(u_n-\xi_n)]}{1+\beta_n\gamma(u_n-\xi_n)} \leq \gamma(\nu_n-\mu_n) + \frac{\gamma(\nu_n-\mu_n)\gamma(u_n-\xi_n)}{1+\beta_n\gamma(u_n-\xi_n)} \leq \gamma(\nu_n-\mu_n) + \gamma(u_n-\xi_n)
$$

$$
\leq \gamma(u_n-\mu_n) + \beta_n\gamma(u_n-\xi_n) + \gamma(u_n-\xi_n) = (1-\beta_n)\gamma(u_n-\xi_n) + \gamma(u_n-\mu_n)
$$

Since

$$
v_n - \xi_n = (1 - \beta_n)u_n + \beta_n \xi_n - \beta_n \xi_n - (1 - \beta_n) \xi_n
$$

So,

$$
\gamma(\nu_n-\xi_n)=(1-\beta_n)\,\gamma(u_n-\xi_n)
$$

Since

$$
\frac{\gamma(u_n - \mu_n)[1 + \gamma(u_n - \xi_n) + \gamma(v_n - \xi_n)]}{2[1 + \beta_n \gamma(u_n - \xi_n)]}
$$

=
$$
\frac{\gamma(u_n - \mu_n)[1 + (2 - \beta_n) \gamma(u_n - \xi_n)]}{2[1 + \beta_n \gamma(u_n - \xi_n)]}
$$

$$
\leq \frac{1}{2} [\gamma(u_n - \mu_n) + (2 - \beta_n) \gamma(u_n - \xi_n)]
$$

Then for all n sufficiently large, we get: $H_{\gamma}(Tu_n, Tv_n) \leq q\max\{\beta_n\gamma(u_n-\xi_n),\}$ $(1+\beta_n)\gamma(u_n-\xi_n)+\gamma(u_n-\mu_n),$ 1 2 $\left[\gamma(u_n-\mu_n)+(2-\beta_n)\gamma(u_n-\xi_n)\right\}$ \leq max $\{q\beta_n, q(1+\beta_n), q(2-\beta_n)/2\}$ $\gamma(u_n-\xi_n)$ $+q\gamma(u_n-\mu_n)\}$

$$
H_{\gamma}(Tu_{n},Tp) \leq q\max\left\{\gamma\left(u_{n}-p\right),\frac{d_{\gamma}(p,Tp)[1+\gamma(u_{n}-\xi_{n})]}{1+\gamma(u_{n}-p)},\frac{d_{\gamma}(u_{n},Tp)[1+\gamma(u_{n}-\xi_{n})+\gamma(p-\xi_{n})]}{2[1+\gamma(u_{n}-p)]}\right\} \leq q\gamma(u_{n}-p)
$$

$$
+q\max\left\{\frac{1+\gamma(u_{n}-\xi_{n})}{1+\gamma(u_{n}-p)},\frac{1+\gamma(u_{n}-\xi_{n})+\gamma(p-\xi_{n})}{2[1+\gamma(u_{n}-p)]}\right\}
$$

max $\{d_{\gamma}(p,Tp), d_{\gamma}(u_n,Tp)\}\$

Since the condition (6) is satisfied

$$
\gamma(u_n - \xi_n) \leq \gamma(u_n - \mu_n) + \gamma(\mu_n - \xi_n)
$$

\n
$$
\leq \gamma(u_n - \mu_n) + H_{\gamma}(Tu_n, Tv_n) + \epsilon_n
$$

\n
$$
\leq \gamma(u_n - \mu_n) + \alpha \gamma(u_n - \mu_n) + \beta \gamma(u_n - \xi_n)
$$

\n
$$
+ \epsilon_n \alpha_n, \beta < 0 \text{ and } \beta < 1
$$

since $\lim \gamma(u_n - \mu_n) = 0$, we have $\lim_{n \to \infty} \sup \gamma(u_n - \xi_n) \leq \beta \lim_{n \to \infty} \sup \gamma(u_n - \xi_n)$, since $0 \le \beta \le 1$, which implies that
 $\lim_{n \to \infty} \gamma(u_n - \xi_n) = 0$ since $\gamma(p - \xi_n) \le \gamma(p - u_n) +$ $n \to \infty$
 $n \to \infty$ $\gamma(u_n - \xi_n)$, it follows that $\lim_{n\to\infty} \max \left\{ \frac{1+\gamma(u_n-\xi_n)}{1+\gamma(u_n-p)} \right\}$ $\frac{1+\gamma(u_n-\xi_n)}{1+\gamma(u_n-p)}, \frac{1+\gamma(u_n-\xi_n)+\gamma(p-\xi_n)}{2[1+\gamma(u_n-p)]}$ $2[1+\gamma(u_n-p)]$ $\frac{-\xi_n}{\Gamma}$ $=$ max $\left\{1,\frac{1}{2}\right\}$ 2 \mathcal{L} 1:

3. Common fixed point for a pair of mappings

We replace the condition (6), (7)and (1) by taking $\xi_n \in Tu_n$ and $\mu_n \in Sv_n$, $n \in \mathbb{N}$

$$
\gamma(\xi_n - \mu_n) \le H_\gamma(Tu_n, Sv_n) + \epsilon_n \text{ with } \lim_{n \to \infty} \epsilon_n = 0 \qquad (13)
$$

$$
H_{\gamma}(Tu_n, Sv_n) \leq \alpha \gamma (u_n - \mu_n) + \beta \gamma (u_n - \xi_n)
$$
 (14)

$$
H_{\gamma}(Sp, Tu_n) \leq \alpha \gamma (u_n - p) + \gamma d_{\gamma}(u_n, Tu_n)
$$

+ $\delta d_{\gamma}(p, Tu_n)$
+ $\beta \max\{d_{\gamma}(p, Sp), d_{\gamma}(u_n, Sp)\}$ (15)

Also, assume that

$$
H_{\gamma}(Sp,Tp) \leq \beta[d_{\gamma}(p,Tp) + d_{\gamma}(p, Sp)] \tag{16}
$$

Theorem (3.1)

Let μ_{γ} be a CCRMS, $\varnothing \neq A \subset \mu_{\gamma}$ and A be convex S, $T : A \rightarrow CB(A)$. Suppose that $\{u_n\}$ as in (5) converges to point p, where $\alpha_n + \beta_n = 1$, \forall *n* and $\lim_{n \to \infty} \inf \alpha_n > 0 \{ \xi_n \}, \{ \mu_n \}$ satisfying (13). If for all *n* sufficiently large, S and T satisfy (14) , (15) and (16) . Then p is a common fixed point for S and T

Proof: Use condition (5) $u_{n+1} = (1 - \alpha_n)u_n + \alpha_n \mu_n$ $\mu_n \in Sv_n$. We have $\gamma(u_{n+1} - u_n) = \alpha_n \gamma(u_n - \mu_n)$ since $\lim_{n\to\infty}u_n = p$ then $\lim_{n\to\infty}(u_{n+1} - u_n) = 0$.

Also, since $\liminf \alpha_n = 0$ then which means that $\lim_{n \to \infty} \mu_n = p$. Using condition (13) and (14), we have:

$$
\gamma(\xi_n - \mu_n) \leq H_{\gamma}(Tu_n, Sv_n) + \epsilon_n
$$

\n
$$
\leq \alpha \gamma(u_n - \mu_n) + \beta \gamma(u_n - \xi_n) + \epsilon_n
$$

Taking limit as $n \to \infty$ yields, $\lim_{n \to \infty} \gamma(\xi_n - p) \leq \beta \lim_{n \to \infty} \gamma(p - \xi_n)$, which implies that $\lim_{n\to\infty}\xi_n=p$

Using condition (15) to have:

$$
d_{\gamma}(p, Sp) \leq \gamma(u_n - p) + d_{\gamma}(u_n, Tu_n) + H_{\gamma}(Sp, Tu_n)
$$

\n
$$
\leq \gamma(u_n - p) + \gamma(u_n - \xi_n) + \alpha \gamma(u_n - p) + \gamma d_{\gamma}(u_n, Tu_n) +
$$

\n
$$
\delta d_{\gamma}(p, Tu_n) + \beta \max\{d_{\gamma}(p, Sp), d_{\gamma}(u_n, Sp)\}
$$

\n
$$
\leq \gamma(u_n - p) + \gamma(u_n - \xi_n) + \alpha \gamma(u_n - p) + \mu(u_n - \xi_n)
$$

\n
$$
+ \delta \gamma(p - \xi_n) + \beta \max\{d_{\gamma}(p, Sp), \gamma(u_n - p) + d_{\gamma}(p, Sp)\}
$$

\n
$$
\leq (1 + \alpha) \gamma(u_n - p) + (1 + \gamma) \gamma(u_n - \xi_n) + \delta \gamma(p - \xi_n)
$$

\n
$$
+ \beta \max\{d_{\gamma}(p, Sp), \gamma(u_n - p) + d_{\gamma}(p, Sp)\}
$$

Taking limit as $n \to \infty$ yields $d_{\gamma}(p, Sp) \leq \beta d_{\gamma}(p, Sp)$ which implies that $p \in Sp$. To show that p is also a fixed point of T , using condition (16)

$$
d_{\gamma}(p, Tp) \le H_{\gamma}(Sp, Tp) \le \beta [d_{\gamma}(p, Sp) + d_{\gamma}(p, Tp)]
$$

= $\beta d_{\gamma}(p, Tp)$

So, p must be an element of Tp

Corollary (3.2)

Let μ_{γ} be a CCRMS, $\varnothing \neq A \subset \mu_{\gamma}$ be convex S, T : $A \rightarrow CB(A)$ satisfying

$$
H_{\gamma}(Tu, Sv) \le qmax{k\gamma(u-v), d_{\gamma}(u, Tu)}
$$

+ $d_{\gamma}(v, Sv), d_{\gamma}(u, Sv) + d_{\gamma}(v, Tu)$ } (17)

 $\exists u, v$ in A where $K \ge 0$ and $0 < q < 1$. If there exists u_0 in $A \supset u_n$ satisfying (5) and (13) for $\alpha_n + \beta_n =$ 1 $\lim_{n \to \infty} \inf_{n \to \infty} \alpha_n > 0$ and $\lim_{n \to \infty} \beta_n = 0$, converges to p then p is a fixed point of $T^n \rightarrow \infty$

Proof: It is sufficient to show that T satisfies conditions (14) , (15) and (16) from (17) , we obtain

$$
H_{\gamma}(Tu_n, Sv_n) \leq qmax{k\gamma(u_n - v_n)},
$$

\n
$$
d_{\gamma}(u_n, Tu_n) + d_{\gamma}(v_n, Sv_n),
$$

\n
$$
d_{\gamma}(u_n, Sv_n) + d_{\gamma}(v_n, Tu_n)
$$
\n(18)

From condition (3),
\n
$$
v_n = (1 - \beta_n)u_n + \beta_n \xi_n, \ \xi_n \in Tu_n \text{ for all } n. \text{ We have}
$$
\n
$$
\gamma(u_n - v_n) = \beta \gamma(u_n - \xi_n),
$$
\n
$$
d_\gamma(v_n, Tu_n) \le \gamma(v_n - \xi_n) = \gamma((1 - \beta_n)u_n + \beta_n \xi_n - \xi_n)
$$
\n
$$
= \gamma((1 - \beta_n)u_n - (1 - \beta_n)\xi_n)
$$
\n
$$
= (1 - \beta_n) \gamma(u_n - \xi_n), d_\gamma(v_n, Sv_n)
$$
\n
$$
\le \gamma(v_n - \mu_n) \qquad, \mu_n \in Sv_n
$$
\n
$$
\le \gamma(u_n - v_n) + \gamma(u_n - \mu_n)
$$
\n
$$
\le \beta_n \gamma(u_n - \xi_n) + \gamma(u_n - \mu_n) d_\gamma(u_n, Tu_n)
$$
\n
$$
\le \gamma(u_n - \xi_n), \xi_n \in Tu_n
$$
\n(11.

And $d_\gamma(u_n, Sv_n) \leq \gamma(u_n - \mu_n)$. Substituting into (18) gives

$$
H_{\gamma}(Tu_n, Sv_n) \leq qmax\{k\beta_n\gamma(u_n - \xi_n),\gamma(u_n - \xi_n) + \beta_n\gamma(u_n - \xi_n) + \gamma(u_n - \mu_n),\gamma(u_n - \mu_n) + (1 - \beta_n)\gamma(u_n - \xi_n)\} \leq q\gamma(u_n - \mu_n) +\max\{kq\beta_n, q(1 + \beta_n)\}\gamma(u_n - \xi_n)\}
$$

because $\beta_n \rightarrow \infty$ as $n \rightarrow \infty$ So, there exists n_0 large enough to make max ${kq\beta_n, q(1 + \beta_n)} < 1$ and (14) is satisfied. Again from (17)

$$
H_{\gamma}(Tu_n, Sp) \leq qmax\{k\gamma(u_n - p),
$$

\n
$$
d_{\gamma}(u_n, Tu_n) + d_{\gamma}(p, Sp),
$$

\n
$$
d_{\gamma}(u_n, Sp) + d_{\gamma}(p, Tu_n)\} \leq qk \gamma(u_n - p) + qd_{\gamma}(u_n, Tu_n)
$$

\n
$$
+qd_{\gamma}(p, Tu_n) + qmax\{d_{\gamma}(p, Sp), d_{\gamma}(u_n, Sp)\}
$$

\nIt is clear that if $\alpha = ak, u_n = \delta = \beta = a \leq 1$, then

It is clear that, if $\alpha = qk$, $\mu = \delta = \beta = q < 1$, then (15) is satisfied from (17)

 $H_{\gamma}(Tp, Sp) \leq qmax\{k\gamma(p-p), d_{\gamma}(p,Tp) + d_{\gamma}(p, Sp),\}$ $d_{\gamma}(p, Sp) + d_{\gamma}(p, Tp) \leq q \max\{0, d_{\gamma}(p, Tp), d_{\gamma}(p, Sp)\}$ and (16) is satisfied with $\beta = q < 1$.

Corollary (3.3)

Let μ_{γ} be a CCRMS, $\varnothing \neq A \subset \mu_{\gamma}$ be convex S, T : $A \rightarrow CB(A)$ satisfying

$$
\frac{H_{\gamma}(Tu, Sv) \leq max\left\{\gamma(u-v), \frac{d_{\gamma}(u_n, Tu_n) + d_{\gamma}(v_n, Sv_n)}{2}, \frac{d_{\gamma}(u_n, Sv_n) + d_{\gamma}(v_n, Tu_n)}{2}\right\}}{(19)}
$$

 $\exists u, v \text{ in } A$. If there exists a point $u_0 \in A \ni \{u_n\}$ in (5) satisfying

 $\alpha_n + \beta_n = 1$, $\forall n \liminf \alpha_n > 0$, $\limsup \beta_n < 1$ and
(13) converges to α_n then *n* is a fixed point of *T* (13), converges to p , then p is a fixed point of T.

Proof: from (19), we get

Since lim $sup\beta_n$ < 1 then we can choose n_0 large enough to make max $\left\{\beta_n, \frac{1-\beta_n}{2}\right\}$ $\{ < 1 \text{ and condition} \}$ (14) is satisfied from (19), we obtain $H_{\gamma}(Tu_n, Sp) \leq \max{\gamma(u_n - p)},$ $\frac{d_{\gamma}(u_n, Tu_n) + d_{\gamma}(P, SP)}{2}, \frac{d_{\gamma}(u_n, Sp) + d_{\gamma}(p, Tu_n)}{2}$ \mathcal{L} $\leq \gamma(u_n-p)+\frac{d_\gamma(u_n,Tu_n)}{2}+\frac{d_\gamma(p,Tu_n)}{2}$ þ 1 $\frac{1}{2}$ max $\{d_\gamma(P, SP), d_\gamma(u_n, Sp)\}$

So, $\alpha = 1$, $\mu = \delta = \beta = \frac{1}{2}$, and condition (15) is satisfied

Finally, from (19), we get

$$
H_{\gamma}(Tp, Sp) \le \max{\gamma(p-p)},
$$

$$
\frac{d_{\gamma}(p,Tp) + d_{\gamma}(p, Sp)}{2},
$$

$$
\frac{d_{\gamma}(p, Sp) + d_{\gamma}(p,Tp)}{2}
$$

$$
\left\{\frac{d_{\gamma}(p,Tp)}{2} + \frac{d_{\gamma}(p, Sp)}{2}\right\}
$$

$$
= \frac{1}{2} \left\{d_{\gamma}(p,Tp) + d_{\gamma}(p, Sp)\right\}
$$

and the condition (16) is satisfied.

Corollary (3.4)

 \equiv

Let μ_{γ} be aCCRMS, $\varnothing \neq A \subseteq \mu_{\gamma}$ be convex $S, T : A \rightarrow CB(A)$ satisfies $H_{\gamma}(Tu, Sv) \leq qmax\{\gamma(u-v),\}$

$$
H_{\gamma}(Tu_n, Sv_n) \le \max\left\{\gamma(u_n - v_n), \frac{d_{\gamma}(u_n, Tu_n) + d_{\gamma}(v_n, Sv_n)}{2}, \frac{d_{\gamma}(u_n, Sv_n) + d_{\gamma}(v_n, Tu_n)}{2}\right\}
$$
(20)

But from the condition (5), we have $\gamma(u_n - v_n) = \beta_n \gamma(u_n - \xi_n),$ $d_{\gamma}(v_n, Tu_n) \leq (1-\beta_n)\gamma(u_n-\xi_n),$ $d_{\gamma}(v_n, Su_n) \leq \beta_n \gamma(u_n - \xi_n) + \gamma(u_n - \mu_n),$

 $d_{\gamma}(u_n, Tu_n) \leq \gamma(u_n - \xi_n)$ and $d_{\gamma}(u_n, Sv_n) \leq \gamma(u_n - \xi_n)$ μ_n). Substituting into (20) yields003A

$$
\frac{d_{\gamma}(v, Sv)[1+d_{\gamma}(u,Tu)]}{1+\gamma(u-v)}, \frac{d_{\gamma}(u, Sv)[1+d_{\gamma}(u,Tu)+d_{\gamma}(v,Tu)]}{2[1+\gamma(u-v)]}
$$
\n(21)

 $\exists u, v \text{ in } A$ where $0 < q < 1$. If there exists an u_0 in $A \supseteq {u_n}$ satisfying (5) and (13) for $\alpha_n + \beta_n = 1$

$$
H_{\gamma}(Tu_n, Sv_n) \leq \max\left\{\beta_n\gamma(u_n-\xi_n), \frac{\gamma(u_n-\xi_n)+\beta_n\gamma(u_n-\xi_n)+\gamma(u_n-\mu_n)}{2}, \frac{\gamma(u_n-\mu_n)+(1-\beta_n)\gamma(u_n-\xi_n)}{2}\right\}
$$

$$
\leq \max\left\{\beta_n, \frac{1-\beta_n}{2}\right\}\gamma(u_n-\xi_n)+\frac{1}{2}\gamma(u_n-\mu_n)
$$

 $\lim_{n \to \infty} \inf \alpha_n > 0$, $\lim_{n \to \infty} \beta_n = 0$, converges to p, there p is $n \rightarrow \infty$
a fixed point of T.

Proof: Using (21), we get

$$
v_n - \xi_n = (1 - \beta_n)u_n + \beta_n \xi_n - \beta_n \xi_n - (1 - \beta_n) \xi_n
$$

So,

$$
H_{\gamma}(Tu_{n}, Sv_{n}) \leq qmax\left\{\gamma(u_{n}-v_{n}), \frac{d_{\gamma}(v_{n}, Sv_{n})[1+d_{\gamma}(u_{n}, Tu_{n})]}{1+\gamma(u_{n}-v_{n})}, \frac{d_{\gamma}(u_{n}, Sv_{n})[1+d_{\gamma}(u_{n}, Tu_{n})+d_{\gamma}(v_{n}, Tu_{n})]}{2[1+\gamma(u_{n}-v_{n})]}\right\}
$$

$$
\leq qmax\left\{\gamma(u_{n}-v_{n}), \frac{\gamma(u_{n}-\mu_{n})[1+\gamma(u_{n}-\xi_{n})]}{1+\gamma(u_{n}-\xi_{n})}, \frac{\gamma(u_{n}-\mu_{n})[1+\gamma(u_{n}-\xi_{n})+ \gamma(v_{n}-\xi_{n})]}{2[1+\gamma(u_{n}-\xi_{n})]}\right\}
$$

From condition (5),

 $v_n - \mu_n = (1 - \beta_n)u_n + \beta_n \xi_n - \beta_n \mu_n - (1 - \beta_n)\mu_n$

$$
\gamma(v_n-\xi_n)=(1-\beta_n)\gamma(u_n-\xi_n)
$$

Since

$$
\frac{\gamma(u_n - \mu_n)[1 + \gamma(u_n - \xi_n) + \gamma(v_n - \xi_n)]}{2[1 + \beta_n \gamma(u_n - \xi_n)]} = \frac{\gamma(u_n - \mu_n)[1 + (2 - \beta_n)\gamma(u_n - \xi_n)]}{2[1 + \beta_n \gamma(u_n - \xi_n)]}
$$

$$
\leq \frac{1}{2} [\gamma(u_n - \mu_n) + (2 - \beta_n)\gamma(u_n - \xi_n)]
$$

So,

$$
\gamma(\nu_n - \mu_n) \le (1 - \beta_n)\gamma(u_n - \mu_n) + \beta_n\gamma(\xi_n - \mu_n)
$$

\n
$$
\le (1 - \beta_n)\gamma(u_n - \mu_n) + \beta_n[\gamma(u_n - \mu_n)
$$

\n
$$
+ \gamma(u_n - \xi_n)]
$$

\n
$$
= \gamma(u_n - \mu_n) + \beta_n\gamma(u_n - \xi_n)
$$

Also, from condition (5) $\gamma(u_{n+1} - u_n) = \alpha_n \gamma(u_n \mu_n$). Since $\{u_n\}$ is convergent, $\lim_{n\to\infty}\gamma(u_{n+1} - u_n) = 0$ and from $\lim_{n \to \infty} \inf \alpha_n > 0$. Yields $\lim_{n \to \infty} \gamma(u_n - \mu_n) = 0$. Therefore, for all n sufficiently large,

 $\gamma(u_n - \mu_n) + \beta_n \gamma(u_n - \xi_n) \leq 1 + \beta_n \gamma(u_n - \xi_n).$

Thus, for all n sufficiently large and from inequalities in the proof of corollary (13), we have

Then for all n sufficiently large, we get: $H_{\gamma}(Tu_n, Sv_n) \leq qmax\{\beta_n\gamma(1+\beta_n)\gamma(u_n-\xi_n)\}$ + $\gamma(u_n-\mu_n), \frac{1}{2} [\gamma(u_n-\mu_n) + (2-\beta_n)\gamma(u_n-\xi_n)]$ \leq max $\{q\beta_n, q(1+\beta_n), q(2-\beta_n)/2\}\gamma(u_n-\xi_n)+q\gamma$ $(u_n - \mu_n)$

and (14) is satisfied, since $\lim_{n \to \infty} \beta_n = 0$. Again from (21) , we get

$$
\frac{\gamma(\nu_n-\mu_n)[1+\gamma(u_n-\xi_n)]}{1+\beta_n\gamma(u_n-\xi_n)} \leq \gamma(\nu_n-\mu_n)+\frac{\gamma(\nu_n-\mu_n)\gamma(u_n-\xi_n)}{1+\beta_n\gamma(u_n-\xi_n)} \leq \gamma(\nu_n-\mu_n)+\gamma(u_n-\xi_n)
$$

$$
\leq \gamma(u_n-\mu_n)+\beta_n\gamma(u_n-\xi_n)+\gamma(u_n-\xi_n)=(1+\beta_n)\gamma(u_n-\mu_n)+\gamma(u_n-\mu_n)
$$

Since (14) is satisfied

Since,

$$
H_{\gamma}(Tu_n, Sp) \leq qmax\left\{\gamma(u_n-p), \frac{d_{\gamma}(p, Sp)[1+\gamma(u_n-\xi_n)]}{1+\gamma(u_n-p)}, \frac{d_{\gamma}(u_n, Sp)[1+\gamma(u_n-\xi_n)+\gamma(p-\xi_n)]}{2[1+\gamma(u_n-p)]}\right\}
$$

$$
\leq q\gamma(u_n-p) + qmax\left\{\frac{1+\gamma(u_n-\xi_n)}{1+\gamma(u_n-p)}, \frac{1+\gamma(u_n-\xi_n)+\gamma(p-\xi_n)}{2[1+\gamma(u_n-p)]}\right\}
$$

$$
\gamma(u_n - \xi_n) \leq \gamma(u_n - \mu_n) + \gamma(\mu_n - \xi_n)
$$

\n
$$
\leq \gamma(u_n - \mu_n) + H_{\gamma}(Tu_n, Sv_n) + \epsilon_n \leq \gamma(u_n - \mu_n)
$$

\n
$$
+ \alpha \gamma(u_n - \mu_n) + \beta \gamma(u_n - \xi_n) + \epsilon_n
$$

where $\alpha, \beta > 0$ and $\beta < 1$ Since $\lim_{n \to \infty} \gamma(u_n - \mu_n) = 0$, we have

 $\lim_{n \to \infty} \sup \gamma(u_n - \xi_n) \leq \beta \lim_{n \to \infty} \sup \gamma(u_n - \xi_n),$ since $0 \le \beta < 1$, which implies that
 $\lim_{n \to \infty} \gamma(u_n - \xi_n) = 0$ since $\gamma(p-\xi_n) \leq \gamma(p-u_n) + \gamma(u_n-\xi_n)$ it follows that $\lim_{n\to\infty} \max \left\{ \frac{1+\gamma(u_n-\xi_n)}{1+\gamma(u_n-p)} \right\}$ $\frac{1+\gamma(u_n-\xi_n)}{1+\gamma(u_n-p)}, \frac{1+\gamma(u_n-\xi_n)+\gamma(p-\xi_n)}{2[1+\gamma(u_n-p)]}$ $2[1 + \gamma (u_n - p)]$ $\left\{\frac{-\xi_n}{\xi_n}\right\}$ $=$ max $\left\{1, \frac{1}{2}\right\}$ $\left\} = 1$

Therefore, for all *n* sufficiently large (15) is satisfied. Since (14) and (15) are satisfied, then by theorem (13) pis a fixed point of S from (21) , we obtain

$$
H_{\gamma}(Sp,Tp) \le qmax\left\{0, d_{\gamma}(p, Sp)[1 + d_{\gamma}(p,Tp)) + d_{\gamma}(p,Tp)]\right\}
$$

+ $d_{\gamma}(p,Tp)]$, $\frac{1}{2}d_{\gamma}(p, Sp)[1 + d_{\gamma}(p,Tp) + d_{\gamma}(p,Tp)]$
= 0

and (16) is satisfied trivially.

2

References

[1] H. Nakano, Modular Semi-ordered Spaces, Tokyo Mathematical Book Series, Maruzen Co. Ltd, Tokyo, Japan, 1950.

[2] J. Musielak, W. Orlicz, On modular spaces, Stud. Math. 18 (1959) 49 -65 .

 \mathcal{L}

- [3] V. Chistyakov, Modular metric spaces I Basic concepts, Nonlinear Anal. 72 (2010) $1-14$.
- [4] V. Chistyakov, Modular metric spaces II Application to superposition operators, Nonlinear Anal. 72 (2010) $15-30$.
- [5] D. Turkoglu, N. Manav, Fixed point theorems in a new type of modular metric spaces, Fixed Point Theory Appl. 25 (2018) $1 - 10$.
- [6] S.S. Abed, M.F. Abdul Jabbar, Equivalence between iterative schemes in modular spaces, J. Interdiscipl. Math. 22 (2019) $1529 - 1535.$
- [7] H.K. Nashine, W.I. Rabha, Symmetric solutions of nonlinear fractional integral equations via a new fixed point theorem under FG-contractive condition, Numer. Funct. Anal. Optim. 40 (2019) 1-19.
- [8] M. Bachar, Nonlinear Fredholm equations in modular function spaces, Electron. J. Differ. Equ. 36 (2019) 1-9.
- [9] M.A. Khamsi, A convexity property in modular function spaces, Math. Jpn. 44 (1996) 269-279.
- [10] S.H. Khan, M. Abbas, Approximating fixed points of multivalued p-nonexpansive mappings in modular function spaces, Fixed Point Theory Appl. 34 (2014) 1687-1812.
- [11] S.H. Khan, M. Abbas, S. Ali, Fixed point approximation of multivalued p-quasi-nonexpansive mappings in modular function spaces, J. Nonlinear Sci. Appl. 10 (2017) 3168-3179.
- [12] M. Abbas, B.E. Rhoades, Fixed point theorems for two new classes of multivalued mappings, Appl. Math. Lett. 22 (2009) $1364 - 1368.$
- [13] S.S. Abed, On invariant best approximation in modular spaces, Global J. Pure Appl. Math. 13 (2017) 5227-5233.
- [14] S.S. Abed, A.K.E. Sada, Common fixed points in modular spaces, Ibn Al-Haitham J. Pure Appl Sci. (2017). IHSCICONF (Special Issue).
- [15] S.S. Abed, M.F.Abdul Jabbar , Convergence of iteration scheme to fixed point in modular spaces, Iraqi J. Sci. 60 (2019) 2196-2201.
- [16] S.S. Abed, R.F. Abbas, S-iteration for general quasi multivalued contraction mappings, IJAMSS 5 (2016) 9-22.