
electrochemical cell see Fig. 4B, four main peaks
observed in voltamogram by Au-CNTs nanocomposite
and AuNPs while pristine CNTs did not show any
response.

Detail of four peaks is that, two in the cathodic scan
(forward scan) and two in anodic scan (backward
scan). Peak I corresponds to the gold hydroxide for-
mation in the forward scan, followed by a very sharp

Fig. 3. XPS spectra of Au-CNTs, full spectra (A), while C1s(B) and Au4f(C) are fitted curves.

Fig. 4. CV response of CNTs/GCE, AuNPs/GCE and Au-CNTs/GCE Vs. Ag/AgCl reference and platinum as counter electrode in 0.1M NaOH

solution as supporting electrolyte (A), CV response for 1 mM glucose at CNTs/GCE, AuNPs/GCE and Au-CNTs/GCE Vs. Ag/AgCl reference and

platinum as counter electrode in 0.1M NaOH solution as supporting electrolyte at a 100 mV/s (B).
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peak II that corresponds to the adsorption of glucose
onto active sites of gold nanocomposite and conversion
to gluconolactone. Peak II is basically an anodic peak
in cathodic scan. Peak III corresponds to the formation
of gluconic acid and peak IV corresponds to oxidation
of gold nanoparticles. Peak appeared at i.e. 0.23 V
potential during the anodic scan is taken as glucose
oxidation peak. This is reported to be the oxidation
peak of glucose in many literature reports [35e40].
The selection of main glucose oxidation peak is crit-
ical. As this oxidation is occurring in basic medium, it
can be ventured that AuNPs have high affinity for the
adsorption of OH� ions, which effectively catalyze the
process of oxidation of glucose. First, the metal Au(0)
was electrochemically oxidized to strongly oxidizing
species Au(OH)ads under the alkaline conditions, and
finally this Au(OH)ads specie catalytically oxidizes

glucose and produces gluconic aid. Stability of Au-
CNTs electrode was evaluated at ten consecutive cy-
cles and by changing NaOH concentration (see Fig. 5),
modified electrode was found stable at 0.1M NaOH
concentration.

3.2.1. Possible mechanism of glucose oxidation
Out of three modified electrodes Au-CNTs showed

higher sensitivity towards glucose detection. There-
fore, this electrode is selected for rest of electro-
chemical experiments and mechanism evaluation.
Linear range of 0.1e3 mM glucose concentration was
obtained and Limit of detection (LOD) was evaluated
for Au-CNTs/GCE electrode and found to be 0.19 mM
and sensitivity to be 2.28 mAcm�2(See Fig. 6). Glucose
oxidation mechanism at gold-CNTs modified

Fig. 5. CV response for 1 mM glucose at modified Au-CNT/GCE at different NaOH molarities, Vs. Ag/AgCl reference and platinum as counter

electrode (A) Stability of modified Au-CNT/GCE at ten different cycles Vs. Ag/AgCl as reference and platinum as counter electrode in 0.1M

NaOH at a 100 mV/s scan rate (B).

Fig. 6. CV response of modified Au-CNT/GCE at different concentrations of glucose (0.1e3 mM) Vs. Ag/AgCl reference and platinum as

counter electrode in 0.1M NaOH solution as supporting electrolyte at 100 mV/s scan rate (A), Linear range for glucose detection at Au-CNTs (B).
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electrodes is suggested to be three step processes. It
can be narrated as described in below equations.

Au þ OH�/AuðOHÞ � ðBasicmediumÞEq: ½1�
AuðOHÞ � þ Glucose/Gluconolactone þ Au

þ OH� þ H þ Eq: ½2�
Gluconolactone/GluconicacidðHydrolysisÞEq ½3�

The enhanced signal of glucose is because of syn-
ergistic effect of electroactive sites of AuNPs and huge
surface area of CNTs. As gold nanoparticles deposited
over CNTs surface offer active reaction sites for elec-
tro-oxidation of glucose. Therefore, excellent

conductivity of Au-CNTs nanocomposite is solely
responsible for the observed enhancement in electro-
catalytic activity of present sensor system i.e., Au-
CNTs/GCE towards glucose oxidation. This synergis-
tic effect helps in facilitated charge transfer, better
access to vigorous reaction sites and surplus electron
transfer routes offered by AuNPs uniformly deposited
on the surface of CNTs [41e47].

3.3. Computational analysis of CNTs, AuNPs and Au-
CNTs nanocomposite

The computational chemistry gives a good estimate
of oxidation and reduction characteristics of molecules.

Fig. 7. Optimized structures of glucose, Au, CNTs and Au-CNTs considering B3LYP level using 6-311G(dp) basis set for glucose/CNTs and

LANL2DZ basis set of DFT method for Au-CNTs merged structures.
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In fact, the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) are
correlated with the oxidation and reduction potential of
the molecules. The more negative is the ELUMO, more
easily will be the molecule reduced. In the present study,
computational calculations were performed in order to
predict the feasibility of glucose oxidation on CNTs and
CNTs-Au nanocomposite substrates using DFT. To
predict the feasibility of glucose oxidation on modified
glassy carbon electrode, the HOMO of glucose while
LUMO of the modifiers (CNTs and CNTs-Au nano-
composite) systems is considered. Nanoparticles are
typically presented by cluster model but their optimi-
zation needs super computers. Calculations were
simplified by representing gold NPs by monoatomic
gold [48] (see Table 1).

LANL2DZ basis set of DFT method is designed for
metals optimization [49e51]. The optimized structure
is presented in Fig. 7. The molecular geometries of
glucose and CNTs (represented as hexagons here for
simplicity of calculations) were optimized using
B3YLP with basis set 6e311 þ G(d,p) in gaseous
phase. Hexagons and gold atom containing merged

system was considered as one entity for Density
functional calculations. The merged system i.e. Au-
CNTs showed more eive value of LUMO than CNTs
and AuNPs, which shows the ease in accessibility of
molecules to accept electrons (Fig. 8). Since LUMO of
CNTseAu composite system is more negative as
compared to CNTs, depicting a facile glucose oxida-
tion. These results complemented well with our
experimental findings (see experimental section) for
Au-CNTs hybrid.

The energy level diagram of optimized structures of
studied molecules is shown in Fig. 8. Following trend
could be observed

�ELUMOðAu�CNTsÞ > �ELUMOðCNTsÞ >

�ELUMOðAuÞ

4. Conclusions

A synergistic effect of AuNPs and pristine CNTs as a
sensor on the electro-oxidation of glucose is presented
here theoretically and experimentally. We modified
GCE with CNTs, AuNPs and Au-CNTs to study their
glucose oxidation performance. Pristine CNTs did not
show any response AuNPs showed some and Au-CNTs
presented prominent response towards glucose oxida-
tion. This report also presents some preliminary results
of DFT prediction of glucose oxidation by Au-CNTs
hybrids. The synergistic effect of Au-CNTs/GCE pro-
vides more active sites and higher electron transfer
chances for glucose oxidation. Both experimentally and
theoretically Au-CNTs system was found better than
CNTs and AuNPs for glucose oxidation. This study may
provide a base for predicting theoretically a better
candidate for glucose oxidation prior to experiments.
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