Effect of Mixing Ratio of (SnO$_2$)$_{1-x}$(In$_2$O$_3$)$_x$ Thin Film on Gas Sensitivity

Mohammed Abdulhur Kadhim Dr.
University of Kerbala College of Science, mmmed1963@gmail.com

Amer Abbas Ramadhan Dr.
University of Baghdad College of Science, Amer23_2005@yahoo.com

Mohammed Oudah Salman Al-Gburi Dr
Ministry of Science and Technology/INMA, mohammedoudah@yahoo.com

Ghiadaa J. Habi
University of Kerbala College of Science

Noora J. Hentawe
University of Kerbala College of Science

Follow this and additional works at: https://kijoms.uokerbala.edu.iq/home

Part of the Physics Commons

Recommended Citation
Kadhim, Mohammed Abdulhur Dr.; Ramadhan, Amer Abbas Dr.; Al-Gburi, Mohammed Oudah Salman Dr; Habi, Ghiadaa J.; and Hentawe, Noora J. (2020) "Effect of Mixing Ratio of (SnO$_2$)$_{1-x}$(In$_2$O$_3$)$_x$ Thin Film on Gas Sensitivity," *Karbala International Journal of Modern Science*: Vol. 6 : Iss. 1 , Article 12.
Available at: https://doi.org/10.33640/2405-609X.1403

This Research Paper is brought to you for free and open access by Karbala International Journal of Modern Science. It has been accepted for inclusion in Karbala International Journal of Modern Science by an authorized editor of Karbala International Journal of Modern Science.
Effect of Mixing Ratio of (SnO$_2$)$_{1-x}$(In$_2$O$_3$)$_x$ Thin Film on Gas Sensitivity

Abstract
In this work, Nitrogen dioxide gas sensor was manufactured from SnO$_2$ and (SnO$_2$)$_{1-x}$(In$_2$O$_3$)$_x$ at different atomic ratios (x=0.05, 0.1 and 0.15) using pulsed laser deposition technique. The effect of the preparation ratio on structural properties, surface topography, optical and electrical characteristics and gas sensor efficiency were studied. The X-ray diffraction measurements showed polycrystalline structures for all samples and their crystallite size decreases with increasing the doping ratio. The AFM measurement illustrates spherical SnO$_2$ shapes converted to filament-like shapes at x=0.1, and that the average particle diameter decreased, while the RMS roughness increased with increasing ratio. The best samples in terms of gas sensitivity were produced at the 0.1 ratio due to the associated with low particle sizes and high charge carrier concentration. The highest gas sensitivity appeared at 200 °C operating temperature, and it is increased with gas concentration as a second-order equation and be nearly stable at 400 ppm NO$_2$ gas. The best sample appeared at 10% In$_2$O$_3$:SnO$_2$ atomic ratio.

Keywords
gas sensor, metal oxide, pulse laser deposition, thin film

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

This research paper is available in Karbala International Journal of Modern Science: https://kijoms.uokerbala.edu.iq/home/vol6/iss1/12
1. Introduction

Nowadays, there is considerable interest amongst researchers to fabricate devices for gases detection to meet the needs of occupational safety with regards to hazardous gases, or for the purposes of environmental pollution control, thus helping to protect organisms from harmful gases [1]. Chemisorption gas sensors, especially based on metal oxides semiconductor, are a promising target as they generally show good sensitivities at low cost. Tin (IV) oxide (SnO2) is one of the best such metal oxides gas sensors, whose operation is based on the principle of changing the sample impedance when exposed to target gas due to the variation in oxygen species adsorbed on its surface [2]. Gas sensors vary in their sensitivity depending on its material, preparation method, doping with other materials or by transforming them to nanostructures with different dimensions and forms [3]. The doping enhances the sensitivity of substances to specific gases and can reduce sensor response time by modifying the way in which the growth of the nanoparticles [4].

Environmentally hazardous gases are classified as oxidizing gases, such as NO2 and CO2, and reducing gases, such as H2S and CO [5]. When a metal oxide semiconductor is exposed to a reducing gas, the gas reacts with the oxygen ions on the surface of the semiconductor, releasing the electrons back into the conductivity band. Therefore, the concentration of electrons on the semiconductor surface increases, the resistance of n-type semiconductors decreases, and when exposed to an oxidizing gas, the n-type impedance increases [6].

The gas sensitivity (S) of sensors can be obtained using the relationships \(\Delta R/R_{\text{air}} \) where the resistance variation \(\Delta R = |R_{\text{air}} - R_{\text{gas}}| \), \(R_{\text{air}} \) and \(R_{\text{gas}} \) are the sample resistance in clean air and under target gas exposure, respectively. After closing the gas entrance the sensor recovering time period in the air was calculated [7].

In this study, we investigate the effect of the \(\text{In}_2\text{O}_3/\text{SnO}_2 \) atomic ratio on structural properties, surface morphology, optical properties and NO2 gas sensing performance based on\((\text{SnO}_2)_{1-x}(\text{In}_2\text{O}_3)_x \) thin films.

2. Experimental

Tin (IV) oxide powder (SnO2) at 99% purity from India—Mart Co. and Indium (III) oxide (In2O3) at 99.998% purity from Sigma Aldrich Co. were mixed in three ratios \((\text{SnO}_2)\), \((\text{SnO}_2)_{0.95}(\text{In}_2\text{O}_3)_{0.05} \) and \((\text{SnO}_2)_{0.9}(\text{In}_2\text{O}_3)_{0.1}\) using ball mill mixer and then formed as targets of 1.5 cm diameter using a hydraulic piston. Thin films were prepared using the pulsed laser deposition technique (PLD) inside an evacuated chamber at \(10^{-3}\) mbar pressure. The prepared films were studied via x-ray diffraction with Cu Kα radiation (Shimadzu), UV–visible absorbance, Hall Effect measurements and by AFM (CSPM).

Aluminum comb-like electrodes were deposited on thin films surface, as shown in Figure 1, by thermal evaporation using an Edward coating (model Auto 306) under high vacuum \(\left(10^{-5}\right)\) mbar.

Gas sensor specifications were tested in a chamber with a thermometer-controlled hot plate heater at different operating temperatures. A rotary pump was used to evacuate the chamber. The gas mixture (target gas and air) were admitted to the chamber in a controlled manner. The variation of sample resistance was observed using a multimeter connected to the sample electrodes, the data from which was transferred directly to a computer. The air was allowed to pass into the chamber after every NO2 gas exposure.

Fig. 1. Schematic of chemoresistance gas sensor based on \((\text{SnO}_2)_{1-x}(\text{In}_2\text{O}_3)\), thin films.

https://doi.org/10.33640/2405-609X.1403
2405-609X/© 2020 University of Kerbala. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
3. Results and discussions

Figure 2 illustrates the x-ray diffraction patterns for SnO$_2$, (SnO$_2$)$_{0.95}$(In$_2$O$_3$)$_{0.05}$ and (SnO$_2$)$_{0.9}$(In$_2$O$_3$)$_{0.1}$ thin films deposited on glass substrates via PLD technique and annealed at 300 °C. Polycrystalline structures were observed for all samples. The SnO$_2$ thin film, with peaks at 26.5411°, 33.8356°, 37.9110°, 51.7123°, 54.7603°, 57.8082°, 61.8493°, 64.6918° and 65.9247° matched with the (110), (101), (200), (211), (220), (002), (130), (112) and (301) orientations, respectively, corresponding to standard card No. 96-900-9083, indicating a tetragonal structure. Essentially identical peaks appeared in the mixed samples, though with additional peaks corresponding to the cubic phase for In$_2$O$_3$, with card No. 96-101-0589, which appeared at 30.4110° and 50.7534° belonging to the (222) and (440) planes. The intensities of these peaks were found to increase when the In$_2$O$_3$/SnO$_2$ to 10%; the associated peaks also seemed to show increased broadening, indicating a decrease in crystallite size, as measured by Sherrer’s formula.

The full width at half maximum (FWHM) for peaks (which determined by Lorentzian fitting) and the crystallite size (calculated using Sherrer’s
equation), were shown in Table 1, which shows that the crystalline size decreases with the increasing of In₂O₃/SnO₂ ratio. The average crystalline size started from 26.8 nm, for the pure sample, and decreased to 21.8 nm using a 5% mix, then to 18.4 nm for the 10% mix ratio.

Figure 3 shows the AFM images for the (SnO₂)_{1-x}(In₂O₃)ₓ thin films prepared using the PLD technique on glass slides at different mixing ratios, along with the associated granularity accumulation histograms. The pure SnO₂ sample has spherical shaped particles, and changed in their structure to a filamentous shape after doping with In₂O₃. The diameters of these structures, which were calculated (using the Image-J software) as shown in Figure 4, decreased from 116 nm for the pure sample to, 90 nm for x = 0.05 and to 80 nm at x = 0.1.

Table 2 shows the average diameter and the root mean square surface roughness (RMS) for the (SnO₂)_{1-x}(In₂O₃)ₓ thin films prepared at different ratios. The average particle diameter was found to decrease while the RMS roughness increased with increasing the mixing ratio due to the difference in growth mechanism. Such variations have previously been found to enhance gas sensor characteristics [8].

Figure 5 shows the transmittance spectra for the three (SnO₂)_{1-x}(In₂O₃)ₓ thin film samples at different mixing ratios as annealed at 300 °C. The general feature for transmission spectra exponentially increases with the wavelength from 400 to 700 nm, while remaining essentially stable at larger wavelengths. All curves that appeared with vibrant shapes indicate regular deposition as mentioned by
Swanepoel [9]. The distances between successive vertices at two points depends on both the film thickness and the refractive index in those two points, so there is an obvious difference between the samples [10].

The energy gaps for the three samples were determined by extrapolating the straight-line portion of \((\alpha h\nu)^2\) with \(h\nu\), as per the Tauc formula. The optical energy gaps were calculated as, \(E_g = 2.9, 2.94\) and \(2.96\) eV for \(x = 0, 0.05\) and \(0.1\), respectively, which were essentially identical to the same calculated values reported in the literature [11]. The slight increment in bandgap by increasing the mixing ratio may be due to the decrease in crystalline size to the nano-scale that causes the quantum confinement effect [12] (see Fig. 6).

The results obtained from the Hall Effect measurements indicated that all films were n-type. The charge carriers concentration \((n_{\text{H}})\) and the major charge carrier mobility \((\mu_{\text{H}})\) were calculated at the different mixing ratios \((x)\), as shown in Table 3. This table shows that the highest carrier concentrations appeared at \(x = 0.10\), while the highest electron mobility \((\mu_{\text{H}})\) appeared at a 5% mix concentration.

Fig. 7 shows the variation of \((\text{SnO}_2)_{0.95}(\text{In}_2\text{O}_3)_{0.1}\) gas sensitivity for 100 ppm NO2 gas from 150 °C to 300 °C operating temperature. The gas sensitivity was found to increase with increasing temperature till 200 °C, after that it decreased due to the variation of oxygen ion species adsorbed on the surfaces of metal oxide thin films; at low temperature, \(O_{\text{ads}}\) forms on the surface from ambient oxygen, and electrons extracted from sample, but at higher temperatures the dominant reaction \(O_{\text{ads}} + e^- = 2O_{\text{ads}}\) which attracts an increased number of electrons from the sample when using clean air [13]. At the same time, a higher temperature can promote the oxygen ions desorption.
from SnO$_2$, which decreases its gas responsivity [14]. The optimal working temperature of 200 °C is applied in the subsequent measurements.

Fig. 8 shows the variation of (SnO$_2$)$_{1-x}$ (In$_2$O$_3$)$_x$ samples resistance, prepared at different ratios (x = 0, 0.5, 0.1 and 0.15), using different NO$_2$ concentrations, at 200 °C operating temperature. In all samples, the resistance was found to increase when the samples exposed to NO$_2$ gas. It seems that the sensitivity in the different samples varied according to surface morphology and electrical properties, where the best samples appeared at x = 0.1 mixing ratio due to the small particle size and high charge carrier concentration of the associated sample. The gas sensitivity was found to increase with increasing gas concentration at a wide range of verity (from 10 ppm to 400 ppm).

Fig. 9 illustrates the variation of the four (SnO$_2$)$_{1-x}$ (In$_2$O$_3$)$_x$ samples sensitivity against NO$_2$ gas concentrations, at 200 °C operating temperature. The sensitivity increased with nearly parabolic shape (has an R2 values approach to 1 as shown in the Figure) with nearly stable at a high concentration. It is evident that the (SnO$_2$)$_{1-x}$ (In$_2$O$_3$)$_x$ sample at x = 0.1 has the distinguish from others by high sensitivity characteristics. Increase the x ratio to 0.15 cause to reduce the gas sensitivity. Fig. 10 indicates this gas sensor stability when exposed to the same NO$_2$ concentration at 200 °C operating temperature.

<table>
<thead>
<tr>
<th>samples</th>
<th>Average Diameter (nm)</th>
<th>RMS roughness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure</td>
<td>85.11</td>
<td>14.5</td>
</tr>
<tr>
<td>5%</td>
<td>80.02</td>
<td>2.55</td>
</tr>
<tr>
<td>10%</td>
<td>77.54</td>
<td>5.61</td>
</tr>
</tbody>
</table>
Figure 11 illustrates the resistance variation behaviour with time when exposed to 100 ppm NO₂ gas, at 200 °C operating temperature. The response time (the time required to attain 90% of maximum increase to its stable value) was about 30 s, while the recovery time (the time required to get back to 10% of maximum increase) was about 40 s, for the optimum thin film gas

Table 3

<table>
<thead>
<tr>
<th>x</th>
<th>(\sigma_{RT} (\Omega^{-1} \text{cm}^{-1}))</th>
<th>(n \times 10^{18} (\text{cm}^{-3}))</th>
<th>type</th>
<th>(\mu_H (\text{cm}^2/\text{V} \cdot \text{sec}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>6.25</td>
<td>6.38</td>
<td>n</td>
<td>6.12</td>
</tr>
<tr>
<td>0.05</td>
<td>12.50</td>
<td>1.06</td>
<td>n</td>
<td>73.63</td>
</tr>
<tr>
<td>0.10</td>
<td>21.00</td>
<td>28.2</td>
<td>n</td>
<td>4.66</td>
</tr>
</tbody>
</table>

Fig. 5. UV−visible transmission spectra for (a) SnO₂ (b) (SnO₂)₀.₉₅(In₂O₃)₀.₀₅and (c) (SnO₂)₀.₅(In₂O₃)₀.₅thin films.

Fig. 6. Energy gap calculation using the Tauc formula for (a) SnO₂ (b) (SnO₂)₀.₉₅(In₂O₃)₀.₀₅and (c) (SnO₂)₀.₅(In₂O₃)₀.₅thin films.
Fig. 7. Sensitivity variation for \((\text{SnO}_2)_{0.9}(\text{In}_2\text{O}_3)_{0.1}\) against 100 ppm \(\text{NO}_2\) gas with operating temperature.

Fig. 8. Resistance variation with time for \((\text{SnO}_2)_{1-x}(\text{In}_2\text{O}_3)_x\) thin films at different ratios (a) \(x = 0\) (b) \(x = 0.5\) (c) \(x = 0.10\) and (d) \(x = 0.15\), exposed to different \(\text{NO}_2\) concentrations.
Fig. 9. Variation of NO$_2$ gas sensitivity against gas concentrations, at 200 °C operating temperature for (SnO$_2$)$_{1-x}$ (In$_2$O$_3$)$_x$ thin films prepared at different ratios (a) $x = 0$ (b) $x = 0.5$ and (c) $x = 0.10$ and (d) $x = 0.15$.

Fig. 10. Resistance variation with time for (SnO$_2$)$_{0.9}$(In$_2$O$_3$)$_{0.1}$ thin films at different repetition, at same concentration (100 ppm) NO$_2$ gas, at 200 °C operating temperature.
sensor samples, which depend critically on the thin film microstructures [15].

4. Conclusions

NO$_2$ gas sensors were fabricated from SnO$_2$ and (SnO$_2$)$_{1-x}$(In$_2$O$_3$)$_x$ at low cost. Structural measurements, surface morphology and electrical measurements showed a clear effect of the mix on the growth features of the nanoparticles, their crystalline structure and the charge carrier density which enhanced their use as gas sensor. The associated measurements confirmed this behaviour, as the sensitivity increased and the response and recovery times decreased when the doping ratio was 10%. From a temperature perspective, the best sensitivity appeared at an operating temperature of 200 °C. It can be used to measure NO$_2$ gas concentrations from 10 to 400 ppm with second order relation at high stability.

References