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Preparation of Glass Ionomer Cement from Recycled Low Alumina Glass Preparation of Glass Ionomer Cement from Recycled Low Alumina Glass 

Abstract Abstract 
Fluoroaluminosilicate glass was prepared from recycled low alumina glass, with the additions of AlF3 and 
CaF. That was to provide a cheap source of proper glass required to prepare glass ionomer cement GIC. 
Three batches of the fluoroaluminosilicate glass were prepared with different additions of CaF varied at 
the expense of AlF3. i.e., the glass was prepared with three different CaO contents. The prepared glasses 
were used as an essential part of GICs. It was found that a crystalline phase (fluorapatite) appeared as 
part of the set cement matrix. The XRD of the set cements indicated that the crystalline fluorapatite 
increases with the increase of the CaO content of the starting fluoroaluminosilicate glass. The increase of 
the CaO content also led to an increase in the density of the set cement and its compressive strength. In 
addition, the working and setting times were increased too. Finally, the set cements where shown 
bioactive. 
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1. Introduction

Glass Ionomer Cement (GIC) is essentially an
aluminosilicate glass particulates that reacted with a
polymeric acid. The acid should be water-soluble and
the glass composition should be basic. That is, the acid
reacts with a part of the glass particulates forming a gel
phase. A paste of high viscosity is produced that
gradually sets in minutes to give enough working time;
i.e. an adequate time for paste manipulation and
shaping. When the viscosity of the paste is too high for
further manipulation, the setting time is reached.
Finally, the reaction yields a solid composite of the gel
matrix with glass particulates as reinforcement; i.e. a
set cement. The composition of the aluminosilicate
glass also includes calcium and sodium to maintain its
basic character. The phosphate may be added to the
composition to enhance the formation of the glass
network via reaction with aluminum. Moreover, fluo-
ride is added to the composition to decrease the
melting temperature of the glass batch and to gain the
benefit of the fluoride release of the set cement. In that
case, fluoroaluminosilicate glass is obtained. The
fluoride release takes place in acidic conditions, thus,
neutralizing the surrounding medium that protects
from tooth decay and dental caries. The translucency
and strength of the set cement were also shown to be
improved by the existence of the fluoride. Other ad-
ditives were found of high benefits such as tartaric
acid, which prevents early cross-linking by forming a
water-soluble complex. This delay of the cross-linking
provides extra working time for the cement [1,2].

The fluoroaluminosilicate glass compositions
required for the GIC may be bounded by the following
range in w.t.%: SiO2 24.9e30.1, Al2O3 14.2e19.9,
AlF3 0.-4.6, CaF2 12.8e34.5, NaAlF6 0.-19.2, NaF 0.-
3.7, AlPO2 0.0e24.2 [1e4]. Yet, very educational ar-
ticles in the design of the GIC can be found in
Ref. [5e9]. The composition of the acidic part of the
cement is out of the scope of this work. However, the
acidic part is fairly discussed in Refs. [1e4,10],
particularly, in Ref. [4].

Numerous studies have been focused on the
composition of the solid part with two strategies. The
first is to study the effect of additives to the fluo-
roaluminosilicate glass to promote their mechanical
properties; such as the addition of Nano-clays [11,12],
Zirconia and alumina [13,14]. Also, to enhance both
mechanical and remineralizing properties via the

addition of hydroxyapatite [15e18], bioactive glass
[19], TiO2 nanotubes [20], E-glass fibers [21], fluori-
nated graphene [22], and cellulose nanocrystals [23]. A
summary of these and other fillers can be found in
Ref. [24]. The second strategy is the modifications to
the chemical composition of the fluoroaluminosilicate
glass, e.g. incorporation of ZnO and MgO as a
replacement for CaO [25]. The above-mentioned
modification of the GIC also affects their working and
setting times. Comprehensive reviews for the effect of
the modifications of the GIC's to their properties is the
subject of many recent articles [26e31].

In this work, simple and cheaper compositions of
GIC's were prepared. The compositions were based on
recycled low alumina glass with the addition of AlF3
and CaF. The CaF is varied at the expense of AlF3 in
these compositions and the resultant glass properties
were compared.

2. Materials and methods

The starting materials were a recycled low alumina
glass, aluminum fluoride AlF3, calcium fluoride CaF,
and phosphoric acid H₃PO₄. The chemical composition
of the utilized low alumina glass is shown in Table 1.
Calculated amounts of the starting materials were uti-
lized to obtain the target composition of three batches
of the fluoroaluminosilicate glass shown in Table 2.
The chosen compositions shown in Table 2 is designed
so that the calcia increase in the step of 5 w.t.% at the
expense alumina. The ‘rem’ is the w.t.% of the
remaining materials in the utilized low alumina glass
excluding silica, alumina, and calcia.

The low alumina glass was crushed and milled to
reach a submicron average particle size. The P2O5

Table 1

The composition in w.t.% of the low alumina glass.

SiO2 Al2O3 CaO Na2O

72.69 1.45 5.01 16.43

K2O MgO Fe2O3 TiO2

0.35 3.46 0.60 0.01

Table 2

The composition in w.t.% of the obtained fluoroaluminosilicate glass.

Batch SiO2 Al2O3 CaO F P2O5 rem

#1 30.0 24.4 7.07 15.33 14.60 8.6

#2 30.0 21.9 9.57 14.78 15.14 8.6

#3 30.0 19.4 12.07 14.23 15.69 8.6
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Fig. 1. X-ray diffraction pattern of the prepared fluoroaluminosilicate glass.

Fig. 2. X-ray diffraction pattern for the set cement #1.

Fig. 3. X-ray diffraction pattern for the set cement #2.

142 S.S. Ahmed et al. / Karbala International Journal of Modern Science 6 (2020) 141e147



was added as phosphoric acid to the milled powder
and mixed with a spatula. The mix is enclosed in a
sealed nylon bag and kept for one week at a local
ambient temperature (z35 �C). After that, the pow-
der was dried in an oven for 2 h at 120 �C. Finally,
The AlF3 and CaF were added to the powder. Each
batch, with different CaF content, is melted at 900 �C
for 30 min and quenched in the air; then crashed and
re-melted to ensure homogeneity. The final patches
were again crushed and milled for 6 h via a high-
speed grinder.

The particle size of the final fluoroaluminosilicate
powders was measured via (NanoBrook 90Plus

Particle Size Analyzer, New York, USA) and it was
235 ± 15 nm. The cement powder was prepared by
mixing each of the prepared fluoroaluminosilicate
powder with 20 w.t.% polyacrylic acid similar to SDI-
Riva Luting GIC [32]. The liquid part of the same

Fig. 4. X-ray diffraction pattern for the set cement #3.

Fig. 5. Density of the set cements as a function of CaO content.

Table 3

The working and setting times of the prepared cements.

Batch w.t. fraction of the fluorapatite in the set cement w.t. s.t.

#1 0.20 37 180

#2 0.25 76 210

#3 0.27 92 230

Fig. 6. Compressive Strength of the set cements as a function of CaO

content.

Fig. 7. The temperature rise of the cements during the setting

reaction.
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product was utilized for the setting of the cement;
which is an aqueous solution with 15 w.t.% of poly-
acrylic acid and 10 w.t.% of tartaric acid [33]. The set
cements were given the same batch numbers of the
originated fluoroaluminosilicate glass. The working
and setting times were measured following ADA pro-
tocol [34], which depends on the rise of the tempera-
ture of the cement throughout the setting reaction until
reaching a plateau. According to ADA protocol, the
time of the start of the temperature plateau is the
setting time and the time at which the temperature

increase is half of that of the plateau is the working
time. The powder/liquid p/l ratio that gave the max
working times is 2 g/g and thus, it was fixed throughout
the experimental work. In addition, the densities of the
set cements were measured according to ASTM C373-
88 [35].

X-ray diffraction (Cu-ka1) for the fluo-
roaluminosilicate powders and the set cements were
performed via Shimadzu XRD 6000 (Japan). SEM
micrographs were obtained for the fracture surfaces of
the set cements using TESCAN VEGA3 (Czech

Fig. 8. SEM micrographs for the fracture surfaces of the set cements. (a), (b), (c): for cement #1, #2, and #3 respectively before exposure to SBF

solution. (d), (e), (f): after exposure to SBF solution for one week.
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Republic). The examined fracture surfaces were before
and after exposure to Simulated Body Fluid (SBF)
solution for one week to check for bioactivity as well
be explained in the next section. The compressive
strengths for the set cements were measured via
(Laryee universal testing machine, China) according to
ASTM C1424-99 [36].

3. Results and discussion

The x-ray diffraction results showed that the pre-
pared fluoroaluminosilicate glass powders were fully
amorphous. Fig. 1 is a representative XRD for the
prepared glasses. On the other hand, the XRD of the set
cements has shown both the amorphous character and
the crystalline characters as seen in Figs. 2e4. The
crystalline phase was analyzed for each type of the set
cement and found that the crystalline phase was merely
fluorapatite Ca5(PO4)3F that match JCPDF #15-0876.

Accordingly, the bioactivity of the set cement is ex-
pected. In simple terms, the bioactivity of an implant is
its ability to enhance the growth of the bone tissue via
dissolution to, or, leaching apatite like molecules when
exposed to the living body fluid. Immersion in SBF is a
usual check for the release of apatite like molecules.
The reported immersion times were different in liter-
ature, however, immersion time of one week is very
frequent [37e39]. In this study, the leached apatite like
molecules was the fluorapatite, which was obvious
after one week of immersion.

The density for each set cement is shown in Fig. 5
as a function of CaO content. The density was
increased with increasing CaO content. This may be
attributed to the increase of the crystalline content,
the fluorapatite, with increasing CaO content. The
density of the fluorapatite is 3.201 g cm�1. Thus, with
the aid of the fitting equation in Fig. 5, the w.t. a
fraction of the fluorapatite for each of the set cements
#1, #2, and #3 was as shown in Table 3. However, the
small variation of the w. t. a fraction of the fluo-
rapatite led to a noticeable difference in the
compressive strengths of the set cement as shown in
Fig. 6. The higher compressive strength of the higher
CaO content may be attributed to the higher packing
of the microstructure as indicated by the higher
density.

The rise in temperature of the cement during the
setting reaction is shown in Fig. 7. The curves
resemble monotonic increase and slowed down to
reach plateaus. The working and setting times, ac-
cording to ADA protocol, described above, are shown
in Table 3 for each of the prepared cement. The
working time noticeably increased with the increase of

Fig. 9. The set cement samples dipped in SBF solution for one week,

a, b. A precipitate has appeared in the vicinity of the samples.

Fig. 10. X-ray diffraction pattern of the dried precipitate shown in Fig. 9.
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the w.t. fraction of the fluorapatite. However, the
setting time also increases together with the working
time but it does not exceed 4 min. The increase in the
working time is useful because it gives more flexibility
to the dentist to manipulate the cement to the desired
shape and quantity.

Fig. 8 shows SEM micrographs for the fracture
surfaces of the set cements before and after exposure to
the SBF solution. For the set cements before exposure
to SBF, #1, #2, and #3 shown in part a, b, c; it appears
the grain sizes increases in sequence, i.e. the grain
sizes increase with increasing the CaO content. In other
words, the grain sizes increase with the increase of the
crystalline fluorapatite content. This result is under-
stood in terms of that the crystalline phase is harder to
solve by the polyacrylic acid than the glass phase.
After exposure to SBF solution, Fig. 8 d, e, f; the
microstructure for each cement did not appear to vary
substantially. However, a careful look at the micro-
graphs may reveal that a new phase (an apatite) may
partially fill the voids of the microstructure. Fig. 9
shows the fractured cements samples dipped in SBF
solution for one week. After that, a precipitate has
appeared in the solution as a result of leaching from the
fractured samples. An amount of the precipitate was
collected and dried. The XRD of the dried precipitate,
Fig. 10, shows that it was again fluorapatite. Thus, the
new phase shown in Fig. 8 d, e, f; is strongly suggested
as fluorapatite. This result may support that the pre-
pared cements were bioactive [39,40].

4. Conclusion

Low-cost glass ionomer cements were prepared
starting from a recycled low alumina glass. AlF3, CaF,
and H₃PO₄ were added to produce the fluo-
roaluminosilicate glass as the core solid part of the
cement. The densities, compressive strengths, working
and setting times were increased with increasing CaO
content. In addition, the set cements were shown
bioactive.
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