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Abstract Abstract 
Manufacturing of quality products is one of the core measures to address competitiveness in industries. 
Hence, it is always necessary to accomplish quality prediction at early stages of a manufacturing process 
to attain high quality products at the minimum possible cost. To achieve this goal, the past researchers 
have developed and investigated the applications of different intelligent techniques for their effective 
deployment at various stages of manufacturing processes. In this paper, support vector machine (SVM), a 
supervised learning system based on a novel artificial intelligence paradigm, is employed for prediction of 
three responses, like material removal rate, surface roughness and radial overcut during an 
electrochemical machining (ECM) operation. Gaussian radial basis kernel function is adopted in this 
algorithm to provide higher prediction accuracy. Regression analyses are also carried out to validate the 
effectiveness of these prediction models. The SVM-based results show good agreement between the 
experimental and predicted response values as compared to linear and quadratic models. Among the four 
ECM process parameters, i.e. applied voltage, tool feed rate, electrolyte concentration and percentage of 
reinforcement of B4C particles in the metal matrix, tool feed rate is identified having the maximum 
influence on the considered responses. 
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1. Introduction

Electrochemical machining (ECM) is one of the
most potential and useful non-traditional machining
processes which possesses the capability to generate
complex and intricate shapes on diverse hard, tough
and high strength materials. Nowadays, varieties of
machining operations, like grinding, turning, drilling,
deburring etc. can be effectively carried out using
ECM process. This process works on the principle of
the Faraday's law of electrolysis in which material is
removed from the workpiece by anodic dissolution of
the electrolyte. It consists of two electrodes, connected
to high voltage power supply, and a very small gap is
maintained between them separated by an electrolyte
for efficient exchange of ions, causing removal of
material from the workpiece. In this process, the ma-
terial removal mechanism is based on electrolysis
where metals are released from the workpiece atom by
atom. Controlled anodic electrochemical dissolution
takes place in the electrolyte in which tool acts as a
cathode and workpiece as an anode while applying a
voltage between the tool and the workpiece. The
electrolyte is forced to pass at a high velocity through
the gap between the electrodes and material is removed
during this continuous dissolution process [1,2]. The
ECM process can machine components with no burr
formation and no residual stress generation. It has
longer tool life with almost no tool wear, higher ma-
terial removal rate (MRR), and achievement of good
surface quality and higher dimensional accuracy of the
machined components. Thus, it provides an effective
and economical solution for machining of high
strength materials having complex geometries which
are not possible to be machined by the conventional
machining processes [3]. As in this process, the
machining performance does not depend on the hard-
ness of the workpiece materials, it can thus be effec-
tively applied for machining of any hard material. On
the contrary, it has higher machining cost and lack of
eco-friendliness, and it causes corrosion to the
machining set-up. The performance of an ECM process
is often characterized by its various outputs (re-
sponses), like MRR, surface roughness (SR), radial
overcut (ROC) etc. which are usually influenced by its
different control parameters, such as applied voltage,
electrolyte concentration and flow rate, inter-electrode
gap, tool feed rate etc. In recent years, it has also

received significant attention in machining of micro-
components [4].

Like all other machining processes, in an ECM
process, its varied input parameters also interact be-
tween themselves and influence its outputs. These in-
terrelations between the ECM process parameters and
responses can be efficiently studied with the develop-
ment of a suitable model based on the experimental
observations. Models usually involve a set of inde-
pendent parameters and fitting a model helps in
determining the values of other dependant parameters.
Due to complex stochastic material removal mecha-
nism of the ECM process and possible interactions
between the considered process parameters and re-
sponses, it has now become an essential task to develop
an accurate and reliable model based on which the
responses of an ECM process can be efficiently pre-
dicted so as to enhance quality of the machined com-
ponents. It would finally help the concerned process
engineers to envisage the responses for a given set of
ECM process parameters.

2. Literature review

The past researchers have already proposed diverse
methodologies for predicting the performance of the
ECM processes, and investigating the complex in-
terrelationships between the input parameters and re-
sponses. Ashokan et al. [5] applied artificial neural
network (ANN) and grey relation analysis (GRA) for
modeling and multi-objective optimization of an ECM
process, while considering applied voltage, current,
electrolyte flow rate and inter-electrode gap as the
machining parameters, and MRR and SR as the re-
sponses. It was concluded that ANN would result in
better prediction of the responses with respect to per-
centage deviation between the training and testing
datasets. Senthilkumar et al. [6] studied the effects of
electrolyte concentration, applied voltage, tool feed
rate and electrolyte flow rate on MRR and SR, and
developed a mathematical model for prediction of
MRR and SR during ECM operation on LM25 Al/10%
SiCp composites. Based on Taguchi's L27 experimental
design plan, Senthil Kumar and Sivasubramanian [7]
examined the influences of applied voltage, electrolyte
concentration, electrode feed rate and amount of
reinforcement on MRR while performing ECM oper-
ation on aluminum A356/SiCp metal matrix
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composites. A back propagation-based ANN model
was also proposed to predict the values of MRR.
Acharya et al. [8] developed response surface meth-
odology (RSM)-based regression models for prediction
of MRR and SR values during ECM operation of super
alloys. Non-dominated sorting genetic algorithm-II
(NSGA-II) was later employed to optimize the
machining performance of the said process. Abuzied
et al. [9] presented an ANN-based model for prediction
of SR and MRR in an ECM process. During controlled
ECM operation, Senthilkumar et al. [10] analyzed the
influences of electrolyte flow rate and concentration,
applied voltage and tool feed rate on MRR and SR
using RSM-based models. Later, NSGA-II technique
was implemented to maximize MRR and minimize SR
for the considered process. Rao and Padmanabhan [11]
developed RSM-based models to study the relation-
ships between electrode feed rate, applied voltage,
electrolyte concentration and percentage of reinforce-
ment, and SR and ROC during ECM operation of
AleSi/B4C composites. Teimouri and Sohrabpoor [12]
adopted a neuro-fuzzy inference system to develop the
corresponding predictive models for MRR and SR in
an ECM operation. The cuckoo search algorithm was
later utilized to optimize the considered process. Kas-
dekar and Parashar [13] employed Box-Behnken and
ANN-based prediction models for MRR during ECM
operation of AA6061/CueSiC/graphite T6 composite
materials. The prediction performance of those two
models was subsequently compared. Taking into ac-
count applied voltage, feed rate, electrolyte flow rate
and electrolyte concentration, Mehrvar et al. [14]
endeavored to explore their effects on MRR and SR in
an ECM process. Differential evolution algorithm was
later employed to optimize the considered responses.
Kasdekar et al. [15] developed a multilayer perceptron
model with back propagation algorithm using voltage,
feed rate, electrolyte concentration and type of the
electrode material as the input parameters for predic-
tion of MRR during ECM operation on AA6061 T6
aluminum alloys.

In ECM processes, the literature has mainly been
flooded with the development of RSM-based regres-
sion models correlating various input parameters with
the responses. Those models were optimized using
different evolutionary algorithms to determine the
optimal combinations of various process parameters
for enhanced machining performance with better
response values. On the other hand, applications of
ANN (mostly back propagation feed forward type)
have also been proposed by the past researchers to
predict the responses for the ECM processes. Few

applications of support vector machine (SVM) for
prediction of the operational performance of different
machining/manufacturing processes have been found
in the literature. Zhang et al. [16] developed hybrid
models for predicting processing time and electrode
wear rate in a micro-electrical discharge machining
process based on SVM using the Gaussian kernel
function. Chou et al. [17] proposed the applications of
SVM and radial basis function neural network
(RBFNN) techniques for wafer quality prediction in a
semiconductor manufacturing process. It was reported
that SVM approach would result in better prediction
accuracy than RBFNN technique. Xu et al. [18]
developed a least square SVM (LSSVM) model with
RBF to investigate the effects of electrochemical me-
chanical polishing parameters on SR properties of
bearing rollers. It was concluded that the adopted
model would be suitable for prediction of different
surface characteristics with minimum mean absolute
percentage error (MAPE). Nayak and Tripathy [19]
applied multi-layer feed forward neural network
(MFNN) and LSSVM techniques to predict MRR and
SR values in an ECM process. Based on mean square
error (MSE) values, it was propounded that LSSVM
with RBF kernel function would outperform MFNN
approach with respect to prediction accuracy. In an
electrical discharge machining process, Aich and
Banerjee [20] applied SVM algorithm to predict MRR
and SR while attaining the minimum MAPE values of
the training dataset at different combinations of the
SVM parameters. Particle swarm optimization tech-
nique was finally employed to determine the optimal
SVM parameter combinations for achieving better
prediction performance. While conducting experi-
mental runs in an abrasive water jet machining process
using borosilicate glass as the work material, Aich
et al. [21] presented the application of a SVM-based
learning model for effective prediction of various re-
sponses of the considered process. Using SVM, Lu
et al. [22] developed prediction models for envisaging
SR characteristics in different machining processes.
Artificial bee colony algorithm was further utilized to
increase prediction accuracy and decrease parameter
adjustment time of the adopted model. The derived
results were finally compared with those as obtained
from the other popular evolutionary algorithms.

Thus, it can be observed that statistical methods and
artificial intelligence techniques are the suitable ap-
proaches for development of predictive models for
envisaging the complex material removal behavior of
varied machining processes. Among different artificial
intelligence techniques, ANNs with different

165S. Agarwal et al. / Karbala International Journal of Modern Science 6 (2020) 164e174



architectures and complexities have become popular
amongst the researchers for studying the inherent re-
lationships between input parameters and responses in
diverse machining processes. But, ANNs usually suffer
from several disadvantages, like hardware dependency,
problem in determining the appropriate network ar-
chitecture, unexplained behavior of the network, long
learning time, over-fitting of data etc. While over-
coming these disadvantages of ANNs, it may be
worthwhile to explore the feasibility of SVM in un-
derstanding the relationships between the input pa-
rameters and outputs, and predicting the response
values for different machining processes. It has also
been noticed from the literature review that there is
immense scarcity of the applications of SVM as an
effective prediction tool in the domain of ECM pro-
cesses. In an ECM process, random fluctuations in the
responses are quite obvious due to its stochastic
behavior. These random variations in the experimental
results can be effectively absorbed with particular
tolerance value for intelligent prediction. The appli-
cation of SVM can be a smart solution for dealing with
the complex behavior of ECM process while predicting
the corresponding response values. Thus, in this paper,
an attempt is put forward to efficiently predict three
responses of an ECM process, i.e. MRR, SR and ROC
while taking into account applied voltage, tool feed
rate, electrolyte concentration and percentage of rein-
forcement of B4C particles in the metal matrix as the
input parameters of the said process. The prediction
performance of SVM is later validated with that of
regression method-based analyses. The anticipated
response values are also compared with the actual
experimental results which proves high prediction ac-
curacy of the adopted SVM algorithm.

3. Support vector machine

The SVM is a useful soft computing tool based on
statistical learning theory which has been extensively
utilized for classification, regression, pattern recogni-
tion, dependency estimation, forecasting and con-
structing intelligent machines [23]. The concept of
SVM was proposed by Vapnik [24] mainly for classi-
fication tasks, but later, it was also adopted to deal with
regression problems (support vector regression (SVR))
with the inclusion of a loss function with a specific
distance measure [25]. The application of SVM is
based on construction of a separating hyperplane to
maximize the margin between two datasets according
to their classes which have been previously mapped to

a high dimensional space [24]. To determine the
margin, two parallel hyperplanes are established on
each side of the separating hyperplane. An optimal
separation is achieved by the hyperplane which has the
largest distance to the neighboring data points of the
both classes as larger margin leads to better general-
ization error of the classifier. The SVM can be estab-
lished while assigning a few numbers of parameters,
like kernel function, loss function, regularization
parameter etc., which makes it more suitable for
adoption in manufacturing environment. Moderate sets
of training data are sufficient to effectively train this
algorithm. This feature of SVM is highly useful for its
deployment in real time machining operations where
collection of huge set of experimental data is practi-
cally impossible due to involvement of higher
machining time and related cost. It has excellent
generalization property, minimal adjusting parameters,
no requirement to search out the best architecture and
less chance of producing over-fitted model.

The SVR develops a linear model when all the
related input variables have been mapped into a higher
dimensional feature space while applying some non-
linear mapping (based on reproduction of kernels). Let,
a set of training data {(x1,y1) (x2,y2), … (xN,yN)} is
employed for model development in a d-dimensional
input space (x VRd). It is supposed that both the
training and testing datasets are independent, disjoint
and identically distributed. The basic objective is to
identify a model from the hypothesis space which
would be closest to the underlying target function. The
linear target function in the feature space can be
expressed as:

f ðxÞ ¼ w$x þ b ð1Þ

where ($) is the dot product in the vector space, and w
and b are the parameter vectors of the function. If the
input parameters do not have any linear relation to the
output (non-linear model), they can then be mapped to
the feature space F(xi) from high dimensional input
space through kernel functions. In most of the model
development techniques, data are fitted based on the
least training error calculation to determine the unknown
weight vectors related with the training data. Hence,
there is always an attempt to fit all the data as close as the
expected model. In SVR, an insensitive zone around the
estimated function is implemented. This zone usually
takes into consideration the variations within the
allowable tolerances mentioned with the outputs. Using
Vapnik's e-insensitive approach, a flexible tube with a
specific radius is symmetrically formed around the
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estimated function so that the absolute values of errors
less than a certain threshold e are ignored for both above
and below the estimate. The radius of this hypertube thus
controls the complexity of the learning process. With the
increment of this radius, the model would tend to be
more flat being incapable to unfold the unseen variations
in the outputs. On the contrary, lower radius would make
the model more complicated. The outliers around this
hypertube are known as the support vectors. In order to
utilize SVR for model fitting, a regularization parameter
is introduced to penalize those support vectors and the
points inside the insensitive zone are considered having
zero loss (penalty). In SVR, the learning task is trans-
formed to the minimization of the error function defined
through e-insensitive loss function which controls the
accuracy of the regressor. Thus, for effective model
fitting, selection of the appropriate values of regulari-
zation parameter (C), radius of the insensitive tube (e)
and kernel function is most important. The computa-
tional complexity of SVR does not depend on the
dimensionality of the input space. Additionally, it has
excellent generalization capability with high prediction
accuracy.

Let L(y) be the loss function introduced to penalize
over-fitting of the model based on a set of training data
points. Amongst various types of loss functions, e-
insensitive loss function is mostly preferred for per-
forming the process modeling.

Lðyi; f ðxiÞÞ¼
��yi;experimental� f ðxiÞ

��� e; if
��yi;experimental

� f ðxiÞ
��� e¼0; if

��yi;experimental� f ðxiÞ
��< e

ð2Þ

The concept of kernel function K (xi,x) provides a
way to deal with the problem of dimensionality,
enabling the operations to be performed in the feature
space instead of potentially high dimensional input
space. Gaussian radial basis function (GRBF) with s

standard deviation has better potentiality in solving
problems in the higher dimensional input space.

Kðxi;xÞ¼ exp
�
� ��xi�x

��2
.
2s2

�
ð3Þ

This problem can be efficiently solved using stan-
dard dualization principle based on the Lagrange
multipliers (ai, ai*). The appropriate support vectors
can be easily identified from the difference between the
Lagrange multipliers (ai, ai*). Smaller values (close to
zero) highlight the points inside the insensitive hyper-
tube and the non-zero values indicate the elements in
support vector group. Thus, the weight vector w can be
estimated as follows [26,27]:

w¼
X

i¼1ð1ÞN

�
ai�a*

i

�
4ðxiÞ ð4Þ

Thus, the final model with the optimal combination
of C, e and s can be presented as below:

f ðxÞ¼
X

i¼1ð1ÞN

�
ai�a*

i

�
Kðxi;xÞ þ b

������
Coptimal

eoptimal

soptimal

ð5Þ

4. SVM for an ECM process

Rao and Padmanabhan [28] conducted 27 experi-
ments on LM6 Al/B4C metal matrix composites using
an ECM set-up (Metatech make). A copper tool having
circular cross section and 12 mm diameter with a
central hole was utilized during the experiments. The
flow rate of NaCl electrolyte was kept as 10 l/min and a
steady inter-electrode gap of 0.5 mm was maintained
during the experiment runs. While performing all the
experimental runs, values of the four ECM process
parameters, i.e. applied voltage (AV) (in V), tool feed
rate (FR) (in mm/min), concentration of the electrolyte
(EC) (in g/l) and percentage of reinforcement of B4C
particles in the metal matrix (PC) (in Wt%) were
varied at three different levels and the corresponding
responses, i.e. MRR (in g/min), SR (mm) and ROC (in
mm) were measured. Table 1 shows the detailed
experimental plan along with the response values.
These ECM process parameters are treated here as the
inputs to the SVM algorithm for effective prediction of
the corresponding response values. The MRR is the
amount of material removed from the workpiece sur-
face at unit machining time during the ECM operation,
and it is the most important response characterizing the
productivity and efficiency of an ECM process. On the
other hand, SR basically symbolizes the surface quality
of a machined component. It is quantified by the de-
viations in the direction of the normal of a machined
surface from its ideal form. If there are large de-
viations, the surface is rough; otherwise, it is smooth.
The ROC is the absolute deviation between the di-
ameters of the machined hole and initial tool. Among
these responses, MRR is the only beneficial quality
characteristic requiring its higher value. On the con-
trary, lower values are always required for SR and
ROC (non-beneficial quality characteristics). The
initial dataset containing 27 experimental runs of the
ECM process is adopted here to test the performance of
the SVM algorithm. On the other hand, another 500
experimental trials are simulated for training this
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algorithm. These additional runs are simulated in such
way that all the process parameter settings and re-
sponses must range within their extreme (minimum
and maximum) values.

As already mentioned, this paper deals with the
development of SVM-based models for effective pre-
diction of three responses, i.e. MRR, SR and ROC in
an ECM process using R-Studio (Version 1.1463)
software. Based on the training data sets, three models
are fitted through the learning process of SVM for the
three responses. The effectiveness and prediction ac-
curacy of the SVM would mainly depend on the
optimal values of three free parameters, i.e. general-
ization constant (C), insensitive parameter (e) and
standard deviation for GRBF (s). When applying the
SVM for the considered ECM process, it is the first
task to identify the most effective kernel function. The
SVM algorithm can construct varieties of learning
machines while adopting different kernel functions.
Each of these kernel functions has its own specialized
applicability. The GRBF is employed here due to its
global acceptability and better potentiality to deal with
higher dimensional input space. It has minimum

hypermeters that greatly reduce the complexity of the
prediction model than the other polynomial kernel
functions. Grid search plots are the simplest ap-
proaches to determine the optimal values of these three
parameters. The lower and upper limits in the search
space are set by the user to find out the corresponding
values of the considered parameters with maximum
accuracy. Here, the search intervals for parameters e

and C are set as [0 1] and [1 1000] respectively. The
grid search with 10 k-fold validation with the training
dataset is performed to optimize these parameters. The
optimal values of e, C and s are provided in Table 2.

Now, using the optimal values of e, C and s, the
corresponding SVM-based prediction models are
developed so that the performance of these models

Table 2

Optimal values of SVM parameters.

Response e C s

MRR 0.0625 16 0.14057

SR 0.2500 8 0.15355

ROC 0.1250 32 0.14057

Table 1

Experimental plan and measured responses [28].

Exp. No. Applied

voltage

Tool feed rate Electrolyte

concentration

Percentage of

reinforcement

MRR SR ROC

1 12 0.2 10 2.5 0.268 4.948 0.96

2 12 0.2 20 5 0.335 5.002 0.94

3 12 0.2 30 7.5 0.227 4.591 0.79

4 12 0.6 10 2.5 0.353 4.92 0.75

5 12 0.6 20 5 0.448 4.498 0.65

6 12 0.6 30 7.5 0.42 4.725 0.8

7 12 1.0 10 2.5 0.689 4.555 0.67

8 12 1.0 20 5 0.545 4.356 0.64

9 12 1.0 30 7.5 0.703 4.232 0.65

10 16 0.2 10 5 0.321 4.882 0.91

11 16 0.2 20 7.5 0.329 4.823 0.94

12 16 0.2 30 2.5 0.488 4.254 1.05

13 16 0.6 10 5 0.379 4.54 0.76

14 16 0.6 20 7.5 0.302 4.431 0.69

15 16 0.6 30 2.5 0.583 3.998 0.99

16 16 1.0 10 5 0.615 4.274 0.75

17 16 1.0 20 7.5 0.619 4.346 0.7

18 16 1.0 30 2.5 0.812 3.598 0.93

19 20 0.2 10 7.5 0.282 5.472 0.91

20 20 0.2 20 2.5 0.599 4.797 1.1

21 20 0.2 30 5 0.603 4.64 1.16

22 20 0.6 10 7.5 0.526 5.214 0.85

23 20 0.6 20 2.5 0.688 4.897 1.03

24 20 0.6 30 5 0.732 4.531 1.08

25 20 1.0 10 7.5 0.688 5.002 0.64

26 20 1.0 20 2.5 0.887 4.389 0.99

27 20 1.0 30 5 0.944 3.989 1
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with respect to prediction accuracy can be fairly vali-
dated. After training these models using the considered
dataset, their performance results are provided in
Table 3. The SVM attempts to search out the best line
(the line that results in the largest margin between two
classes) that separates two classes. The points that lie
on these margins are the support vectors. The problem
can be formulated so as to find out the maximum-
margin hyperplane that only considers these support
vectors. The optimal hyperplane is obtained by
comparing the maximum number of support vectors in
its margins among all other hyperplanes proposed at
the time of grid searching iterations. While performing
the search for MRR response, the maximum-margin
hyperplane is obtained with 281 support vectors.
Likewise for SR, the maximum-margin hyperplane is
derived with 20 support vectors and for ROC, the
maximum-margin hyperplane is formed with 148
support vectors. It can be clearly noticed from Table 3
that the SVM model for MRR with the maximum
number of support vectors has the minimum training
error of 0.004762. It has also the minimum cross

validation error of 0.000277. In Fig. 1, the flowchart
depicting the procedural steps for the application of
SVM algorithm for prediction of the ECM process
responses is presented.

Now, in order to validate the applicability and po-
tentiality of these SVM-based models for predicting
the values of three responses in the considered ECM
process, two sets of regression equations are subse-
quently developed using MINITAB (Version 17) soft-
ware. The first set of equations deals with linear
regression models for the three responses and the other
set of equations is for second order (quadratic)
regression models. These regression equations are
provided in Tables 4 and 5 respectively. It can be
observed that applied voltage and tool feed rate are the
two most significant ECM process parameters influ-
encing all the three responses, followed by electrolyte
concentration and percentage of reinforcement of B4C
particles in the metal matrix. Higher R2 values signify
the superiority of the quadratic regression models over
the linear models in depicting the relationships be-
tween the ECM process parameters and responses.

Based on these developed regression models, values
of the three responses are now envisaged for all the 27
experimental runs. In Tables 6e8, values of MRR, SR
and ROC as predicted using the linear regression
model, quadratic regression model and SVM are
respectively compared. It can be interestingly revealed
that the predicted response values based on SVM-
based models are quite closer to the actual

Table 3

Performance results of the SVM models.

Response Number of

support vectors

Training

error

Cross validation

error

MRR 281 0.004762 0.000277

SR 20 0.049243 0.0467

ROC 148 0.008615 0.000303

Fig. 1. Flowchart for SVM-based prediction model.
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experimental observations as compared to linear and
quadratic regression models.

In Table 9, the prediction performance of the linear
regression model, quadratic regression model and
SVM model is compared with the actual experimental
observations with respect to R2 and root mean square
error (RMSE) values. Based on these results, it can be

concluded that for all the considered responses, the
SVM-based prediction models outperform the other
regression models with respect to maximum R2 and
minimum RMSE values. Thus, it can be unveiled that
SVM can be employed as an efficient tool for pre-
dicting the quality characteristics of the machined
components during any machining operation.

Table 5

Quadratic regression models for the ECM process.

Response Quadratic model R2 (%)

MRR MRR ¼ 0.766e0.0884 � AV e 0.031 � FR þ 0.00486 � EC þ 0.0056 � PC þ 0.00361 � AV2 þ 0.379 � FR2

þ 0.000072361 � EC2 e 0.00339 � PC2
95.08

SR SR ¼ 9.98e0.642 � AV þ 0.159 � FR e 0.0063 � EC e 0.0101 � PC þ 0.02068 � AV2 e 0.668 � FR2 e 0.00545

� EC2 þ 0.0164 � PC2
94.22

ROC ROC ¼ 0.799 þ 0.0076 � AV e 0.469 � FR þ 0.00050 � EC e 0.0031 � PC þ 0.00059 � AV2 þ 0.184 � FR2

þ 0.000161 � EC2 e 0.00302 � PC2
90.51

Table 6

Predicted values of MRR using regression analyses and SVM.

Exp. No. AV FR EC PC Experimental Linear regression Quadratic regression SVM

1 12 0.2 10 2.5 0.268 0.3108 0.282613 0.280279

2 12 0.2 20 5 0.335 0.3175 0.30325 0.363658

3 12 0.2 30 7.5 0.227 0.3242 0.295913 0.251172

4 12 0.6 10 2.5 0.353 0.48024 0.391493 0.374552

5 12 0.6 20 5 0.448 0.48694 0.41213 0.460211

6 12 0.6 30 7.5 0.42 0.49364 0.404793 0.432215

7 12 1.0 10 2.5 0.689 0.64968 0.621653 0.70131

8 12 1.0 20 5 0.545 0.65638 0.64229 0.57836

9 12 1.0 30 7.5 0.703 0.66308 0.634953 0.71528

10 16 0.2 10 5 0.321 0.34916 0.28377 0.33101

11 16 0.2 20 7.5 0.329 0.35586 0.262033 0.3343

12 16 0.2 30 2.5 0.488 0.57436 0.488133 0.50029

13 16 0.6 10 5 0.379 0.5186 0.39265 0.39122

14 16 0.6 20 7.5 0.302 0.5253 0.370913 0.33068

15 16 0.6 30 2.5 0.583 0.7438 0.597013 0.59523

16 16 1.0 10 5 0.615 0.68804 0.62281 0.62724

17 16 1.0 20 7.5 0.619 0.69474 0.601073 0.63084

18 16 1.0 30 2.5 0.812 0.91324 0.827173 0.81132

19 20 0.2 10 7.5 0.282 0.38752 0.358073 0.29436

20 20 0.2 20 2.5 0.599 0.60602 0.569773 0.60929

21 20 0.2 30 5 0.603 0.61272 0.60481 0.6093

22 20 0.6 10 7.5 0.526 0.55696 0.466953 0.5257

23 20 0.6 20 2.5 0.688 0.77546 0.678653 0.70024

24 20 0.6 30 5 0.732 0.78216 0.71369 0.74428

25 20 1.0 10 7.5 0.688 0.7264 0.697113 0.70024

26 20 1.0 20 2.5 0.887 0.9449 0.908813 0.89273

27 20 1.0 30 5 0.944 0.9516 0.94385 0.95622

Table 4

Linear regression models for the ECM process.

Response Linear model R2 (%)

MRR MRR ¼ �0.1705 þ 0.02724 � AV þ 0.4236 � FR þ 0.00773 � EC e 0.02824 � PC 90.67

SR SR ¼ 4.889 þ 0.0179 � AV e 0.704 � FR e 0.02297 � EC þ 0.0594 � PC 73.73

ROC ROC ¼ 0.6166 þ 0.02653 � AV e 0.2486 � FR þ 0.00694 � EC e 0.03333 � PC 89.09
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Table 7

Predicted values of SR using regression analyses and SVM.

Exp. No. AV FR EC PC Experimental Linear regression Quadratic regression SVM

1 12 0.2 10 2.5 4.948 4.8818 5.21875 5.025122

2 12 0.2 20 5 5.002 4.8006 5.2745 4.900699

3 12 0.2 30 7.5 4.591 4.7194 5.42625 4.692491

4 12 0.6 10 2.5 4.92 4.6002 5.06859 4.818579

5 12 0.6 20 5 4.498 4.519 5.12434 4.599409

6 12 0.6 30 7.5 4.725 4.4378 5.27609 4.623488

7 12 1.0 10 2.5 4.555 4.3186 4.70467 4.568086

8 12 1.0 20 5 4.356 4.2374 4.76042 4.254431

9 12 1.0 30 7.5 4.232 4.1562 4.91217 4.333455

10 16 0.2 10 5 4.882 5.1019 5.24916 4.9349

11 16 0.2 20 7.5 4.823 5.0207 5.50991 4.800759

12 16 0.2 30 2.5 4.254 4.494 4.40491 4.355366

13 16 0.6 10 5 4.54 4.8203 5.099 4.641145

14 16 0.6 20 7.5 4.431 4.7391 5.35975 4.532416

15 16 0.6 30 2.5 3.998 4.2124 4.25475 4.008566

16 16 1.0 10 5 4.274 4.5387 4.73508 4.375348

17 16 1.0 20 7.5 4.346 4.4575 4.99583 4.244467

18 16 1.0 30 2.5 3.598 3.9308 3.89083 3.699541

19 20 0.2 10 7.5 5.472 5.322 6.14633 5.370803

20 20 0.2 20 2.5 4.797 4.7953 5.15033 4.898431

21 20 0.2 30 5 4.64 4.7141 5.09708 4.695756

22 20 0.6 10 7.5 5.214 5.0404 5.99617 5.198132

23 20 0.6 20 2.5 4.897 4.5137 5.00017 4.795556

24 20 0.6 30 5 4.531 4.4325 4.94692 4.429595

25 20 1.0 10 7.5 5.002 4.7588 5.63225 4.900715

26 20 1.0 20 2.5 4.389 4.2321 4.63625 4.490256

27 20 1.0 30 5 3.989 4.1509 4.583 4.09052

Table 8

Predicted values of ROC using regression analyses and SVM.

Exp. No. AV FR EC PC Experimental Linear regression Quadratic regression SVM

1 12 0.2 10 2.5 0.96 0.732515 0.883195 0.9779591

2 12 0.2 20 5 0.94 0.57979 0.87212 0.9597756

3 12 0.2 30 7.5 0.79 0.427065 0.855495 0.8097946

4 12 0.6 10 2.5 0.75 0.633075 0.754475 0.7455534

5 12 0.6 20 5 0.65 0.48035 0.7434 0.6697914

6 12 0.6 30 7.5 0.8 0.327625 0.726775 0.8131503

7 12 1.0 10 2.5 0.67 0.533635 0.684635 0.6897996

8 12 1.0 20 5 0.64 0.38091 0.67356 0.6597868

9 12 1.0 30 7.5 0.65 0.228185 0.656935 0.6697983

10 16 0.2 10 5 0.91 0.75531 0.9153 0.9289596

11 16 0.2 20 7.5 0.94 0.602585 0.866475 0.9490444

12 16 0.2 30 2.5 1.05 0.699835 1.118475 1.0698451

13 16 0.6 10 5 0.76 0.65587 0.78658 0.7660861

14 16 0.6 20 7.5 0.69 0.503145 0.737755 0.7098141

15 16 0.6 30 2.5 0.99 0.600395 0.989755 1.0098487

16 16 1.0 10 5 0.75 0.55643 0.71674 0.7564918

17 16 1.0 20 7.5 0.7 0.403705 0.667915 0.707678

18 16 1.0 30 2.5 0.93 0.500955 0.919915 0.9498055

19 20 0.2 10 7.5 0.91 0.778105 0.928535 0.9265004

20 20 0.2 20 2.5 1.1 0.875355 1.148335 1.1082601

21 20 0.2 30 5 1.16 0.72263 1.16946 1.1567052

22 20 0.6 10 7.5 0.85 0.678665 0.799815 0.8343884

23 20 0.6 20 2.5 1.03 0.775915 1.019615 1.0498376

24 20 0.6 30 5 1.08 0.62319 1.04074 1.0998425

25 20 1.0 10 7.5 0.64 0.579225 0.729975 0.6532017

26 20 1.0 20 2.5 0.99 0.676475 0.949775 1.0097725

27 20 1.0 30 5 1 0.52375 0.9709 1.0189854
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Fig. 2 graphically exhibits the relationships between
the actual experimental observations and response
values as predicted using the considered models. It can
clearly be observed that for all the responses, the SVM

model-based response values are the nearest to the
observed values having minimum deviations.

The SVM has already proved itself as an effective
prediction model in the domain of data mining to

Table 9

Comparison of different prediction models with actual experimental data.

Response Compared pair R R2 RMSE

MRR Actual vs. SVM 0.9993 0.9986 0.015

Actual vs. Linear regression 0.9522 0.9067 0.087

Actual vs. Quadratic regression 0.9751 0.9508 0.043

SR Actual vs. SVM 0.9769 0.9543 0.09

Actual vs. Linear regression 0.8479 0.7189 0.2112

Actual vs. Quadratic regression 0.8846 0.7825 0.5163

ROC Actual vs. SVM 0.9983 0.9966 0.0165

Actual vs. Linear regression 0.6674 0.4454 0.3043

Actual vs. Quadratic regression 0.9514 0.9052 0.4836

Fig. 2. Comparison between predicted and actual experimental data for three responses.
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envisage the possible outcomes based on a set of input
variables. In SVM, each model consists of a number of
predictors, which are variables influencing the out-
comes. It is an efficient tool for modeling of multi-
dimensional problems where standard analytical/sta-
tistical approaches fail. If the values of its three free
parameters, i.e. C, e and s are optimally chosen, it is
supposed to provide robust prediction models while
capturing small scale fluctuations in training as well as
testing datasets. Other statistical approaches may have
generalization property producing over-fitted models,
but SVM minimizes the upper bound of the expected
risk to minimize error in the training data. Thus,
compared to statistical learning methodologies, SVM
is devoid of four problems of efficiency of training,
efficiency of testing, over-fitting and algorithm
parameter tuning. As compared to other models, it can
produce accurate predictions and are least affected by
noisy data. In this paper, three SVM-based models are
developed to accurately predict MRR, SR and ROC
responses in an ECM process which would help the
concerned process engineers to maintain the quality of
the machined components. In Table 9, high R2 values
between the actual experimental data and SVM-based
predicted values for all the three ECM responses
validate the superiority of SVM over linear and
quadratic regression-based models as employed for the
prediction purpose.

While applying GRA technique, Rao and Padma-
nabhan [28] determined the optimal parametric mix for
the considered ECM process parameters as applied
voltage ¼ 16 V, tool feed rate ¼ 1.0 mm/min, con-
centration of the electrolyte ¼ 30 g/l and reinforcement
content ¼ 5%. At that optimal setting, MRR, SR and
ROC values were obtained as 0.798 g/min, 3.859 mm
and 0.73 mm respectively. On the other hand, the
corresponding responses were experimented as
0.268 g/min, 4.948 mm and 0.96 mm at the initial
operating levels of the process parameters as applied

voltage ¼ 12 V, tool feed rate ¼ 0.2 mm/min, con-
centration of the electrolyte ¼ 10 g/l and reinforcement
content ¼ 2.5%. Table 10 exhibits the predicted values
of the considered responses both at the initial and
optimal operating levels using linear, quadratic and
SVM-based models. It can be clearly revealed that the
SVM-based model is perfectly able to anticipate better
values of all the responses as compared to the obser-
vations of Rao and Padmanabhan [28].

5. Conclusions

This paper deals with the development of suitable
SVM-based models for effective prediction of MRR,
SR and ROC during an ECM operation on metal ma-
trix composites. The relationships of applied voltage,
tool feed rate, electrolyte concentration and percentage
of reinforcement of B4C particles in the metal matrix
with the considered responses are examined based on
linear and quadratic regression models. For successful
prediction of the responses, Gaussian radial basis
kernel function is considered in the SVM algorithm.
Finally, the optimal values of C, e and s are identified.
The prediction performances of SVM, linear regression
and quadratic regression models are compared with the
actual experimental data with respect to R2 and RSME
values. It can be revealed that SVM-based model has
better prediction accuracy as compared to the other two
regression-based models. The response values as
envisaged using the developed SVM-based models
closely match with the actual values. Thus, this model
can be efficiently implemented to predict the quality
characteristics of varied machining processes. Study-
ing the influences of other kernel functions, and values
e, C, and s on the prediction performance of the SVM
algorithm for the considered ECM process may be
treated as the future scope of this paper.
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