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Abstract Abstract 
The reaction of H2 and O2 gases with pristine and Pd doped Sn10O16 clusters is investigated using 
transition state theory and density functional theory. The reaction of hydrogen and oxygen molecules is 
controlled by a transition state that implies crossing an activation energy hill to react with the SnO2 

cluster. Our investigation performs thermodynamic calculations, including Gibbs free energy, enthalpy, 
and entropy of activation and reaction in the temperature range 25-500 °C. The results show that the 
Gibbs free energy of activation of H2 gas reaction is 0.23 and 0.18 eV for pristine and Pd doped Sn10O16 

respectively at standard conditions. The reduction of 0.05 eV of the activation barrier is enough to raise 
the reaction rate constant by a factor of 7 between pristine and Pd doped at standard conditions. The 
temperature-dependent reaction rate increases continuously as the temperature increases in the 
investigated range. A double exponential function describes the time dependence of cluster 
concentration. Variation of energy gaps due to the H2 reaction explains the sensitivity values of present 
clusters to H2 molecules. 
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1. Introduction

Tin dioxide is the most used material in gas sensing
[1e5]. SnO2 alone has a relatively lower sensitivity to
environmentally polluting and other gases. To raise
sensitivity, several kinds of surface catalysts, such as
Pd and Pt, are used [6e10]. The use of nanoparticles
usually enhances the sensing operation due to the
higher surface area of particles [11,12]. Many other
factors affect sensing effectiveness of SnO2 such as
temperature, the method used to manufacture SnO2

films, the kind of reaction, …etc.
Theoretical aspects of the sensing mechanisms are

less investigated than experimental procedures
[13e15]. Most of these calculations use density func-
tional theory to calculate adsorption mechanisms [16].
Transition state theory, which is the most promising
theory in reaction kinetics, has been rarely applied to
gas sensors [17]. This theory investigates the existence
of a transition state with positive Gibbs free energy of
activation of incident gas particles near the surface of
the gas sensor. The transition state theory had been
applied extensively to explain many reaction mecha-
nisms [18e20]. In the present work, we apply transi-
tion state theory to calculate the transition rate and
sensitivity of SnO2 clusters to H2 gas as a function of
temperature. In addition to the application to the
sensitivity of SnO2 clusters to H2 gas, the effect of
palladium surface doping is also investigated. Pd is one
of the well-known catalysts that reduce the value of
Gibbs free energy of activation to promote higher re-
action rates and better sensitivity [21e23]. Pd was
widely used experimentally in SnO2 gas sensors with
limited published theoretical transition state theory
explanations [24e27]. The novelty of the present work
lies in the fact that many experimental gas sensing
results of sometimes contradicting directions are not
explained. A theory that can collect and explain the
experimental results, in our opinion, can be anticipated
from the transition state theory used in the present
work.

2. Theory

SnO2 clusters are repeatedly suggested to represent
surfaces of gas sensors to illustrate the sensing mech-
anism [13,28e30]. In the present work, we use pyra-
midal cluster Sn10O16 for the representation of the
SnO2 cluster [31,32]. Surface pyramids are well-known

on SnO2 surfaces [33e35], so it is logical to use these
pyramids to represent the interacting surface of a
sensor. The size of these clusters is suitable to include
the interaction of several atomic neighbors with the
interacting gas molecule. SnO2 is known with oxygen-
deficiency property [36,37]. To probe what stoichi-
ometry does this cluster prefers, we simulated the
thermodynamics of the following reactions at standard
temperature and pressure:

Sn10O14 þ O2/Sn10O16ðDGr ¼ �0:1732 eVÞ: ð1Þ
Sn10O16 þ O2/Sn10O18ðDGr ¼ 0:01073 eVÞ: ð2Þ
Sn10O18 þ O2/Sn10O20ðDGr ¼ 0:02515 eVÞ: ð3Þ

In the above equations, DGr is the change in Gibbs
free energy of the reaction. All the above and forth-
coming values are calculated using B3LYP hybrid
functional in density functional theory with SDD basis
for heavy atoms (Sn and Pd) and 6-311G** basis for
the lighter ones [38]. Gaussian 9 program is used to
perform the calculations [39]. In Eq. (1) we can see
that the cluster Sn10O14 is unstable and converts to
Sn10O16 when it is exposed to oxygen in the air as
indicated by the negative value of the Gibbs free en-
ergy. On the other hand, Sn10O16 is more stable than
Sn10O18 and Sn10O20 from the values of Gibbs free
energy of the reactions in Eqs. (2) and (3). The oxygen-
deficiency is evident from the existence of lower ox-
ygen stoichiometry (SnO) of Sn [40]. The higher ox-
ygen content oxide (SnO2) tries to loss oxygen to be
closer to the lower oxygen content oxide (SnO) by
creating oxygen vacancies. Fig. (1a) shows the cluster
Sn10O16, while Fig. (1b) shows the cluster Sn9PdO16 in
which one Sn atom is replaced by a palladium atom to
simulate the doping effect on gas sensing operation.
Figs. (1c) and (1d) shows the oxygen-reduced clusters
Sn10O15 and Sn9PdO15 of pristine and Pd doped clus-
ters, respectively. When H2 molecules pass over
Sn10O16 molecule, one H2 molecule will pick one ox-
ygen atom according to the reaction:

Sn10O16 þ H2/Sn10O15 þ H2OðDGr

¼ �1:508 eVÞ: ð4Þ

Although this reaction has negative Gibbs free
energy of reaction, the reaction rate is controlled by a
transition state with positive Gibbs free energy of
reaction as follows at standard temperature and
pressure:
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Sn10O16 þ H2/Sn10O16…H2ðDGr ¼ 0:231 eVÞ:
ð5Þ

The attachment of the H2 molecule at the Sn10O16

surface in the above equation (Sn10O16…H2) by the van
der Waals forces is represented by the three points (…)
between Sn10O16 and H2 in Eq. (5) above. This transition
state represents a barrier that must be overcome by
hydrogen molecules to be able to interact with the
Sn10O16 cluster. The same is true for the Pd doped clus-
ters. TheseH2 transition states are shown inFig. (2) for the
pristine (Sn10O16) and Pd doped clusters (Sn9PdO15).

The H2 and O2 molecules are added at 3 Å distance
at the beginning as recommended by transition state
evaluation procedure of Gaussian 09 program. The
optimization procedure moves the molecules to the
most energy attractive position. This position was
4.048 and 4.237 Å distance for H2 and O2 molecules
respectively from the nearest atom in SnO2 cluster in
the pristine case. For the Pd doped cluster, the dis-
tances are 3.94 and 3.05 Å respectively. H2 molecules
prefers to approach O atoms that are near Sn corner
atoms while O2 molecules approaches towards Sn
corner atoms.

Fig. 1. (a) shows the cluster Sn10O16 while (b) shows the cluster Sn9PdO16 in which one Sn atom is replaced by a palladium atom to simulate the

doping effect on gas sensing operation. (c) and (d) shows the oxygen-reduced clusters Sn10O15 and Sn9PdO15 of pristine and Pd doped clusters,

respectively.
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3. Results and discussion

Fig. (3) shows the variation of the Gibbs free energy
of the three cases of H2 interaction states with Sn10O16

and Sn9PdO16 clusters. Taking the reference zero
Gibbs energy point of H2 molecule to be very far from

Sn10O16 or Sn9PdO16 clusters, the activation and re-
action energies are shown. As we can see from Fig. (3)
that the values of the activation energies are small
compared to the reaction energies. As a result of small
values of activation energies, all the incident particles
reaching the hilltop at the transition state will

Fig. 2. This figure shows the H2 molecule transition state in (a) pristine Sn10O16 cluster, and (b) Pd doped Sn9PdO16 cluster.

Fig. 3. Gibbs free energy of activation and reaction of Sn10O16 and Sn9PdO16 with H2.
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eventually react with the target clusters with a negli-
gible number of H2 molecules that turn back to the
outer space.

The rate at which the number of Sn10O16 clusters
react with H2 molecules is given by Ref. [39]:

d½Sn10O16�
dt

¼ �C½Sn10O16�½H2�kðTÞ: ð6Þ

In the above equation [Sn10O16] and [H2] are the
concentration of Sn10O16 and H2, respectively, and T is
the temperature. The minus sign indicates the decrease
in the number of Sn10O16 clusters as a result of the
interaction with H2 molecules. k(T) is called the re-
action rate constant that is given by:

kðTÞ¼Te

�
�DGa
kBT

�
ð7Þ

In the above equation, DGa is the activation energy,
and kB is Boltzmann constant. C is a constant that must
be determined experimentally. We shall call this
parameter the materials constant. From Eq. (6), we can
get the following equation:

½Sn10O16�¼ ½Sn10O16�0 e�C½H2�kðTÞt ð8Þ

In the above equation, [Sn10O16]0 is the concentra-
tion at the beginning of the exposure to [H2] molecules.
In the gas sensing literature, the response and recovery
times are defined to be 90% of the saturation values
reached, i.e., only 10% of the saturation values
remained. Using this definition, we can define the
meantime (t) and decay constant (l) by:

½Sn10O16�
½Sn10O16�0

¼0:1¼ e�
tresponse

t ¼ e�ltresponse ð9Þ

l¼ lnð0:1Þ
�tresponse

¼ 1

t
ð10Þ

From Eqs. (7) and (8) we have:

l¼C½H2�kðTÞ¼C½H2�Te

�
�DGa
kBT

�
: ð11Þ

The double exponential function can give the final
concentration equation:

½Sn10O16�¼ ½Sn10O16�0 e�C½H2�Te

�
�DGa
kBT

�
t ð12Þ

Although DGa in the above equation can be deter-
mined from transition state theory calculations, there is
no way that the C constant can be determined

theoretically. This constant reflects the structure, ge-
ometry, particle size, the ability of the incident gas to
diffuse in the target material, and many other factors
inhibited in the method used to manufacture the gas
sensor. It effectively illustrates the surface area that is
available for reacting.

In the case of the recovery period (Sn10O15þ½O2/
Sn10O16), oxygen reacts with the formed Sn10O15

clusters to transform them back to Sn10O16 clusters.
Eq. (12) for the case of recovery period reads:

½Sn10O15�¼ ½Sn10O15�0 e�C½O2�Te

�
�DGa
kBT

�
t ð13Þ

Since oxygen concentration [O2] is nearly constant
in air and will not be changed by the minimal amounts
of oxygen absorbed in the reaction, [O2] term can be
absorbed by the C constant in Eq. (13). The values of
the C constant for H2 and O2 are 0.4 and 0.00524
(ppm.K.sec)�1 respectively for the pristine SnO2

molecule.
The energy gap of materials is related to the elec-

trical conductivity by the following equations [41]:

s¼s0 exp

�
�Eg
2kBT

�
ð14Þ

The energy gaps of Sn10O15 and Sn10O16 from our
calculations are 3.537 and 3.841 eV, respectively.
Assuming s0 is the same for the two molecules and
using the above equation, the response (R) which is
defined as the ratio of the resistivity (reciprocal of
conductivity) of Sn10O15 to that of Sn10O16 is given by
the Equation:

R¼Ra

Rg
¼ expðEga�EggÞ ð15Þ

In the above equation, Ra and Ega are the resistance
and energy gap when only atmospheric air is above the
sensor. Rg and Egg are for the existence of H2 gas over
the sensor. According to previously mentioned values
of gaps, the value of (R) is 1.355. This value is the
lowest possible ratio and can be increased by contin-
uous exposure to H2 or other gases [42]. As a result of
continued exposure to H2, islands of pure Sn10 clusters
are created, and all the oxygen in Sn10O16 is reduced.
The energy gap of the Sn10 cluster is 1.615 eV. The
value of the calculated response, in this case, is 9.26.
The present results are in good agreement with that of
reference [43] in which the response for low H2 con-
centration (equal or less than 250 ppm) is in the range
(1e2) and reaches 6.5 for 1000 ppm concentration.
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Higher temperatures and concentrations can make
small islands of Sn metal coalesce, forming bigger
clusters that have smaller energy gaps and smaller re-
sistivity, as proved by quantum confinement theory
[44].

Fig. (4) shows the variation of Gibbs free energy of
activation as a function of temperature for both pristine
and Pd doped cases, including response and recovery
with O2 and H2 gases, respectively. We can see that in
the H2 case, this energy increases with temperature and
that pristine activation energy is always higher than Pd
doped case. The activation Gibbs energies for the O2

recovery are higher than that of H2 response, meaning
lower reaction rates for the same incident number of
H2 and O2 molecules. However, this is not the case
practically since the incident H2 molecules are much
less than O2 molecules (O2 molecules comprise 20.9%
of atmospheric air). These results are obtained from ab
initio DFT calculations with no fitting of empirical
parameters.

Fig. (5) shows the values of the reaction rate con-
stant k(T) as a function of temperature. We can see that
although the values of Gibbs free energy increase in
Fig. (4), the reaction rate constant also increases
because of the effect of the temperature variable at the
beginning and exponential term in Eq. (7). The very
high values of the O2 Gibbs free energy of reaction
activation results in a meager reaction rate constant.

These results are obtained from ab initio DFT calcu-
lations with no fitting or empirical parameters.

In gas sensor experiments the sensor is first exposed
to the detected gas (in the present case H2) that take
some oxygen from the material. Then the detected gas
is stopped and usual air (that contains 20.9% oxygen)
is passed over the sensitive material and the material
regains its lost oxygen. Fig. (6) shows the variation of
the concentration of Sn10O16 and Sn10O15 molecules
with time using Eqs. (9)e(13) for H2 and O2. The value
of the materials constant is calculated from Ref. [43]
results. Reference [43] assigns 15 and 4 s for the
response and recovery times, respectively. Since the
resistivity of the Sn10O15 cluster is lower than that of
Sn10O16, the variation of concentration [Sn10O15] can
also approximately represent the variation of resistance
when an H2 gas passes over the sensing material using
a suitable constant.

Gibbs free energy of activation consists of two
parts:

DGa¼DHa �DSaT ð16Þ

In Eq. (16) DHa and DSa are the enthalpy and en-
tropy of activation, respectively. Table 1 shows the
values of the calculated thermodynamic quantities of
activation and reaction of doped and pristine clusters at
standard temperature and pressure. We can see from
Table (1) that all Gibbs free energies of activation are

Fig. 4. Gibbs free energy of activation as a function of the temperature of pristine and Pd doped clusters response and recovery with H2 and O2

gases, respectively.
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positive, while all Gibbs free energies of reaction are
negative. However, all enthalpies are negative, which
means that all activations and reactions are exothermic.
All entropies are negative, except reactions 5 and 6 in
Table (1). Entropies are positive when the number of
product molecules is less than interacting molecules as

in reactions 5 and 6. From Eq. (16) positive entropies
enhances the reaction probability by making Gibbs free
energies more negative as in reactions 5 and 6 in Table
(1). Finally, we added the heat capacity at constant
volume in Table (1) that indicates the change in tem-
perature due to the proceeding reaction. Positive

Fig. 5. The reaction rate constant as a function of the temperature of pristine and Pd doped clusters response and recovery with H2 and O2 gases,

respectively. The logarithmic scale is used for the y-axis.

Fig. 6. Variation of normalized concentrations of Sn10O16 and Sn10O15 clusters as a function of time due to interaction with H2 (until 40 s) and O2

molecules in the air (40e50 s) at 300 �C normalized to Refs. [43] values.
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change in heat capacity is usually accompanied by the
reduction of temperature of sensing material and vice
versa.

4. Conclusions

The thermodynamic quantities of the interaction of
SnO2 clusters with H2 gas and O2 are evaluated using
transition state theory and density functional theory.
The transition state theory implies activation of Gibbs
free energy to overcome for the reaction to take place.
The results show that the Pd doped cluster has lower
activation energy than the pristine SnO2 cluster. The O2

activation energies are higher than that of H2, resulting
in a very lower reaction rate for equal amounts of
incident H2 and O2 molecules. However, this is
compensated by the higher concentration of O2 mole-
cules in the ambient atmosphere. The energy gap of the
reactant and product molecules can be used to estimate
the value of the response of a sensor. We can learn the
degree of oxygen reduction from response values and
H2 concentration. The components of the Gibbs free
energy of activation, i.e., entropy and enthalpy of
activation can be used to explain the variation of the
values of Gibbs free energy. All enthalpies of activa-
tion and reaction are negative, meaning that all the
activations and reactions are exothermic. All entropies
are negative except H2 reactions. The negative entropy
enhances H2 reactions due to the conservation of the
number of molecules between reactants and products.
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