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Abstract Abstract 
In this paper, a dynamic analysis of the viscoelastic circular diaphragm of a Micro-Electro-Mechanical 
System (MEMS) capacitive pressure sensor using the Modified Differential Transformation Method 
(MDTM) is presented. The MEMS technology has been increasingly used to fabricate sensors and 
actuators and the MEMS capacitive pressure sensor is emerging in many high-performance applications. 
The deflection of these sensors diaphragm (plate) depends largely on the material of the diaphragm. In 
this study, a circular diaphragm of viscoelastic material is modeled using the classical plate theory. The 
governing differential equation is solved using Modified Differential Transformation Method (MDTM) and 
the result is validated with Finite Difference Method (FDM). The result shows excellent agreement with 
the numerical method. The effects of amplitudes, frequency, viscoelastic parameter, and time of applied 
pressure on deflection of the viscoelastic circular diaphragm are investigated. It is established from the 
results that the deflection of the sensor increases with an increase in the amplitude, frequency and time 
of the applied pressure. In addition, an increase in the viscoelastic parameters resulted in an increase the 
deflection of the diaphragm which consequently increases the capacitance and sensitivity of the sensor. 
Hence, the viscoelastic circular diaphragm of the MEMS capacitive pressure sensor exhibits better 
sensitivity performance when compared with that of elastic material. Finally, the Modified Differential 
Transformation Method applied in obtaining the solution of the developed model is effective in predicting 
sensor characteristics. The study will enhance the design of MEMS capacitive pressure sensor with 
viscoelastic circular diaphragm. 
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1. Introduction

The various applications of MEMS technology in
engineering processes have continued to attract
research interests in the production of miniaturized
devices with mechanical functionality, automotive in-
dustry and other areas of engineering applications.
These applications include; production of pressure
sensors, accelerometer sensors, ink jet printers,
disposable blood pressure meters, and engine oil
pressure sensors, evaporative purge system leak
detection, tire pressure, air-bag system, brake system
and the utility systems that control the vehicle body
functions in automotive industry [1e3]. These appli-
cations are also increasing because of the functionality
and versatility of the products, which exhibit great
advantages over the previous one. The new MEMS
pressure sensor for instance has low weight, small size,
smart function, and it is highly reliable and affordable
[4e6]. The functionality of the MEMS capacitive
pressure sensor has been enhanced with the smart
functions and this has increased its performance over
piezo-resistive pressure sensor [5,6]. Some of the per-
formance indices include high sensitivity, circuitry
compatibility, low power consumption rate, low noise,
low thermal sensitivity and large dynamic range.
Remarkably, these performance functions, reliability
features and the production method of the MEMS
pressure sensor are achieved at low cost [1].

The behavior of MEMS capacity pressure sensor
with different material properties has been modeled. In
the modeling approach, the deflection of the sensor
diaphragm depends on factors such as geometry, the
type of loading on the diaphragm and type of material
of the diaphragm. The geometry of the diaphragm in-
cludes rectangular, square or circular cross-section, and
thin or thick size. It is observed that rectangular dia-
phragm exhibited higher stress than square and circular
diaphragms. The second factor is the type of loading
on the diaphragm which includes gradually applied or
impact loading and the point of application of the load
on the upper moving plate (while the bottom is sta-
tionary) [7,8]. The gradually applied loading or the
touch mode model has been developed [9]. The third
factor which has a major role to play in the developed
model of the diaphragm is the type of material of the
diaphragm. Various materials and material models
including elastic materials have been used in past ap-
plications and modeling approach of MEMS capacitor

sensor diaphragm [1]. But in recent studies, silicon and
other polymeric materials have been used for the dia-
phragm. These materials are fast replacing the tradi-
tional metal diaphragm used in the capacitance
pressure sensors [2e4,10e12]. They are widely used
because of their economic values, their availability,
versatility and affordability. Other advantages of this
polymeric material include structural stability, flexi-
bility and good electrical and thermal characteristics.
Silicon carbide (SiC) has been used for circular dia-
phragm because of its high temperature applications
which can be up to about 400 �C and pressure range of
0e333 kPa [2,3,10]. Remarkably, polysilicon with
various configurations is widely used as a diaphragm
material [1,5]. Polyimide materials possess an excep-
tionally good balance of chemical, electrical, and
physical properties for a large temperature range. Their
dimensions are stable at high temperatures and they
have excellent adhesion properties [4]. But, these time
and path dependent viscoelastic material properties
have not been adequately captured in the existing
models of the MEMS capacity pressure sensor of cir-
cular diaphragm.

Therefore, in the present study, the MEMS capacity
pressure sensor of circular diaphragm with viscoelastic
material is modeled using the classical plate theory and
the governing equation is solved by applying the
Modified Differential Transformation Method
(MDTM). The Modified Differential Transformation
Method is a hybrid of the conventional Differential
Transform, Inverse transform, Laplace transform, and
Pad�e approximation methods. The Differential Trans-
form Method (DTM) is a semi-analytical method for
solving linear and strongly non-linear differential
equations particularly of higher orders. It was devel-
oped by J. K. Zhou and tends to be less intensive in
terms of computational analysis when compared to
HPM [13]. The DTM has proven to be very effective in
comparison with other approximate analytical solu-
tions as it requires fewer computations as done with
Adomian decomposition method (ADM), homotopy
perturbation method (HPM), homotopy analysis
method (HAM), and variational iteration method
(VIM). Remarkably, the requirements of small pertur-
bation parameter of the traditional Perturbation
Methods, the rigorous technique applied in obtaining
Adomian polynomials as done in ADM, the in-
efficiency of obtaining solutions to weakly nonlinear
differential equations by HPM, the unavailability of
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proper theories for determining initial approximation,
and auxiliary functions, parameters, linear operators,
and the conformity requirements of the obtained so-
lution to the coefficient periodicity rule as required in
HAM, the search for Langrange multiplier also
required in VIM, and the difficulties with determining
the approximate functions for the geometry of interest
as carried out in collocation method (CM), least square
method (LSM), and Galerkin weighted residual
method (GWRM), are few of the challenges that have
been overcome with DTM.

The DTM is more accurate than the Generalized
Differential Method [14], and its characteristics have
been highlighted [15]. The efficiency of the DTM has
been combined with other methods [16] to obtain
better results. The DTM techniques have been applied
in the study Biomaterials [17], to obtain creep strain
relaxation behavior of these materials. But the DTM
has some shortcomings; in that the series solution has
slowed convergent rate and may oscillate. In order to
overcome these drawbacks, the Modified Differential
Transform Method was developed to solve differential
equations. In the MDTM solution procedure, the Pad�e
approximant of DTM solution is treated with Laplace
and inverse Laplace transforms. The Pad�e approxima-
tion is used to increase the convergence rate and the
stability of the truncated series solution obtained from
DTM. Thus, solutions of MDTM are always valid and
stable [18,19]. The Pad�e approximation method used in
MDTM serves as an after-treatment technique to cor-
rect the shortcoming of the solution obtained from
DTM. Pad�e approximation method is often used to
express a series solution (polynomial) in rational form
so as to extend the domain of convergence of the in-
dependent variable. Remarkably, the transformation of
a model solution to Pad�e form increases rate of
convergence and provides good approximations even
beyond the radius of convergence of the power series
expansion [18].

Hence the main objective of this study is to develop
a dynamic analysis of the viscoelastic circular dia-
phragm of a Micro-Electro-Mechanical System
(MEMS) capacitive pressure sensor using the Modified
Differential Transformation Method. The obtained
result is validated with Finite Difference Method
(FDM) and the effects of amplitudes, frequency,
viscoelastic parameter, and time of applied pressure on

deflection of the viscoelastic circular diaphragm are
then investigated.

2. Problem formulation

Consider a viscoelastic circular diaphragm of radius
r, thickness h and separation between the plates d, of a
MEMS capacitive pressure sensor. The parallel plates
are clamped at both ends and a pressure P0 cos ustis
applied which is time dependent as shown in (Fig. 1).

First, the bending analysis of thin plates is consid-
ered using the following Kirchhoff's assumptions of
classical plate theory [20,21].

I. The plate is assumed to be flat initially.
II. The plate is of viscoelastic material
III. The thickness of the plate is comparatively small

to its length and width.
IV. The deflection of the plate is comparatively small

to its thickness.
V. The normal straight line to the middle plane before

deformation remains so during bending.
VI. The normal stress to the middle plane is compar-

atively small to other stress components and
hence, negligible in the stressestrain relationship.

From the classical theory of plates, Timoshenko
[20] stated that the governing differential for the
deflection (w) of thin rectangular plates, based on the
above Kirchhoff's assumptions, is given by:

v4w

vx4
þv4w

vy4
þ 2

v4w

vx2vy2
¼ P

D
ð1Þ

where P ¼ Pressure applied on plate.
D ¼ Flexural rigidity of plate.

Applying the appropriate coordinate transformation
technique between Cartesian and polar coordinates, the
deflection ðwÞ as a function of 4and r, is obtained

vw

vx
¼vw

vr
:
vr

vx
þ vw

v4
:
v4

vx
ð2Þ

And

V2
rw≡

v2w

vx2
þ v2w

vy2
¼ v2w

vr2
þ 1

r

vw

vr
þ 1

r2
v2w

v42
ð3Þ
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Substituting Eq. (3) into Eq. (1), the governing
equation for circular plate becomes;

v4w

vr4
� 1

r2
v2w

vr2
þ 2

r

v3w

vr3
þ 2

r2
v4w

vr2v42
� 2

r3
v3w

vrv42

þ 4

r4
v2w

v42
þ 1

r3
vw

vr
þ 1

r4
v4w

v44
¼ P

D

ð4Þ

Eq. (4) is the governing differential equation for
circular plate deflection, which may be rewritten as:

2.1. Axisymmetric bending of circular plate of
viscoelastic material

When the end restraints and applied pressure of a
circular plate do not depend on 4such that the plate
deflection and stress resultants (and couples) depend
on ronly, then the bending of the circular plate is

described as being axially symmetrical or simply
axisymmetric.

Thus, for axisymmetric bending analysis of circular
plates, Eq. (5) reduces to:

D

�
v4w

vr4
þ2

r

v3w

vr3
� 1

r2
v2w

vr2
þ 1

r3
vw

vr

�
¼P ð6Þ

Also, from Fig. 1, the MEMS sensor is assumed to
work in normal mode, where the deflection of the plate
is comparatively small to the diaphragm thickness,
then the relationship between the displacement w of
the diaphragm to the applied pressure P is given by:

P¼rh
v2w

vt2
ð7Þ

where r ¼ plate density.
Finally, upper plate (diaphragm) is made of a

viscoelastic material, using the Maxwell's model of a
viscoelastic material; the total stress (pressure) on the
viscoelastic plate is given as:

s¼kwþ h
vw

vt
ð8Þ

where k ¼ plate stiffness.
h ¼ plate viscosity.

Fig. 1. The sectional diagram of a MEMS capacitive pressure sensor with clamped circular plates.

D

�
v4w

vr4
� 1

r2
v2w

vr2
þ2

r

v3w

vr3
þ 1

r3
vw

vr
þ 1

r4
v4w

v44
þ 2

r2
v4w

vr2v42
þ 4

r4
v2w

v42
� 2

r3
v3w

vrv42

�
¼P ð5Þ
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Based on the assumptions above and summing Eqs.
(6)e(8), the overall pressure on the upper plate of the
MEMS sensor is expressed as:

D

�
v4w

vr4
þ2

r

v3w

vr3
� 1

r2
v2w

vr2
þ 1

r3
vw

vr

�
þT

�
v2w

vr2
þ1

r

vw

vr

�
þrh

v2w

vt2
þkwþh

vw

vt
¼P0 cosðwstÞ

ð9Þ

Since the diaphragm deflection w depends on radius
r and time t, then we can rewrite Eq. (9) as:

The plate has the following initial conditions:

wðr;0Þ¼0; w
� ðr;0Þ¼0 ð11Þ

where w
·
is. dwdt

Since the circular plate is assumed to be clamped at
both ends, the clamped plate has the following
boundary conditions:

wðbÞ ¼ 0;
dw

dr

����
r¼b

¼0 ð12Þ

Eq. (10) is a fourth -order differential equation, and
so requires four boundary conditions in order to

determine the solution. Two of them have been ob-
tained as given in Eqs. (11) and (12). Others are ob-
tained from the condition of regularity at the plate
center and are expressed as

dw

dr
¼0; Vr ¼ d3w

dr3
þ 1

r

d2w

dr2
� 1

r2
dw

dr
¼ 0 at r ¼ 0 ð13Þ

3. Method of solution

3.1. Modified Differential Transformation Method
(MDTM)

In this section, the Modified Differential Trans-
formation Method (MDTM) and the Finite Difference
Method (FDM) are applied to solve the governing
differential equation. In the MDTM, the model is first
solved by differential transform method. The solution
obtained is transformed by Laplace transform into s-
domain and the Pad�e approximant of the resulting so-
lution is obtained. Finally, the inverse Laplace trans-
form is applied to obtain the final solution in time-
domain.

By applying two-dimensional DTM, the governing
equation (13) above is transformed into an algebraic
equation as follows:

D

�
v4

vr4
þ2

r

v3

vr3
� 1

r2
v2

vr2
þ 1

r3
v

vr

�
wðr; tÞþT

�
v2

vr2
þ1

r

v

vr

�
wðr; tÞþkwðr; tÞþrh

v2wðr; tÞ
vt2

þh
vwðr; tÞ

vt
¼ P0 cosðwstÞ

ð10Þ

D

0
BBBBBBBBBBB@

ðkþ 4Þðkþ 3Þðkþ 2Þðkþ 1ÞWðkþ 4;hÞ

þ2
Xk
l¼0

Xh
p¼0

dðlþ 1;h� pÞðk� lþ 3Þðk� lþ 2Þðk� lþ 1ÞWðk� lþ 3;pÞ

�
Xk
l¼0

Xh
p¼0

dðlþ 2;h� pÞðk� lþ 2Þðk� lþ 1ÞWðk� lþ 2;pÞ

þ
Xk
l¼0

Xh
p¼0

dðlþ 3;h� pÞðk� lþ 1ÞWðk� lþ 1;pÞ

1
CCCCCCCCCCCCA

þT

 
ðkþ1Þðkþ2ÞWðkþ2;hÞþ

Xk
l¼0

Xh
p¼0

dðlþ1;h�pÞðk� lþ1ÞWðk� lþ1;pÞ
!

þrHðhþ1Þðhþ2ÞWðk;hþ2ÞþkWðk;hÞþhðhþ1ÞWðk;hþ1Þ ¼ P0

�
wh

s

h!
cos

�
ph

2

��
ð14Þ
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Recall,

dðk�m;h�nÞ¼
�
1 k ¼ m;h¼ n
0 elsewhere

�
ð15Þ

Substituting (15) into (14) we have:

Simplifying Eq. (16), the model reduces

The deflection Wðk; hÞis obtained for
Wðk;0Þ¼0 for all k�0:::4; h� 0:::2 ð18Þ

W4;0¼�2HarþP

64D
ð19Þ

W4;1¼�6Har� 2ah

64D
ð20Þ

W4;2¼�1=2Pw2
s � 4Tb� 12Har� ma� 3ah

64D
ð21Þ

W5;0¼�2HcrþP

225D
ð22Þ

W5;1¼�6Hcr� 2ch

225D
ð23Þ

W5;2¼�1=2Pw2
s � 9Td� 12Hcr� mc� 3ch

225D
ð24Þ

W6;0¼ 1

576D

�
P�Tð�2HarþPÞ

4D
�2rHb

�
ð25Þ

W6;1¼ � 1

576D

�
Tð�6Har� 2ahÞ

4D
þ6rHbþ2hb

�
ð26Þ

D

� ðkþ 4Þðkþ 3Þðkþ 2Þðkþ 1ÞWðkþ 4;hÞ þ 2ðkþ 4Þðkþ 3Þðkþ 2ÞWðkþ 4;hÞ
�ðkþ 4Þðkþ 3ÞWðkþ 4;hÞ þ ðkþ 4ÞWðkþ 4;hÞ

�

þTððkþ1Þðkþ2ÞWðkþ2;hÞþðkþ2ÞWðkþ2;hÞÞþrHðhþ1Þðhþ2ÞWðk;hþ2ÞþkWðk;hÞ
þhðhþ1ÞWðk;hþ1Þ ¼ P0

�
wh

s

h!
cos

�
ph

2

�� ð16Þ

Wðkþ4;hÞ¼ 1

Dðkþ 4Þ2ðkþ 2Þ2

0
B@P0

�
ws

h

h!
cos

�
ph

2

��
� kWðk;hÞ � Tðkþ 2Þ2Wðkþ 2;hÞ

�rHðhþ 1Þðhþ 2ÞWðk;hþ 2Þ � hðhþ 1ÞWðk;hþ 1Þ

1
CA ð17Þ

W6;2¼ � 1

576D

0
B@T

�
1
2
Pw2

s � 4Tb� 12Har� ma� 3ah

�
4D

þ1

2
Pw2

s þ12rHbþmbþ3hb

1
CA ð27Þ

W6;3¼ � 1

576D

�
Tð � 20Har� 4Tb� 4ah� maÞ

4D
þ20rHbþmbþ4hb

�
ð28Þ
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The obtained coefficients in Eqs. (19)e(29) are
substituted into Eq. (17) to obtain:

3.2. Validation of the MDTM result with the finite

difference method

Considering the governing differential equation

(30),

D

�
v4

vr4
þ2

r

v3

vr3
� 1

r2
v2

vr2
þ 1

r3
v

vr

�
wðr; tÞ

þT

�
v2

vr2
þ1

r

v

vr

�
wðr; tÞþrh

v2

vt2
wðr; tÞ

þkwðr; tÞþh
v

vt
wðr; tÞ¼Pðws; tÞ ð31Þ

Applying forward differencing discretization to the
governing equation above, we have:

Multiplying through by ðDtÞ2ðiDrÞ4and taking
Dr ¼ h and Dt ¼ k, we have:

By simplification,

W6;4¼ � 1

576D

0
B@T

�
1
24
Pw4

s � 4Tb� 30Har� ma� 5ah

�
4D

þ 1

24
Pw4

s þ30rHbþmbþ5hb

1
CA ð29Þ

W ½k;h�¼dr3t3þdr3t2þcrt2þat4þbr2t3þcrt3þbr2t2þat2þcrt4þat3þbr2t4�2rHcr5

225D
�3rHar4t

32D
�2Hcrr5

225D

þð�2rHaþPÞr4
64D

�2rHcr5t

75D
� r6

576D

�
Tð�2rHaþPÞ

4D
þ2rHb

�
þ r6t2

576D

�
Tð12Harþ4TbÞ

4D
�12rHb

�

þð�12Har�4TbÞr4t2
64D

þð�20Har�4TbÞr4t3
64D

þð�30Har�4TbÞr4t4
64D

þ r6t3

576D

�
Tð20Harþ4TbÞ

4D
�20rHb

�

þð�20Hcr�9TdÞr5t3
225D

þð�30Hcr�9TdÞr5t4
225D

þ r6t

576D

�
3T

2

rHa

D
�6rHb

�
þð�12Hcr�9TdÞr5t2

225D

þð�20Hcr�9TdÞr5t3
225D

þð�30Hcr�9TdÞr5t4
225D

þ r6t4

576D

�
Tð30Harþ4TbÞ

4D
�30Har

�
ð30Þ

D

�
wiþ4;j�4wiþ3;jþ6wiþ2;j�4wiþ1;jþwi;j

ðDrÞ4
�
þ 2D

iDr

�
wiþ3;j�3wiþ2;jþ3wiþ1;j�wi;j

ðDrÞ3
�
� D

ðiDrÞ2
�
wiþ2;j�2wiþ1;jþwi;j

ðDrÞ2
�

þ D

ðiDrÞ3
�wiþ1;j�wi;j

Dr

�
þT

�
wiþ2;j�2wiþ1;jþwi;j

ðDrÞ2
�
þ T

iDr

�wiþ1;j�wi;j

Dr

�
þrH

�
wi;jþ2�2wi;jþ1þwi;j

ðDtÞ2
�
þkwi;j

þh
�wi;jþ1�wi;j

Dt

�
¼P ð32Þ

300 O.A. Adeleye et al. / Karbala International Journal of Modern Science 6 (2020) 295e307



Now, the initial and boundary conditions are also
discretized using FDM by central differencing. Thus,
we have:
wi;0 ¼ 0, wi;jþ1 ¼ wi;j�1at j ¼ 0

w1;j¼0;w2;j ¼ w0;j at i¼ 1

w1þ1;j¼w1�1;j; w1þ2;j ¼ w1�2;j at i ¼ 0

Substituting the transformed boundary conditions
above into Equation (34) on MAPLE application, the
generated result is shown in Table 1.

4. Result and discusion

The results from the MDTM simulations of the
solution model for the problem investigated and the
effects of various parameters on the developed model
are presented and discussed. The diaphragm deflection
is controlled by the viscoelastic parameters, amplitude,
frequency and time of the applied pressure (dynamic
load) [1,22]. Also, numerical solution is obtained by
Finite Difference Method. The numerical results are
compared with the MDTM results to verify the accu-
racy of the present MDTM computations and presented
in (Table 1) and (Fig. 2) Fig. 2. It can be inferred from
Table 1 that there is excellent agreement between the
MDTM and FDM results.

The diagram of (Fig. 3) shows the variation of plate
deflection with dynamic load i.e. diaphragm central

deflection for different values of pressure loads. The
figure shows that for a given diaphragm radius r, as the
amplitude of the pressure increases, the central
deflection of the diaphragm also increases [1,12,22].
Also, there is a decrease in the diaphragm deflection as
the pressure decreases [20].

The effects of the frequency and amplitude of the
dynamic load on the deflection of the diaphragm under
study are shown in (Fig. 4) and (Fig. 5) respectively. A
thorough study of the two figures helps in under-
standing the effects of these two important parameters
on the stability of the sensor diaphragm (Fig. 4). In-
dicates that an increase in dynamic pressure frequency
leads to a corresponding increase in the number of
oscillations of the diaphragm dynamic response which
in turn decreases the stability of the sensor diaphragm
under study. This is due to an increase in the cycles
covered by the diaphragm dynamic response for the
same length [22]. While it is shown in (Fig. 5) that an
increase in pressure amplitude increases the stability of
the diaphragm subjected to the pressure. The reason is
that an increase in the dynamic pressure amplitude
implies an increase in the magnitude of the pressure
acting on the diaphragm.

In (Fig. 6) and (Fig. 7), the dynamic behaviors of
the diaphragm of MEMS capacitive pressure sensor
subjected to a time-varying pressure are shown. From
the results, it is observed that as time is being extended
gradually to infinity, the deflection of the diaphragm

Dk2i4
	
wiþ4;j � 4wiþ3;j þ 6wiþ2;j � 4wiþ1;j þwi;j


þ 2Dk2i3
	
wiþ3;j � 3wiþ2;j þ 3wiþ1;j �wi;j


�
Dk2i2

	
wiþ2;j � 2wiþ1;j þwi;j


þDk2i
	
wiþ1;j �wi;j


þ Th2k2i4
	
wiþ2;j � 2wiþ1;j þwi;j


þ
Th2k2i3

	
wiþ1;j �wi;j


þ rHh4i4
	
wi;jþ2 � 2wi;jþ1 þwi;j


þΚh4k2i4wi;jþ
hh4ki4

	
wi;jþ1 �wi;j


¼ ðP0 cos usðikÞÞh4k2i4
ð33Þ

	
Dk2i4



wiþ4;j þ

	� 4Dk2i4 þ 2Dk2i3


wiþ3;j þ

	
6Dk2i4 � 6Dk2i3 �Dk2i2 þ Th2k2i4



wiþ2;jþ	� 4Dk2i4 þ 6Dk2i3 þ 2Dk2i2 þDk2i� 2Th2k2i4 þ Th2k2i3



wiþ1;j þ

	
Dk2i4 � 2Dk2i3 �Dk2i2 �Dk2iþ Th2k2i4

�Th2k2i3 þ rHh4i4 þΚh4k2i4 � hh4ki4


wi;j þ

	
rHh4i4



wi;jþ2 þ

	� 2rHh4i4 þ hh4ki4


wi;jþ1

¼ ðP0 cos usðikÞÞh4k2i4 ð34Þ
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increases and vice-versa. The significance of this dy-
namic analysis is that it helps in the quick monitoring
and adjustment of the diaphragm during application
[22].

The Dynamic behavior of sensor diaphragm oscil-
lation with time is shown in (Fig. 8), it is observed that
the oscillation rises with an increase in time. This is
also visible in (Fig. 7). The central deflection of the

sensor diaphragm for elastic and viscoelastic material
parameters is shown in (Fig. 9).

It is observed from the graph that the deflection of
the diaphragm is higher for a (MEMS) capacitive
pressure sensor made of a viscoelastic material than the
one made of elastic material subjected to the same
pressure load. It should be noted that an increase in
diaphragm deflection implies an increase in capaci-
tance and sensitivity of the sensor [1,12].

5. Conclusion

In this paper, the dynamic analysis of the visco-
elastic circular diaphragm of a Micro-Electro-Me-
chanical System (MEMS) capacitive pressure sensor
using the Modified Differential Transformation
Method has been presented. The circular diaphragm
of viscoelastic material was modeled using the clas-
sical plate theory and the resulting governing differ-
ential equation was solved using Modified
Differential Transformation Method (MDTM). The
obtained result was validated with Finite Difference
Method (FDM) and excellent agreement was estab-
lished between both results. The effects of ampli-
tudes, frequency, viscoelastic parameter, and time of

Fig. 2. Comparison of DTM, MDTM and FDM results.

Table 1

Table of comparison of results.

R MDTM (mm) NUM (FDM) (mm) Error of MDTM

0.00 0.0000000 0.0000000 0.0000000

0.10 0.0006342 0.0006342 0.0000000

0.20 0.0020043 0.0020042 0.0000001

0.30 0.0034527 0.0034526 0.0000001

0.40 0.0045097 0.0045095 0.0000002

0.50 0.0048933 0.0048932 0.0000002

0.60 0.0045097 0.0045095 0.0000002

0.70 0.0034527 0.0034526 0.0000001

0.80 0.0020043 0.0020042 0.0000001

0.90 0.0006342 0.0006342 0.0000000

1.00 0.0000000 0.0000000 0.0000000

The results of MDTM and Numerical method (FDM) for deflection w

(r, t) For (T ¼ 0.01N/m, P ¼ 10Nm�2,H ¼ 0.005 mm, D ¼ 14011.5

(Nm), r ¼ 2100 Kgm�3, w5 ¼ 500 rad/S, K ¼ 0.5 MNm�2,h ¼ 25

KNsm�2).
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applied pressure on deflection of the viscoelastic
circular diaphragm have been investigated. It is
established from the results that the deflection of the
sensor increases with an increase in the amplitude,
frequency and time of the applied pressure. In addi-
tion, an increase in the viscoelastic parameters
resulted in an increase the deflection of the diaphragm
which consequently increases the capacitance and
sensitivity of the sensor. Hence, the viscoelastic

circular diaphragm of the MEMS capacitive pressure
sensor exhibits better sensitivity performance when
compared with that of elastic material. Finally, the
method applied in obtaining the solution of the
developed model, Modified Differential Trans-
formation Method is effective in predicting sensor
characteristics. The study will enhance the design of
(MEMS) capacitive pressure sensor with viscoelastic
circular diaphragm.

Fig. 3. Effect of pressure change on Deflection.

Fig. 4. Variation of plate deflection with pressure frequency.
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Fig. 5. Variation of deflection with pressure amplitude.

Fig. 6. Dynamic behavior of sensor diaphragm with time t ¼ 0 to t ¼ 0.1.
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Fig. 7. Dynamic behavior of sensor diaphragm with time t ¼ 0 to t ¼ 1.

Fig. 8. Dynamic behavior of sensor diaphragm oscillation with time.
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Nomenclature

D Flexural rigidity of diaphragm
T Initial tension per unit length of diaphragm
W Deflection of plate
r Radius of plate
h Thickness of plate
t Time
E Young's modulus of diaphragm
P Applied pressure on plate

Greek letters
t Time relaxation of diaphragm
r Density of diaphragm
y Poisson ratio of diaphragm
us Frequency of applied pressure
k Stiffness of diaphragm
h Viscosity of diaphragm
e Strain

Fig. 9. Deflection of diaphragm against radius for different materials under the same pressure.
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