
Volume 6 Issue 3 Article 12 

Numerical approach to non-Darcy mixed convective flow of non-Newtonian Numerical approach to non-Darcy mixed convective flow of non-Newtonian 
fluid on a vertical surface with varying surface temperature and heat source fluid on a vertical surface with varying surface temperature and heat source 

Ajaya Prasad Baitharu 
Department of Mathematics, College of Engineering and Technology,Bhubaneswar-751029, Odisha, INDIA, 
abaitharu2@gmail.com 

Sachidananda Sahoo 
Department of Mathematics, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, 
Bhubaneswar-751030,Odisha,INDIA, sachimath1975@gmail.com 

Gauranga Charan Dash 
Department of Mathematics, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan University, 
Bhubaneswar-751030, Odisha, INDIA, gcdash45@gmail.com 

Follow this and additional works at: https://kijoms.uokerbala.edu.iq/home 

 Part of the Numerical Analysis and Computation Commons, Ordinary Differential Equations and Applied 
Dynamics Commons, and the Partial Differential Equations Commons 

Recommended Citation Recommended Citation 
Baitharu, Ajaya Prasad; Sahoo, Sachidananda; and Dash, Gauranga Charan (2020) "Numerical approach to non-Darcy 
mixed convective flow of non-Newtonian fluid on a vertical surface with varying surface temperature and heat 
source," Karbala International Journal of Modern Science: Vol. 6 : Iss. 3 , Article 12. 
Available at: https://doi.org/10.33640/2405-609X.1753 

This Research Paper is brought to you for free and open access 
by Karbala International Journal of Modern Science. It has been 
accepted for inclusion in Karbala International Journal of 
Modern Science by an authorized editor of Karbala International 
Journal of Modern Science. For more information, please 
contact abdulateef1962@gmail.com. 

https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home/vol6
https://kijoms.uokerbala.edu.iq/home/vol6/iss3
https://kijoms.uokerbala.edu.iq/home/vol6/iss3/12
https://kijoms.uokerbala.edu.iq/home?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol6%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol6%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/121?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol6%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/121?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol6%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol6%2Fiss3%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.33640/2405-609X.1753
mailto:abdulateef1962@gmail.com
https://uokerbala.edu.iq/en/
https://uokerbala.edu.iq/en/


Numerical approach to non-Darcy mixed convective flow of non-Newtonian fluid Numerical approach to non-Darcy mixed convective flow of non-Newtonian fluid 
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Abstract Abstract 
An analysis is performed on non-Darcy mixed convective flow of non-Newtonian fluid past a vertical 
surface in the presence of volumetric heat source originated by some electromechanical or other devices. 
Further, the vertical bounding surface is subjected to power law variation of wall temperature, but the 
numerical solution is obtained for isothermal case. In the present non-Darcy flow model, effects of high 
flow rate give rise to inertia force. The inertia force in conjunction with volumetric heat source/sink is 
considered in the present analysis. The Runge-Kutta method of fourth order with shooting technique has 
been applied to obtain the numerical solution. To avoid mathematical impasse for applying R-K method 
we have considered isothermal wall condition. The results of major interest include velocity as well as 
temperature profiles and the local Nusselt number for some representative values of power-law indices. 
Most importantly, introduction of the co-ordinate and parametric transformation applied to governing 
equations, rarely reported in the existing literature, add to the knowledge front. Some important findings 
of the study are: Ergun number reduces the pseudoplastic fluid velocity boundary layer, a desirable 
outcome, but enhances the thermal boundary layer whereas, in case of Newtonian and dilatant fluid, the 
effect is not so significant. An increase in all the flow and heat transfer parameters leads to decelerate the 
surface cooling from pseudoplasticity to dilatancy through Newtonian; thus the present model slows 
down the surface cooling and decreases the skin friction in the presence of heat source for dilatant fluid. 

Keywords Keywords 
Mixed convection, Non-Darcy parameter (Ergun number), Saturated porous medium, Non-Newtonian fluid, 
Vertical surface 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 
License. 

Cover Page Footnote Cover Page Footnote 
The authors gratefully acknowledge the referees for their constructive comments and valuable 
suggestions. 

This research paper is available in Karbala International Journal of Modern Science: https://kijoms.uokerbala.edu.iq/
home/vol6/iss3/12 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://kijoms.uokerbala.edu.iq/home/vol6/iss3/12
https://kijoms.uokerbala.edu.iq/home/vol6/iss3/12


1. Introduction

Problems on fluid flow through porous media and
heat transfer are not only the interests of Mathemati-
cians but also of Chemical Engineers. The petroleum
engineers working on miscible displacement process
and the civil engineers dealing with the salt-water

encroachment of coastal aquifers contribute to the
areas of the present problem. In some practical situa-
tions, free and forced convections arise simultaneously.
This particular case for a large Grashof number cor-
responds to extraction of crude oil. The mixed con-
vection over a vertical plate in a porous medium is
closely related to building up pressure gradients while

Nomenclature

x,y coordinate axes
u,v non-Darcian velocity components along x- and y-directions respectively
T temperature of the fluid in the boundary layer
Tw surface temperature
T∞ temperature of the ambient fluid
U∞ free stream velocity
x distance from leading edge
Rax local Rayleigh number
Rad Rayleigh number based on the pore diameter
Pex local Peclet number
Ped Peclet number based on the pore diameter
Er Ergun number based on the pore diameter
K* inertial coefficient in the Ergun equation
Kp permeability
Q rate of heat generation
Pr Prandtl number
S heat source parameter
n viscosity index
g acceleration due to gravity
d pore diameter
A a constant

Greek symbols
r density of the fluid
r∞ density of the ambient fluid
l power law exponent
m viscosity
v kinematic viscosity
a thermal diffusivity
b volumetric coefficient of expansion
x non-similarity mixed convection parameter
h similarity variable
tw shear stress at the wall

Subscripts
w condition on the wall
∞ free stream region
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withdrawing or injecting geothermal fluids to the res-
ervoirs. Further, due to the temperature difference be-
tween the plate and the flowing fluid, a buoyancy force
is induced which generates a body force acting per unit
volume besides the pressure gradient, an inherent force
built up due to the motion of the fluid. The problem of
mixed convection flow past a vertical surface in a
porous medium saturated with a power-law is investi-
gated by Gorla and Kumari [1]. Mahdy [2] studied the
melting effect on the mixed convective heat transfer
from a vertical surface embedded in a non-Newtonian
fluid-saturated porous media. Chen et al. [3] have
investigated non-Darcian flow phenomena on mixed
convective transport for different flow models and
concluded that non-Darcian and thermal dispersion
affect significantly the velocity, temperature and heat
transfer rates from a vertical surface. EL-Kabeir et al.
[4] have considered unsteady, laminar, heat and mass
transfer MHD mixed convective boundary-layer flow
of electrically conducting fluid over an impulsively
stretched vertical surface in an unbounded quiescent
fluid with aiding the external flow and melting effects.
Chamkha et al. [5] have considered the MHD mixed
convective Nanofluid flow past a stretching permeable
surface and pointed out the effects of buoyancy ratio
and thermophoresis parameter using an iterative tri-
diagonal implicit finite difference method. Chamkha
et al. [6] have contributed to nanofluid flow over an
isothermal vertical wedge embedded in a porous me-
dium in the presence of thermal radiation. A numerical
study has been carried out on solutal dispersion on heat
and mass transfer in non-Darcy fluid flow over a ver-
tical surface by Hemalata et al. [7]. They observed that
the melting parameter enhances the velocity, but re-
duces the solutal concentration in the flow domain.
Prasad et al. [8] have analyzed the problem of mixed
non-Newtonian convection along a vertical plate
considering melting and thermal dispersion-radiation
effects for aiding and opposing external flows. Further,
Kairi and Murthy [9] and Kairi and Ram Reddy [10]
contributed to mixed convection flow in a non-con-
ducting non-Newtonian fluid flow, but Barman et al.
[11] studied the above problem with a cooling fluid
under the influence of magnetic field on a Newtonian
flow. Further, Rao et al. [12] studied the cross flow past
a stretching surface with slip at the boundary. Kumari
and Jayanthi [13] have studied a non-Darcy non-
Newtonian mixed convection flow along a vertical
plate. Sahoo et al. [14] analyzed two dimensional un-
steady viscoelastic fluid (Walters model) flow through
a porous medium ensurfaced by a vertical infinite
porous plate. The bounding surface is subjected to fluid

flow with a periodic velocity and the free stream ve-
locity oscillates about a non-zero mean value in the
main direction of the flow. Recently, Sahoo et al. [15]
have considered a second grade, unsteady, electrically
conducting, incompressible and rotating fluid flow
through a channel with oscillating upper plate. Sharma
et al. [16] have considered the buoyancy effects on
MHD mixed convection of a radiating chemically
reacting binary mixture past a vertical porous plate.
They have remarked that variable viscosity enhances
the flow and heat transfer rates at the surface. Athira
et al. [17] have analyzed the effect of the induced
magnetic field on a chemically reacting species across
a vertical porous plate. They have observed that the
non-linear convection has a destructive effect on ther-
mal field and its layer thickness. The unsteady mixed
MHD convection Blasius flow past a flat surface has
been studied by Makinde et al. [18]. They have pointed
out some interesting surface criteria on the flow and
heat transfer phenomena. Sharma et al. [19] have
analyzed MHD slip flow and heat transfer over an
exponentially stretching sheet in a porous medium.
They have presented a numerical solution depicting the
effects of pertinent parameters on the slip flow.

In Rheology shear thinning contributes to non-
Newtonian behavior of fluids that commensurate with
the decreasing of viscosity under shear strain. The
fluids having shear thinning property represent the
most common type of fluids, i.e. pseudoplastic fluids
abundantly used in industrial applications, for
example, long chain polymers and blood etc. On the
other hand, dilatant fluids are shear thickening fluids
having a higher viscosity such as mixture of sand and
water, and colloidal dispersion, etc. Flow of fluids
through beds of granular solids is of frequent occur-
rences in industrial applications, particularly, in pe-
troleum extraction processes and gas flow through
crushed porous solids etc.

To obviate the limitations of Darcy model which
neglects the boundary (viscous resistance) and inertia
effects on fluid flow and heat transfer through high
porosity media, the present model has been adopted for
flow through high porosity media such as foam metals
and fibrous media. The Ergun model [20] is suitable to
study the inertia and boundary effects on flow along
vertical plate. From the foregoing discussion, it is
observed that convective flow through the saturated
porous medium subjected to space varying temperature
in the presence of the volumetric heat source of non-
Newtonian fluid (Ergun model) has not been consid-
ered so far. The surge of interest for the present
problem lies with the consideration of the simultaneous
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effects of fluid inertia force and boundary viscous
resistance (non-Darcian flow model) with the help of
Ergun flow model.

The non-Newtonian fluid model used in the present
study takes care of the following aspects. The pressure
losses caused by simultaneous kinetic and viscous-
energy-losses accompanying the flow of fluids through
columns packed with granular material, has been the
subject of theoretical analysis. The present model
considers simultaneously the effects of fluid inertia
force and boundary viscous resistance (non-Darcian
flow model) whereas Darcian model fails to accom-
plish. From the study of the previous researchers
referred herein, it is seen that though the works are
related to flow past vertical surface, still some differ in
fluid models, physical ambience and geometrical
configuration, but a few, such as Ergun [20] and
Kumari and Jayanthi [13] have worked on the same
model but without a heat source. The occurrence of
heat source in the process-industries is a vital-consid-
eration from the application point of view. Hence, the
consideration of heat source is more realistic to deal
with.

The novelty lies with the incorporation of a single
non similarity parameter xrepresenting the three states
of convection such as freeðx ¼ 0Þ, forcedðx¼ 1Þ and
mixed ð0 < x < 1Þas well as thermal transport phe-
nomena with temperature dependent heat source.
Further, the power-law wall temperature parameter l ¼
0 represents the isothermal wall condition. Most
importantly, the volumetric temperature-dependent
heat source which is of frequent occurrence in indus-
trial processes due to advent of electro-mechanical
devices, either in generating or absorbing heat, has
made the discussion more application oriented.

2. Formulation of the problem

Consider the steady two-dimensional flow over a
semi-infinite vertical plate embedded in a saturated
porous medium with surface temperature Tw and the
ambient temperature T∞:The undistorted uniform
speed U∞ engenders the flow. The coordinate system is
presented in Fig. 1. We have the following
assumptions:

(i) The flow considered is two dimensional, steady,
laminar and incompressible.

(ii) The Boussinesq approximation is valid, which
consists of two parts: (a) In the governing equations, all
the variable property-effects are ignored except the

density term appearing in the momentum equation. (b)
The density difference term is approximated with a
simplified equation of state that is

r¼ r∞ð1� bðT � T∞ÞÞ ð1Þ

(iii) The thermo physical properties of the fluid are
homogeneous and isotropic.

(iv) The surface temperature of the vertical heated
plate varies in the power-law form

TwðxÞ¼T∞ þAxl ð2Þ

Under these assumptions, conservation equations
for non-Darcy flow with boundary layer approxima-
tions following [13] are given by

vu

vx
þvv

vy
¼ 0 ð3Þ

vun

vy
þK*

n

vu2n

vy
¼ Kprgb

m

vT

vy
ð4Þ

u
vT

vx
þ v

vT

vy
¼ a

v2T

vy2
þQðT�T∞Þ ð5Þ

The boundary conditions are given by

y¼ 0 : v¼ 0;T ¼ Tw ¼ T∞ þAxl

y/∞ : u/U∞;T/T∞

�
ð6Þ

Fig. 1. Flow geometry.
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The case l ¼ 0 corresponds to the isothermal wall
condition.

The work of Ergun [20] on fluid flow through
packed columns is summarized as follows:

I. The laws of fluid flow through granular beds have
several aspects of practical consequences. The total
energy loss in fixed beds can be treated as the sum
of viscous and kinetic energy losses.

II. The viscous energy losses per unit length are
expressed by the term m vu

vy and the kinetic energy
losses by the term 2rK*u vu

vy: For n ¼ 1, equation (4)
reduces to

m
vu

vy
þ2rK*u

vu

vy
¼ Kprgb

vT

vy

The total loss has been balanced by the term on the
right hand side of the above equation. The buoyancy
induced flow of non-Newtonian fluid model for some
representative exponents l of the power-law wall
temperature variation and viscosity index n has been
considered following [13].

3. Solution of the problem

In order to solve the governing equations, we define
the stream function jðx; yÞsuch that

u¼vj

vy
;v¼�vj

vx
ð7Þ

The equation of continuity (3) is identically satisfied
with this choice of u and v.

The equations (4) and (5) and the boundary condi-
tions (6) become non-dimensional by introducing the
following dimensionless variables and parameters.

h¼y

x
Pe1=2x x�1; x¼

�
1þ

ffiffiffiffiffiffiffi
Rax
Pex

r ��1

;

f ðx;hÞ¼jðx;yÞ
aPe

1=2
x

x; qðx;hÞ¼ T�T∞

Tw�T∞
; S¼Qx2x2

aPex

ð8Þ

where Pex ¼ U∞x
a

and Rax ¼ x
a

�
rKpgb

m
ðTw � T∞Þ

�1
n

Using equations (7) and (8) in equations (4) and (5),
we have

nðf 0Þn�1
f
00 þErPed

n

x2n
2nðf 0Þ2n�1

f
00 ¼ ð1� xÞ2nq0 ð9Þ

q}þ1

2

h
1þ l

n
ð1� xÞ

i
f q'�ðlf 0 �SÞq

¼ l

2n
xð1� xÞ

�
q'
vf

vx
� f 0

vq

vx

� ð10Þ

The corresponding boundary conditions are

h ¼ 0 : f ¼ 0 ; q ¼ 1
h / ∞ : f ' / x2 ; q / 0

�
ð11Þ

where the primes denote differentiation with respect
toh.

Here Ped ¼ U∞d
a

is the Peclet number based on the

pore diameter, Er ¼ K*

n

h
a
d

in
is the Ergun number based

on pore diameter, Rad ¼ d
a

�
rKpgb

m
Adl

�1
=n

is the Ray-

leigh number based on the pore diameter and Rax ¼
Rad

�
x
d

�1þl
n

.

The computation has been carried out on the
following basis:

From the definition, Ped is directly proportional to
the pore diameter. In the present caseðl ¼ 0Þ, Rax is
inversely proportional to the pore diameter and when
x ¼ d, Rax ¼ Rad. The scales of pore diameter and
velocity are less than unity since 0< x< 1.

The non-Darcian velocity components u and v are

u¼U∞

x2
f 0ðx;hÞ ð12Þ

v¼ � 1

2

a

x
Pex

1=21

x

�
f þ l

n

�
1� x

	
f � l

n
x

�
1� x

	
vf

vx

þ h
��

�1þ l

n

�
1� x

��
f 0
�

ð13Þ

For isothermal wall condition ðl ¼ 0Þ, equations (9)
and (10) reduce to

nðf 0Þn�1
f
00 þErPed

n

x2n
2nðf 0Þ2n�1

f
00 ¼ ð1� xÞ2nq0 ð14Þ

q
00 þ1

2
f q0 þ Sq¼ 0 ð15Þ

with the boundary conditions

h¼ 0 : f ¼ 0;q¼ 1
h/∞ : f 0/x2;q/0

�
: ð16Þ

The heat transfer in terms of local Nusselt number
Nuxis given by
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NuxPe
�1=2
x ¼ � 1

x
q0ðx;0Þ ð17Þ

The skin friction coefficient Cf is given by

Cf ¼1

2
x3C*

f ðPrÞ�1ðPexÞ1=2¼ f }ðx;0Þ ð18Þ

where Cf
* ¼ 2tw

rU∞
2 ¼ 2Pr

x3
ffiffiffiffiffi
Pex

p f
00 ðx; 0Þ, tw ¼ m vu

vy

�
y¼0

and

Pr ¼ m=ra (Prandtl number).

4. Results and discussion

The problem of non-Darcy mixed convective flow
of non-Newtonian fluids on a vertical surface
embedded in a porous medium with volumetric tem-
perature dependent heat source has been considered.
The present discussion is pertaining to the isothermal
wall condition. Now, the resulting equations (14) and
(15) along with the boundary conditions (16) are
solved using fourth order Runge-Kutta method with a
self corrective procedure (shooting technique). Most
importantly, the method of solution under parametric
and co-ordinate transformation play a vital role in
paving the way to the solution.

Fig. 2(a) and (b) show the variation of velocity and
temperature distributions across the flow domain for
different values of Ergun number (Er) and heat source
parameter (S) in case of pseudoplastic fluid (n < 1).
The Ergun number (non-Darcy parameter) presents a
complex structure depicting momentum diffusivityðnÞ,
permeability of the medium (Kp), heat transport
diffusivity (a) and pore diameter (d). Summarily, the
effect of Ergun number decreases the velocity and in-
creases the temperature across the flow domain
slightly. The variation is asymptotic in nature to attain
the free-stream condition that ensures the stability and
laminarity of the flow. The decrease in velocity in-
dicates that the momentum diffusivity (n) and pore
diameter (d) fail to encounter the effects of perme-
ability of the medium and thermal diffusivity. There-
fore, in such flow-model for higher values of Er,
permeability and thermal diffusivity of the medium act
proactively to reduce the velocity and enhance the
temperature. Further, it is to note that an increase in
heat source increases the velocity as well as the
temperature.

Fig. 3(a) and (b) exhibit the effects of heat source
and the Ergun number on velocity and temperature in
the case of Newtonian fluid (n ¼ 1). From Fig. 3(a) it is
observed that with the increase in Er, there is a slight

decrease in velocity distribution but no change is
marked in the temperature distribution. This shows that
the effect of non-Darcian parameter exhibited by Er is
not so significant in a Newtonian fluid. Further, it is
seen that presence of heat source increases both ve-
locity and temperature of the fluid. Figures for dilatant
fluid (n > 1) are omitted as those exhibit the same
effect as that of Newtonian fluid.

Fig. 4(a) and (b) show the effect of Peclet number
Pedwhich is an important parameter, a product of
momentum diffusivity and thermal diffusivity, which
regulates the two processes (momentum and thermal
energy transport). It is seen that for small values of Ped;
no significant change in asymptotic variation is marked
on the velocity as well as temperature distribution.
However, on careful observation, it is marked that an
increase in Peclet number, decreases the velocity
moderately since the Peclet number can be used in
place of Reynolds number [21] due to the influence of
the frictional and inertial forces on the flow field. For
Newtonian as well as dilatant fluids, the coincidence of
profiles is marked with that of pseudoplastic fluid
(Figures omitted).

Fig. 5(a) and (b) show the effect of viscosity index
parameter n on the velocity and temperature distribu-
tion. It is to note that increase in n, decreases signifi-
cantly the velocity distribution, but the reverse effect is
observed in case of temperature distribution which is in
good agreement with [13]. The increasing or
decreasing phenomena commensurate with the
magnitude of the viscosity index, ignoring the linearity
and non-linearity variation of viscosity which is a most
interesting remark to note. This shows the fluidity or
Rheology of the fluid model is at par with the viscosity
index, from pseudoplastic (n < 1) to dilatant (n > 1)
through Newtonian (n ¼ 1) behavior of the fluid.
Further, it is seen that an increase in n, increases the
velocity and thermal boundary layer thickness.

Fig. 6(a) and (b) illustrates the effect of the mixed
convection x parameter on the velocity and temperature
profiles of pseudoplastic fluid. It is seen that as x in-
creases, the velocity boundary layer increases, whereas
the thermal boundary layer decreases. One interesting
point is to note that buoyancy induced flow shows a
significant variation near the vertical surface but re-
mains constant afterwards.

Fig. 7 (aec) exhibit the dimensionless wall shear
stress, i.e. skin friction coefficient Cf for several values
of S in cases of pseudoplastic, Newtonian and dilatant
fluids respectively. From Fig. 7(a), it is seen that Cf

increases abruptly for increase in heat source, but de-
creases slightly with the increase in heat sink. Thus, it
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(a)

(b)
Fig. 2. (a, b). Velocity profile f 0ðx;hÞand temperature profile qðx;hÞfor Er and S with fixed parameters: Ped ¼ 0.01; n ¼ 0.5 (pseudoplastic fluid);

x ¼ 0:5.
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(a)

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6

f(
,
)

0.485

0.49

0.495

0.5

Er = 0

Er =0.5

S = -0.2,0,0.05

Fig. 3. (a, b). Velocity profile f 0ðx;hÞand temperature profile qðx;hÞfor Er and S with fixed parameters: Ped ¼ 0.01; n ¼ 1(Newtonian fluid); x ¼
0:5.
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(a)

(b)
Fig. 4. (a, b). Velocity profile f 0ðx;hÞand temperature profile qðx;hÞfor Ped and S with fixed parameters: Er ¼ 0.01; n ¼ 0.5 (pseudoplastic fluid);

x ¼ 0:5.
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(a)

(b)
Fig. 5. (a, b). Velocity profile f 0ðx;hÞand temperature profile qðx;hÞfor n and S with fixed parameters:Er ¼ 0:01;Ped ¼ 0:01; x ¼ 0:5.
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(a)

(b)
Fig. 6. (a, b). Velocity profile f 0ðx; hÞand temperature profile qðx; hÞfor xwith fixed parameters: S ¼ 0:05;Er ¼ 0:01;Ped ¼ 0:01; n ¼ 0:5

(pseudoplastic fluid).
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is concluded that for pseudoplastic fluid (viscosity
decreases with an increase rate of shear), application of
heat source is not suitable for yielding lower skin
friction. In case of Newtonian fluid, steady decrease in
skin friction is marked with the increase in heat sink
(S < 0)/source (S > 0) parameter. For dilatant fluid
(apparent viscosity increase with increase in shear
rate), sharp rise and fall in Cf are marked with heat sink
and source, respectively. Hence, the presence of the
heat sink is not desirable in dilatant fluid flow to avoid
the escalation in skin friction. To conclude, for the
steady decrease in surface shear stress, the Newtonian
fluid is suitable otherwise, the choice of fluid depends
on the design requirement.

Table 1 depicts the Nusselt number, a bounding
surface heat-transfer criteria, responsible for heating or
cooling of the surface as per the design requirement for
mixed convection flow. From the table it is observed
that � q0ðx;0Þ> 0 indicates heat flows from the plate to
the fluid mass. Further, it is seen that an increase in Er,
Ped, n and S decelerate the surface cooling from
pseudoplasticity to dilatancy through Newtonian. Thus,
it is concluded that enhancing Er (the Ergun number
which depends upon the pore diameter and inertial
coefficient), Ped (ratio of heat transfer by convection to
conduction), S (strength of the volumetric heat source)
and viscosity index parameter n, slows down the
cooling of the bounding surface.

Table 2 shows the validity of the present result of
the ReK method with that of the Finite Difference

Fig. 7. (a, b, c). Variation of skin friction Cf for S and n with fixed

parameters: Er ¼ 0:01;Ped ¼ 0:01; x ¼ 0:5.

Table 1

Rate of heat transfer at the wall � q0ðx;0Þ
Er Ped n S � q0ðx; 0Þ
0.01 0.01 0.5 0.05 0.4152

0.02 e e e 0.4146

0.01 0.05 e e 0.4145

e 0.01 1.0 e 0.2953

e e 0.5 0.07 0.3945

e e 1.25 0.05 0.2740

Table 2

Comparison table.

x n S Er Ped Present result

(ReK method)

Kumari and

Jayanthi [13]

(Finite Difference

method)

� q0ðx; 0Þ � q0ðx; 0Þ
0.25 0.5 0 0 0.01 0.4186 0.4171

0.5 e e e e 0.4648 0.4632

0.75 e e e e 0.5136 0.5131

0.25 1.0 e e e 0.3626 0.3615

0.5 e e e e 0.3603 0.3596

0.75 e e e e 0.4378 0.4352
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method of [13]. It is found that the results are in good
agreement.

5. Conclusion

Ergun number reduces the velocity boundary layer
of pseudoplastic fluid, a desirable outcome, but en-
hances the thermal boundary layer, whereas, in case of
Newtonian and dilatant fluid, the effect is not so sig-
nificant. Increase in Peclet number (a product of
Reynolds number and Prandtl number) decreases the
velocity of all types of fluid moderately due to inertia
and frictional forces. Viscosity index of the fluid af-
fects the flow near the solid surface significantly. The
mixed convective parameter gives rise to the thicker
velocity boundary layer, whereas, opposite effect is
observed in case of the thermal boundary layer. In-
crease in viscosity index decelerates the rate of cooling
of the bounding surface. Significant reduction, smooth
variation and hike in skin friction mainly depend upon
pseudoplasticity, Newtonian or dilatancy of fluid in the
presence of heat source.
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