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Nanocellulose sheets from oil palm empty fruit bunches treated with NaOH Nanocellulose sheets from oil palm empty fruit bunches treated with NaOH 
solution solution 

Abstract Abstract 
The objective of this study is to produce nanocellulose sheets from oil palm empty fruit bunches 
(OPEFBs). Nanocellulose sheets from OPEFBs were prepared through the dewatering process using 
vacuum filtration. Subsequently, the produced sheets were treated with NaOH solution to improve the 
mechanical stability of their structure, causing them to be firm in water. The water absorption of 
nanocellulose sheet increased with increasing NaOH concentrations up to 20 wt%, increasing tensile 
strength, and Young’s modulus, but decreased when they were treated with 30 wt%. The diameter 
shrinkage of nanocellulose sheets was directly proportional to the NaOH concentration and soaking time. 
The images of scanning electron microscope show that the porous structure of the nanocellulose sheets 
appeared swollen when using NaOH. NaOH treatment above 10 wt% could change the crystalline form 
from cellulose I to cellulose II. The tensile strength and Young’s modulus of nanocellulose sheets could 
improve with NaOH treatment. The optimum tensile strength and Young’s modulus were achieved in a six-
hour immersion process with 20 wt% NaOH. 
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1. Introduction

Indonesia is one of the largest crude palm oil (CPO)
producers in the world, alongside Malaysia, producing
more than 31.28 million tons in 2012 [1]. With such
CPO production, waste in the form of oil palm empty
fruit bunches (OPEFBs) is produced in abundance
every year, which is a problem for the environment.
The OPEFBs contain 37.3%e46.5% of cellulose,
25.3%e33.8% of hemicellulose, and 27.6%e32.5% of
lignin [2]. Exploration of the use of OPEFBs is inter-
esting and increases their value.

Cellulose is a biopolymer, abundantly found in na-
ture and is explored for its use in the paper industry. It
also has specific properties that are different from
synthetic polymers and other natural polymers,
including biodegradability, hydrophilicity, chirality,
versatile semicrystalline fiber morphologies, and broad
chemical modifying capacity [3e5].

Cellulose is a homopolysaccharide formed by the
repetition of D-glucopyranose units or anhydroglucose
units (AGU) joined together by (1e4) glycosidic
linkages [6]. The three hydroxyl groups in each AGU
allow the cellulose chain to converge to form fibrillar
species. Individual cellulose molecules are combined
into larger units, namely elementary fibrils or micro-
fibrils, which have a nanometer-sized diameter. In
general, we can also call cellulose-based elementary
fibrils or microfibrils with nanocellulose, which can be
produced by mechanical (cellulose nanofibers/CNF) or
chemical treatments (cellulose nanocrystals/CNC)
[7e14].

Nanocelluloses have superior physical and me-
chanical properties, such as high aspect ratio, high
surface-to-volume area, entangled web-like structure,
high Young's modulus along the longitudinal direction
(138 GPa in the crystal region), and very low longi-
tudinal thermal expansion coefficient (10�7 K�1) [15].
We have successfully isolated nanocelluloses from
OPEFBs with an average diameter of 27.23 ± 8.21 nm
and a length of several micrometers using mechanical
treatment [10,12,16]. Shanmugarajah et al. [17] also
succeeded in isolating NCC from OPEFBs using 64%
(w/w) H2SO4 at 40 �C. The diameter of the resulting
NCC was approximately 499.2 nm. Meanwhile, Lani
et al. [18] successfully prepared NCC with diameters
ranging 4e15 nm by 64 wt% sulfuric acid hydrolysis.

Cellulose chains are packed closely by both inter-
molecular and intra-molecular hydrogen bonds.

Meanwhile, alkali treatment is reported to increase the
tensile strength of plant fibers [19]. Not many publi-
cations explain the production of nanocellulose sheets
from biomass using a NaOH treatment. Abe and Yano
[20] report that a simple NaOH solution treatment
produces a nanocellulose sheet-based hydrogel from
Radiata Pine. The obtained sheets had a swelling de-
gree and tensile strength of 12.1 and 3.0 MPa, but 13.4
and 5.4 MPa when treated with NaOH 9 and 15 wt%,
respectively. This NaOH treatment is also known as
maceration. Zhang et al. [21] also used maceration to
prepare nanocelluloses sheet-based hydrogel from
bamboo.

The maceration of natural fibers using NaOH has
been widely studied by researchers around the world.
Maceration can be used to remove pectin, lignin,
hemicellulose, and natural oils covering the outer
surface of the fibers. This process can also be used to
modify the surface of natural fibers to increase
roughness, break some microfibril bundles, and defi-
brillate and individualize microfibrils [22,23]. Alkali
treatment also improves the tensile strength of plant
fibers [24,25].

In this study, we prepare nanocellulose sheets from
OPEFBs and treat them with an NaOH solution. We
explore the effects of NaOH solution on the properties
of the obtained nanocellulose sheets.

2. Materials and methods

OPEFBs were supplied by PTPN VIII in West Java,
Indonesia. The chemicals used were sodium hydroxide
(NaOH/99.6% purity), sodium hypochlorite (technical
grade), potassium hydroxide (KOH/86.9% purity), and
acetic acid (100% purity). All chemicals were from
Merck, Germany. The OPEFBs were cut into small
pieces with a length of 0.5e1 cm and subsequently
boiled in water (100 �C) for 1 h to remove impurities.
The pieces were then dried in an oven at 55 �C for 2
days. The dried OPEFBs were soaked in 6% KOH
solution at room temperature for 12 h and then washed
with deionized water. The fibers were then bleached
for 5 h using a sodium hypochlorite solution and rinsed
with deionized water until they reached a neutral pH
(pH 7).

The cellulose fibers were dispersed in deionized
water using a warring blender. The concentration of
cellulose suspension was diluted to 2 wt%. The sus-
pension was passed through an ultrafine grinder 37
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times (Masuko Sangyo Co., Ltd.) operating at 1500
RPMs. The suspension was then sonicated using an
ultrasonic homogenizer (amplitude of 40%, 41 W) for
30 min to liberate nanocelluloses.

A nanocellulose sheet was prepared by vacuum
filtration of cellulose nanofibers suspension using a
polytetrafluoroethylene (PTFE) membrane. The ob-
tained wet sheets were immersed in NaOH solution
with a concentration of 5, 10, 20, or 30 wt% at 50 �C
for 6 or 12 h. Afterward, the sheets were neutralized in
diluted acetic acid (2 wt%) and washed with deionized
water.

The morphology of nanocelluloses and their sheets
were analyzed by scanning electron microscopy (SEM,
Zeiss EVO MA10). Changes in crystal form of the
nanocellulose sheets due to NaOH treatment were
evaluated by X-ray diffraction (XRD). The measure-
ments were carried out on an X-ray diffractometer
(Bruker D8 Advance) equipped with a Cu Ka radiation
source operated at 40 kV and 35 mA. The samples for
XRD were prepared as freeze-dried sheets. The
diameter shrinkage of obtained nanocellulose sheets
was measured with a caliper, as described in a previous
report [16]. Meanwhile, the water absorption of each
nanocellulose sheet was defined as the ratio between
the weight of the swollen sheet and the weight of the
freeze-dried sheet.

3. Results and discussion

The cellulose nanofibers obtained in this study had a
mean diameter of 26.8 ± 5.1 nm and several micro-
meters in length (Fig. 1). The length of the cellulose
nanofibers could not be determined with certainty
because the ends of the fibers could not be detected in
the SEM images. In general, cellulose nanofibers

obtained by mechanical treatment are several micro-
meters long [10,26e28]. This is different from cellu-
lose nanofibers obtained by chemical treatment, which
generally range from 100 to 500 nm long [29e31].

The nanocellulose sheets were formed through the
dewatering process using vacuum filtration and a PTFE
membrane. Without NaOH treatment, the nano-
cellulose sheets after the dewatering process were
easily ruined in water. Non-immersive nanocellulose
sheets in NaOH solution were extremely fragile when
given little pressure. Fig. 2 shows that the obtained
nanocellulose sheets were white and exhibited a gel
texture. Immersing the sheets in an NaOH solution
made them durable. Gel-like sheets were formed by
molecular self-assembly through ionic or hydrogen
bonds [32].

Diffusion occurred through osmosis when the
nanocellulose sheets were soaked in a NaOH solution.
Due to the high concentration of NaOH, the OH� ions
from the NaOH solution penetrated the nanocelluloses
and swelled them. The concentration of the NaOH
solution affected the texture of the nanocellulose
sheets. The higher concentration of NaOH solution
resulted in a more rigid texture. The sheets soaked in
NaOH solution with a concentration of 5 or 10%
remained flat; in contrast, the sheets soaked in NaOH
solution with a concentration of 20 or 30% curled and
wrinkled (Fig. 2).

Fig. 3 indicates that the diameter shrinkage of
nanocellulose sheets was directly proportional to the
concentration of the NaOH solution. Prolonged soak-
ing also induced this effect. The sheets soaked for 12 h
exhibited greater diameter shrinkage than the sheets
soaked for 6 h. Thus, the diameter shrinkage correlated
with the soaking time. Diameter shrinkage occurred
because of the diffusion process from high concentra-
tion (NaOH solution) into low concentration (inside
the nanocellulose sheets). The diffusion was acceler-
ated by an increase in temperature, which could in-
crease the entropyeelastic force, thus causing a
longitudinal contraction. Therefore, longitudinal
shrinkage occurs. This result was consistent with the
result reported by Abe and Yano [20]: an increase in
the concentration of NaOH increased the diameter
shrinkage.

Fig. 4 exhibits the SEM images of the cross-section
of the freeze-dried nanocellulose sheets. The control
sheet (non-immersive nanocellulose sheet in NaOH)
was densest among all sheets. Even without immersion
in NaOH, the control sheet seemed to have a porous
structure (Fig. 4a) and the nanocellulose did not appear
to swell (Fig. 4b). The sheet-making method seemed toFig. 1. Cellulose nanofibers from OPEFBs.
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affect the structure of the sheet produced. In this study,
the nanocellulose sheets were manufactured by the
vacuum filtration method. This filtration process might
cause the porous structures of the obtained sheets. With
immersion in the NaOH solution, the porous structure
of nanocellulose sheets appeared swollen (Fig. 4cej).
The swelling increased as the NaOH solution concen-
tration increased (up to 20 wt%) and decreased with
30 wt% NaOH concentration. According to Oushabi
et al. [33], an increase in the percentage of NaOH
could increase the number of pores on the fiber surface.
However, this is not clearly seen in SEM images. From
Fig. 4j, the structure of nanocellulose sheets was
damaged from the severe reaction with 30 wt% NaOH.

The damage had an impact on the ability of nano-
cellulose sheets to absorb water. The high NaOH
concentration (30 wt%) was also thought to destroy a
small crystalline region of the sheet, which caused a
decrease in crystallinity after treatment with 30 wt%
NaOH (Table 1).

Water absorption is an important parameter in
assessing the ability of a sheet to retain water or so-
lution in its structure. Fig. 5 shows the water absorption
of nanocellulose sheets soaked for different times in
NaOH solutions with different concentrations. This
figure shows that the sheets soaked for 6 and 12 h
exhibited the same tendencies. The water absorption
increased with increasing concentration of NaOH, up
to 20 wt%. Thereafter, it decreased at a concentration
of 30 wt%. These results were consistent with SEM
observations where the pore size appeared to shrink on
nanocellulose sheets soaked in 30 wt% NaOH.

Alkali treatment with a concentration of up to 20%
could swell the porosity of the nanocellulose structure
so that it could optimally absorb water. Pores in the
nanocellulose structure were able to hold water mole-
cules. However, water absorption decreased with 30 wt
% NaOH. The 30 wt% alkali treatment caused a break
in hydrogen bonds in the nanocellulose structure,
forming a hydrophobic group [34].

Fig. 6 shows that high-concentration alkaline treat-
ments could alter the crystalline structure of native
nanocellulose. Dipping nanocellulose sheets in an
NaOH solution with a concentration above 10% could

Fig. 2. Nanocellulose sheets after NaOH treatment for (a) 6 h and (b) 12 h in 5, 10, 20, and 30 wt% of NaOH solution (lefteright).

Fig. 3. Diameter shrinkage of nanocellulose sheets treated with

different NaOH concentrations.
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Fig. 4. Morphology of freeze-dried nanocellulose sheets treated with different NaOH concentrations for 6 h.
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change the crystalline form from cellulose I to cellu-
lose II [35]. Cellulose I (native cellulose) occurs
naturally and is structured in parallel strands without
any intersheet hydrogen bonds. Meanwhile, cellulose
II is thermodynamically more stable and exists in an
anti-parallel strain with hydrogen bonds between
sheets. The differences in the properties of cellulose I
and II arise from the changes in the crystal structure
[36]. The crystallinity of nanocellulose sheets with
cellulose II was higher than those with cellulose I.
During maceration, the alkaline solution enters the
amorphous region of the nanocelluloses, which is the
interface region between the crystallites. The NaOH
solution may affect the crystalline region even with
slight segment movement of cellulose chains. Alkali
solution, when entering into nanocelluloses, can swell
the cellulose so that the mobility of segments of chains
in the swollen area was high. This allowed the direc-
tion to change from the parallel cellulose (cellulose I)
to anti-parallel cellulose (cellulose II) [37].

The diffraction patterns of untreated and treated
nanocellulose sheets are shown in Fig. 6. Two peaks at
2q ¼ 14.8� (broad peak) and 22.3� confirm that only
cellulose I existed for untreated nanocellulose sheets
and sheets treated with NaOH up to 10 wt%. The

presence of two peaks in the diffraction pattern showed
the material to have a low crystallinity. A cellulose
material with high crystallinity generally shows a
diffraction pattern with 3 peaks at around 2q ¼ 14� (1�
0), 16� (110) and 20�e22� (200) [38]. In Fig. 6, it can
be seen that crystallinity decreased with the NaOH
treatment up to 10 wt%. In the treatment of 20 and
30 wt% NaOH, the peak with index 1 � 0 shifted to
2q ¼ 12.1� and the crystalline peak was divided into
two peaks located at 2q ¼ 20.4� (1 1 0) and 2q ¼ 22.3�

(2 0 0), indicating the formation of the cellulose II
structure. Three distinct processes are known during
mercerization: microfibril swelling, disruption of
crystalline areas, and formation of a new crystalline
lattice [39].

During maceration, the inter-fibrillar region in
nanocellulose sheets tends to be less rigid, which al-
lows for the rearrangement of cellulose nanofibers
[39]. The crystalline structure of nanocellulose sheets
swelled increasingly with the increasing NaOH con-
centrations. When the structure of the nanocellulose
sheet swelled, hydroxide ions became easier to pene-
trate into the internal crystals and react thoroughly
with cellulose nanofibers, which caused a reduced
crystallinity. The hydroxide ion penetration rate is
slowed by increasing the viscosity of NaOH solutions
at high concentrations (20 and 30 wt%) [39]. In this
study, new crystalline lattices formed with concentra-
tions of 20% and 30% NaOH (Fig. 6). With increasing
NaOH concentrations, the crystallinity of nano-
celluloses increased (Table 1). Table 1 shows that
nanocellulose sheets without NaOH treatment had
66.4% crystallinity. The crystallinity decreased quite
dramatically to 50.1% with a treatment of 5% NaOH.
Then, increasing NaOH concentration up to 20%
crystallinity also increased the crystallinity but
decreased it when the nanocellulose was treated by
30 wt% of NaOH. According to Mwaikambo and
Ansell [40], a high crystallinity tends to produce strong
and attractive fibers in the formation of plant fiber
composites.

Figs. 7 and 8 and Table 2 show the tensile strength
and Young's modulus of nanocellulose sheets. Both
the tensile strength and Young's modulus of nano-
cellulose sheets increased with increasing NaOH
concentration up to 20 wt%. The optimum tensile
strength of sheets immersed in NaOH solution for 6
and 12 h was reported at 20 wt% NaOH, reaching 2.14
and 1.87 MPa, respectively. The tensile strength ob-
tained in this study was smaller than that obtained by
Abe and Yano [20]. They produced nanocellulose
sheets from wood powder immersed in 15% NaOH for

Table 1

Crystallinity of nanocellulose sheet treated with different NaOH

concentrations.

Sample treated with- Crystallinity (%)

Untreated 66.4 ± 0,8

5 wt% NaOH 50.1 ± 1.2

10 wt% NaOH 54.4 ± 1.1

20 wt% NaOH 75.8 ± 1.5

30 wt% NaOH 68.2 ± 0.9

Fig. 5. Water absorption of nanocellulose sheets treated with

different NaOH concentrations.
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12 h, resulting in tensile strength of 5.4 MPa. The
different values might be due to the difference in the
raw material used.

The untreated nanocellulose sheet was very fragile
for tensile tests. Cellulose nanofibers have a high
density of eOH groups, which bond with adjacent
eOH groups by hydrogen bonding. However, without
NaOH treatment, the hydrogen bonds between cellu-
lose nanofibers might not be powerful enough to
support a high tensile force of nanocellulose sheets.
Abe and Yano [20] reported that the nanocellulose
sheet with cellulose II structure had higher tensile
properties than that of cellulose I structure. The high
tensile properties of the nanocellulose sheets can be
attributed to their crystalline structure. While the
nanocellulose sheet was treated with 30% NaOH, it
was found that the tensile strength and Young's
modulus decreased. This might be due to the applied

high concentration that caused the crystalline struc-
ture of the nanocellulose sheets to be attacked and
destroyed [33].

Recapitulate data of all properties analyzed in this
study (diameter shrinkage, water absorption, tensile
strength, and Young's modulus) can be seen in Table 2.

4. Conclusions

In conclusion, nanocellulose sheets prepared from
the cellulose nanofibers from OPEFBs using an alka-
line treatment process showed a more stable form.
Higher NaOH concentrations resulted in an increase in
the diameter shrinkage. The water absorption, tensile
strength, and Young's modulus increased with
increasing concentration of NaOH up to 20 wt%, but
decreased when the nanocellulose sheet was treated
with 30 wt% NaOH. By immersing in 20% NaOH
solution for 6 and 12 h, the tensile strength of the

Fig. 6. X-ray profiles of nanocellulose sheets treated with different

NaOH concentrations.

Fig. 7. Tensile strength of nanocellulose sheets treated with different

NaOH concentrations.

Fig. 8. Young's modulus of nanocellulose sheets treated with

different NaOH concentrations.

Table 2

Recapitulate data of diameter shrinkage, water absorption, tensile

strength, and Young's modulus of nanocellulose sheets.

Samplea Diameter

shrinkage

Water

absorption

Tensile

strength

(MPa)

Young's
modulus

(MPa)

6h5% 6.25 ± 0.91 14.11 ± 1.11 1.03 ± 0.09 0.12 ± 0.005

6h10% 21.87 ± 0.95 16.81 ± 0.98 1.17 ± 0.06 0.13 ± 0,007

6h20% 28.13 ± 0.97 19.62 ± 1.31 2.14 ± 0.09 0.20 ± 0.009

6h30% 28.16 ± 1.05 10.86 ± 1.12 1.72 ± 0.07 0.11 ± 0.009

12h5% 6.25 ± 1.21 13.61 ± 1.21 1.13 ± 0.07 0.07 ± 0.007

12h10% 28.13 ± 1.16 15.52 ± 1.04 1.14 ± 0.09 0.09 ± 0.007

12h20% 31.25 ± 1.22 16.44 ± 1.24 1.88 ± 0.08 0.17 ± 0.005

12h30% 31.25 ± 1.31 9.84 ± 0.99 1.37 ± 0.09 0.09 ± 0,012

6h5%: a sample was treated for 6 h, immersed in 5% NaOH.
a Sample notation.
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sheets were 2.14 and 1.87 MPa, respectively. This
might be due to the increase of crystallinity (until
75.8%) and the change of the cellulose structure form
from cellulose I to cellulose II caused by NaOH
treatment. It could be concluded that the mechanical
stability of nanocellulose sheets could be improved by
NaOH solution treatment.
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