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Third- and Fifth-Order Geometric Aberrations in Magnetic Exponential Lens
Model for Object Magnetic Immersion

Abstract

We numerically employ the differential algebraic technique to calculate the third and fifth-order geometric
aberrations coefficients, which are derived by using the map method, of the magnetic exponential lens
model. These coefficients are calculated for object magnetic immersion (OMI). The magnetic exponential
model is used as an example for the magnetic round lens to calculate the coefficients. The numerical
electron optical results are perfectly in match with the analytically results with a very small relative error

(1 019107 2). The DA advantage technique is a very compendious, effective, proper, and accurate for
analysis of electron optical aberration. The COSYINFINITY 10 code is used in our calculations.

Keywords
Differential algebra, Map method, Magnetic round lens, high order Geometric aberrations, OMI effect,
COSYINFINITY 10
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1. Introduction

Through the growing applications of high-quality
systems of focusing charged particle beams such as high-
resolution electron microscopes, electron and ion
lithography systems, and beam accelerators, the desire to
design practical electromagnetic lenses with aberrations
of higher orders than third-order is receiving interna-
tional attention [1—3]. Therefore, it is required to study
the higher-order aberration for such focusing systems.
Differential algebra (DA) is a highly accurate and
advanced tool for solving sets of nonlinear dynamical
equations as in the high-order aberrations of systems of
electron-optical lenses. The DA method is a very accu-
rate method with no special requirements for the calcu-
lation, developed by many authors including Berz [4],
Wang and Chen [5,6] and Liu [7]; it can be applied to
problems in the electric and/or magnetic fields engi-
neering design. In this work, we utilize the DA method
and COSY INFINITY 10 program to calculate practical
electron lenses with magnetic fields that include object
magnetic immersion (OMI) corrections. The OMI
correction method can be used to correct chromatic and
spherical aberration coefficients for magnetic lenses
when the object is located in the field of the magnetic
lens. The Gaussian properties and the third and fifth or-
ders aberrations are determined for an exponential
magnetic electron lens whose magnetic field magnitudes
are input into a discretized array structure for further
analysis. Three DA variable types exist for analyzing the
aberration of rotationally symmetric electron optical
systems: the fixed coordinates DA description, the
rotating coordinates DA description, and the hybrid co-
ordinates DA description [7,8]. The rotational coordinate
system is used to facilitate the analytical paraxial ray
equation. In the magnetic lens case, if the object
immersed in the field, the correction of aberration done
using OMI effect [9]. In the case of higher-order aber-
ration (Fifth and Seventh), the description of DA in
rotational coordinates becomes very complicated. We
derive the general equation of electron trajectory and we
obtain the transfer map of the rotational coordinates by
tracking the trajectory equation. Seman [10] was the first
researcher who discussed the problems of object mag-
netic immersion OMI in magnetic lenses. The high order
aberrations (third and fifth) for the magnetic exponential
model are carried out using the DA technique. In this
work, the DA technique using COSY INFINITY 10
[11,12] is used for such calculations for the first time.

https://doi.org/10.33640/2405-609X.2235

The DA results were crosschecked using the high order
(third and fifth) aberration integrals evaluated by
Wolfram Mathematica 9 program [13]. The results
proved to be very compendious, effective, and accurate.
The expression of the general equation of electron tra-
jectory in rotating and fixed coordinates are given in
many references [14—19]. It performs a significant part
in clarifying the differential algebraic method in rota-
tional coordinates.

2. DA description types of high order geometrical
aberrations

Tracking the equation of the general trajectory of
the electrons is used in fixed coordinates to obtain the
higher orders (third and fifth) geometric aberrations
using the deferential algebra integrator limit starting at
Z, (plane of object) to z; (plane of image) in fixed
coordinate [18];

k+l+m+n=3
AXy = My (1.klmn) X X" Yy
k.l.m.n=0.1.2.3
k+1+m+n=3
AYs = M, (3. klmn)XEX" Yy
k.l.m.n=0.1.2.3
k-+l+m-+n=5 (1)
AXs; = M, (1.klmn)X X" Yy,
k.l.m.n=0.12.3.4.5
k+14+m+n=5
AYs = M (3.klmn)X X" Yy

k.lm.n=0.12.3.4.5

where M (i, klmn) is the transfer map elements in fixed
coordinates, the number of orders depending on the sum
of k, I, m, and n. While tracking the expression of
rotating transform coordinates the DA characterization
of rotational coordinates are calculated [16,18] as in the
following form;

k+I1+m+n=3
— k 1l _m m
Axy = M, (1.klmn)x.x' yiy'",
k.l.m.n=0.1.2.3
k+14+-m+n=3
— kol m m
Ay3i - MV(S'klmn)xnx Yoy o>
k.l.m.n=0.1.2.3
2)
k+14+m+n=5
_ kol m ym
Axs; = M, (1.klmn)xx' y'y"
k.lm.n=0.1..5
k+14+m+4-n=5
— k ol m gn
Ays; = M, (1.klmn)x;x' yoy"
k.lm.n=0.1....5
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where M; (i, klmn) is the transfer map elements in the are [14];B = M,(1.0300), F = M,(1.1002), C =
rotating coordinates. The third-order geometrical aber- w, D = M,(1.0120), E = M,(1.3000),f =
rations have an expansion, in the vector form, of com- M,(3.1002)/3,¢ = M,(3.1011)/2,e = M,(3.3000)
bined electromagnetic lenses and the fifth order coefficients are,
As = M,(1.0500), Bs; = M,(1.1004), Bs, =

M,(1.0311), Cs; :M,(1.1013), Cs> = M,(1.0320).

— N N Cs3 = M,(1.0122) — Csp, Ds; =
Fo=(XoYo)s To=(X0y0), T, M,(1.3002), Ds; = M,(1.1022) — Ds;, Ds3 =
= (=Yoko)y, = (Y0 X, ) M,(1.0131), Es; = M,(1.3011), Es; =
M,(1.0140), Fs = M,(1.5000), as =
In addition, the expansion, for combined electro- M,(3.0500), bs; = M,(3.1004), bs, =
magnetic lenses, of the fifth order geometrical aberra- M,(3.0311), ¢51 = M,(3.1013), cs, = M,(3.0320),
tions in a vector form is; Cs3 =

Mr(3 0122) — C52, d51 = r(33002>; d52 =
In comparison equation (2) with equations (3) and M,(3.1022) — ds;, ds3 =
(4), the connection between the elements of the map in M,(3 0131), es; = M,(3.3011), es; =
Eq. (2) and the coefficients of aberration in equations M,(3.0140), fs = M,(3.5000).
(3) and (4) are obtained. The Glaser's notation of the The hybrld coordinates DA description have the
third order coefficients of the geometrical aberration form [3],
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ketlEmtn=3 o " where the suffix "m" indicates using the effect of OMI,
Axsi= > My(Lkmn)XEX YY", the aberrations were corrected. The hybrid coordinates
kl.mn=0.12.3 transfer map elements are represented by M, (1.klmn)
ketlmyn=3 . . and M (3.klmn), where they could be derived from
Aysmi = Z M, (3.klmn)X; X' ()Y Sy, My (1.klmn) and My(3.klmn). The relation between the
flmn=0.12.3 (5) geometrical aberration coefficients and the hybrid co-
k+l4+m+n=5 . . .
B ol oo ordinates map elements together with the containment
Axsi = y ;ZMSM"(I'H’"")XGX Yo ¥ of the effect of OMI is calculated. The aberration co-
“:"’;7 o 5 ' efficients of the third order isotropic are:
+l+m+n=
Axs=  »_ M3kmn)XX YY"

k.lm.n=0.1.2.3.4.5

Bm

M;,,(1.0300) = M;(3.0300)sin 6; + M;(1.0300)cos 6;
F,, = M,,(1.1002) = M;(3.1002)sin 6, + M;(1.1002)cos 6,
Co = M;(1.1011) = [M;(3.1011)sind; + M;(1.1011)cos 6;] /2 (6)
(
(

)
D,, = M;,(1.0120) = M;(3.0120)sin 6; + M;(1.0120)cos 6;
E,, = M,(1.3000) = M;(3.3000)sin 6; + M;(1.3000)cos 6;

The aberration coefficients of the third order anisotropic are:
fon = M;,(3.1002) = [ — M;(1.1002)sin 6; + M;(3.1002)cos 6;] /3

= M;(3.1011) = [ — My(1.1011)sin 6; + M;(3.1011)cos 6;] /2 (7)
ey = M;,(3.3000) = [ — M;(1.3000)sin 6; + M;(3.3000)cos 6;]

The aberration coefficients of the fifth order isotropic are:

Asw = My (1,0500) = M;(3,0500)sin6; + M;(1,0500)cos0;
Bsi, = Mh(l 1004) = M;(3,1004)sin8; + M;(1,1004)cos0;
Csim =M, (1,1013) = Mf(37 1013)sind; Jer(l, 1013)cos0;
Csam = M (1,0320) = M;(3,0320)sind; + M;(1,0320)cos0;

My(1,
(1,1013)
(1,0320)
CS?m = Mh(l 0122) — C52m = MJ(370122)SUZ0, +Mf(170122)C0S19,* — C52m
Dsy = M;,(1,3002) = M (3,3002)sinf; -+ My (1,3002)cos;
Dy = My (1,1022) — Dsy,, = M;(3,1022)sin6; + My(1,1022)cost; — Dsy,,
Ds3,, = M, (1,0131) = M;(3,0131)sin8; + My(1,0131)cos0; 9)
Esim _Mh(l 3011) = M;(3,3011)sinf; + M;(1,3011)cos6;

E52m = (l 0140) Mf (3,0140)5’1”0, +Mf'(1,0140)COS0[

Fs» = My (1,5000) = M;(3,5000)sin6; + M;(1,5000)cos0;

The aberration coefficients of the fifth order anisotropic are:

dsm = My (3,0500) = —M;(1,0500)sind; + M;(3,0500)cost;
bsom —Mh(3 0311) = —M;(1,0311)sin; + M;(3,0311)cosb;
3,1013) = —M;(1,1013)sind; + M;(3,1013)cos0;

) = —M;(1,0320)sin6; + M;(3,0320)cos0;

Csim =

Csom = h 3,0320

M, (3,
(3,
C53m — M;,(?) 0122) — Cso — —Mf(1,0122)sm0, +Mf(3,0122)COS0, — C52m
dsin = M;,(3.3002) = —M;(1.3002)sin 9; + My (3.0300)cos 9;
dsym = M;,(3.1022) — dsy,,, = —M;(1.1022)sin ¥; + M;(3.1022)cos &; — dsy,
dsym = M;,(3.0131) = —M,(1.0131)sin ¥; + M;(3.0131)cos &, (11)
esyn = M, (3.3011) = —M;(1.3011)sin ¢ + M;(3.3011)cos ¢;
esom = M,(3.0140) = —M;(1.0140)sin ¢ + M;(3.0140)cos ¥;
Fsm = M;,(3.5000) = —M;(1.5000)sin 9; + M (3.5000)cos 9;
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3. High order aberrations of the magnetic lens

The concept of higher-order aberration coefficients
derivation is the same as that in Refs. [18,19]. According
to equation (3), there are three anisotropic (lowercase
letters) and five isotropic (uppercase letters) coefficients
of the third-order aberration: the symbol B refers to the
spherical aberration, the symbols F and frefers to coma,
the symbols C and c refers to astigmatism, the symbol D
refers to the field curvature, and the symbols E and e

Asy=As, Bsiy = Bs, + 50, as,

Bsow = Bsy — 40, as,

Csim = Cs + 0, (4bs) + 3bs,) — 460" As,
Csam = Csy — 40, bs; + 100°As,

Cszn = Cs3 — 20, bsy — 402 As,

Ds1,, = Dsy + 36, ¢s, + 60> Bs; + 106" as,

Dsy, = D5y + 00/(26'51 +cs3) — 20/(2, (2Bs1 +Bs,) — 40[2“5;

Ds3,, = D53 — 290’(C51 + 653) — 36/3352 — 40’205,

the symbols espand Es; for field curvature, and finally
the symbols fsandFsrefer to the distortion [20—22]. The
high order coefficients formulas for OMI correction are
given as follows;

Bn=B, F,=F, Ca=C+20,f+0B,

D,=D—60,f+30°B, E,=E—20,c+0"F.

fu=f—0,B,cn=c—0, F. e,=c—0, D+30"f —0"B
(12)

(13)

Esin = Esy + 0, (2ds, + ds3) + 0,(2,(C51 —2Cs) + 0’3(41751 +bs) — 40,;4,145,

Esgm = Esy — 20, ds; + 30" Cs, — 40")bs, + 502 As,
Fs,=Fs+0, e+ 0°Ds; + 0ocsy + 0B, + 0 as;

sy = as, bsiy = bs; — 50, As, bsy,, = bsy + 40, As,
Csim = Cs1 — 0, (4Bs; + 3Bsy) — 40" 2as,

Csom = Cs5 + 40, Bs; +100"as,

Csam = 53+ 20, Bs, — 40 as,

dsim = ds; — 36, Csy +6602bs; — 100" As,

dsyy = dsy — 00/(26‘51 +Cs3) — 20’,2,(21751 +bsy) + 40’(3,145,

ds3m = ds3 + 200,(C51 +Cs) + 33/ib52 + 40/,3)1457

esim = es1 — 0, (2Ds; + Ds3) + 9/3(651 —2c¢s5) + (9/(3,(4B5I +Bs;) — 49/§05,

€50, = €52 —+ 200/D51 —+ 30,(2)C52 + 40’2351 + Sﬁlias,
fom=fs — 0, Esy +0"ds; — 0" Cs, + 0"bs; — 0°As.

refers to the distortion. According to Equation (4), there
are twelve isotropic and twelve anisotropic fifth-order
coefficients, where the uppercase symbols are for
isotropic and the lowercase symbols are for anisotropic
coefficients. For spherical aberration we use the symbols
as and As, the symbols bs, bs, and Bs;,Bs;for coma, the
symbols cs;.csp.¢53 and Csy, Csy, Cszfor the peanut ab-
erration, the symbols ds;.dsy.dssandDs; , Dsy, Dssfor the
elliptical coma, the symbols es;andEs;for astigmatism,

where 00’ =7 \5%, N = /5, B(z,) and V(z,) are the

magnetic induction and potential function respectively
at the object plane z,,.

4. Computational illustration

The former derivations were a concise description
of the basics of the high order geometric aberrations
calculation for electron lenses with magnetic fields that
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include OMI corrections. More information about the
DA method can be found in Berz (1999) [22]. The
formulation of the DA method is independent of the
aberration order, thus, to understand the form of the
Hamiltonian an analytical description of the field must
be defined. Thus, we must know the exact form of the
axial potentials and their derivatives, to determine any
order of aberrations. Therefore, the inaccuracy of the
axial potential higher-order derivatives is a limit for the
use of the DA method in real optical systems, i.e. the
analytical field model (or the axil potential) must have
a trajectory equation that can be solved analytically
and its higher order aberrations can also be expressed
by the analytical expression of the field model to have
an accurate solution [23,24].

In the present work, the exponential model of the
magnetic round lens is one of the well-known models
that can make the paraxial ray equation soluble and
useful, especially for ‘single-pole’ lenses [25], whose
magnetic induction distributions have the following
form

B(z)=Boe g . (15)

where B, = 0.01 T is the maximum magnetic flux and
d is the half-width of the magnetic flux distribution in
mm. The axial magnetic flux distributions are B(z)
shown in Fig. 1, along z (optical axis) from
Z, = —0.3 mm (object plane) to z; = 0.3 mm (image
plane) at different values of d (d = 0.1, 0.09, 0.08, 0.07,
0.06, 0.05 mm). Two packages are used: the COSY
INFINITY10 [11,12,26] and Wolfram Mathematica
version 9 [13]. With the aid of the 8th order Runge-
Kutta integrator [27], we calculate the transfer map
produced by tracking the trajectory equations in
rotating and fixed coordinates. All the high order ab-
erration coefficients (third and fifth) are calculated

Magnetic Field at(Bo=0.01T)
0.01

= d=0.1mm
+ d=0.09mm
=== d=0.08mm
d=0.07mm

— d=0.06mm
d=0.05mm

— — - - z(mm)
-0.3 -0.2 -0.1 0.1 0.2

Fig. 1. The axial magnetic fields B(z) as a function of different
values of (d) along the optical axis (z) with B, = 0.01 T.

using two packages (without and with the OMI partic-
ipation) for the magnetic exponential model. The
spherical aberration disc Ar (disc of least confusion) is
also calculated using the following equation [28,29]:

Ar=MBa. (16)

where M is the magnification, B (in some reference
denoted by Cy) is the third order spherical aberration
coefficient and o, is the half angle in radian and we take
a range of (0,,)® from zero to 0.2 radian.

5. Discussion and conclusion

The third- and fifth-order isotropic and anisotropic
geometric aberration with and without the OMI is
calculated for the magnetic exponential lens model.
The equation of the paraxial trajectory in fixed co-
ordinates is directly derived from the equation of
general trajectory. However, in the DA technique, the
trajectory equation in rotating coordinates becomes
most important because it makes the DA description
very easy and straight forward to expand to higher-
order aberrations. Table 1 represents the results of the
magnetic exponential model lens. The optical proper-
ties are calculated by two methods: the DA and the
analytical methods under the two parameters (1)
d = 0.1 mm, and (2) B, = 0.01 T. One can notice from
this table that the results are very precise with a very
small relative error of order (10™° to 107'!) and
agreement between the two methods are very good.
Table 2 shows the coefficients of third-order aberration
as a function of the half-width (d) for the magnetic
exponential model lens. The variation of the geometric
aberration coefficients with d is shown in Fig. 2. From
the table and the figure, one can see that astigmatism,
field curvature, and the distortion (symbols C, D, and E
respectively) are decreasing with increasing d under a
constant value of B, (0.1 T). This is because of the
nature of these aberrations and the effect of the mag-
netic field distribution as shown in Fig. 1. However, the
Coma (symbol F) is constant and the spherical

Table 1
Optical properties for magnetic exponential model lens calculated by
DA and analytical methods under the conditions d = 0.1 mm and
B,=00IT.

—1/f; M M,

—3.176108987312 1 1

Analytic
method

DA method —3.176108987274 0.999999991455 1.000000000854

Relative error —3.8 x 107! 8.545 x 1077  —8.54 x 107
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Table 2

Coefficients of the 3rd order aberration for various half-width (d) under B, = 0.01 T.

d(m) x 107 B (m) F C(m™) D (m™) E (m?)

0.1 0.268931 1072 0.384567 1073 0.188722 1072 0.283038 1072 0.313290 1073
0.09 0.242038 1072 0.384567 1073 0.209691 1072 0.314487 1072 0.386775 1073
0.08 0.215145 1072 0.384566 1073 0.235903 102 0.353798 1072 0.489510 1073
0.07 0.188251 1072 0.384563 1073 0.269603 1072 0.404341 1072 0.639360 103
0.06 0.161358 1072 0.384561 1073 0.314537 1072 0.471731 1072 0.870239 1073
0.05 0.134465 1072 0.384558 1073 0.277444 1072 0.566077 1072 0.125315 1073

k,__\ T T T T T
£ 0.005 [ ]
S Ty
5 ~
& 0.004 [ T ]
E TS 1 —=— B
= e
5 0.003} e ] F
5 -
= =
3 — il ] c
S 0.002 e— ]
g _V/:r—"”_’/ - *— D
2 -
£ 0.001] ] E
< T
0.000 [ e ; . - .<
0.05 0.06 0.07 0.08 0.09 0.10

d(mm)

Fig. 2. Various geometrical aberration coefficients as a function of different values of half-width (d) under the maximum field B, = 0.01 T.

Table 3

The 3rd order aberration coefficients for various maximum field B, under d = 0.1 mm.

Bo(T) B (m) F C(mh D (m") E (m™?)

0.01 0.268931 1072 0.384566 1073 0.188722 1072 0.283038 102 0.313290 1073
0.05 0.674845 1072 0.240756 1073 0.473470 102 0.707430 107! 0.195159 102
0.1 0.273104 10! 0.387239 102 0.191355 107! 0.282775 0.309090 107!
0.15 0.626512 107! 0.197778 107! 0.437067 107! 0.635592 0.153899

0.2 0.114432 0.632957 10~! 0.789980 10! 1.12864 0.475585

0.25 0.385096 0.257083 0.125153 1.26178 1.12951

aberration coefficient (symbol B) is decreasing with

field curvature aberrations coefficients

are  more

decreasing d, this is because of the spherical aberration
dependent on the half-width of the magnetic field
distribution which is decreasing with d as shown in
Fig. 1.

Table 3 and Fig. 3 show the results of the DA for the
coefficients of third-order aberrations under various
maximum field B, for the magnetic exponential lens
model under d = 0.1 mm. It is obvious that the
geometrical coefficients of third-order aberration in-
crease as the values of B, rises. Plus, the distortion and

affected with the increasing of B,. Fig. 4 shows the
relationship between spherical aberration disc Ar,
calculated using equation (16), and the (OLO)3 under
fixed magnification value M = 0.9999 for magnetic
exponential lens model. This figure shows the disc of
spherical aberration has acceptable values for (20)°
values up to less than 0.2 rad.

The results of geometrical aberration coefficients of
third-order (isotropic and anisotropic) using the DA
method for the magnetic exponential model with and
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— il - o
E A - /,/""
5 001} — A-=F
:o ‘/ /'/ . O‘?C
S /a4
2 0.001 } Ve,
5 7 RS
E i
5 ¥/ ¢ OsE
=}
< 1074}
0.00 0.05 0.10 0.15 0.20 0.25
By(T)

Fig. 3. Various geometrical aberration coefficients under different values of B, for d = 0.1 mm.

without the OMI effect for the exact conditions used in
Table 1 are shown in Table 4. The DA and the
analytical methods result are shown in Tables 5—8, for
the coefficients fifth-order geometrical aberration
(isotropic and anisotropic) for the magnetic lens
exponential model with and without OMI effect for the
exact conditions in Table 1 respectively. Table 4,
proves that the values of third-order spherical aberra-
tion and coma are equal as listed in equation (6). For
the fifth-order spherical coefficients for isotropic and
anisotropic are equal as in Tables 5 and 6 according to

coefficients which are listed in Tables 4—8 are
computed with high precision by two methods for
cross-checking. The first method is the DA method
calculated using the COSYINFINITY 10 and the sec-
ond method is the aberration integral method [16,25]
computed using the Mathematica 9 program. It is
confident that the two methods are in good agreement
with a very small error of order (1071°-107'%). The
present research proved that the technique using the
DA method with COSYINFINITY 10 is an excellent
tool for such calculations, and it is very compendious,

equations (7) and (8), respectively. The other
Ar(m)
0.00002
C5=0.268931x10"%m
0.000015
0.00001
5.x1076
o 3
d)
0.05 0.10 0.15 0.20 @0 ad

Fig. 4. Represent the relation between (20)> and the disc Ar under the magnification M = 0.9999 for a magnetic exponential model lens.



Table 4

The 3rd order coefficients of aberration with and without inclusion OMI effect.
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Coefficient

DA Method

Aberration Integral

Relative error

B (m)

F
C(m™
D (@m™
E (m™?)
F

c (m’l)
e (m™?)
Bm (m)
FI"

C,, (m™h
D,, (m™Y
E, (m™2)
f;’l

Cm (M)
e, (m™2)

0.268931339128 1072
0.38456783501 103
0.18872246071 1072
0.283038717428 102
0.31329007080 10~3
0.637803310005 1073
0.198149596904 10!
0.249950926993 1072
0.268931339128 1072
0.38456783501 1073
0.18872134623 1072
0.283038234126 1072
0.31328865412 1073
0.117852587460 10~*
0.198136696323 107!
0.194594999224 102

0.268931339126 102
0.38456783500 1073
0.18872246070 1072
0.283038717427 102
0.31329007078 1073
0.637803310002 107>
0.198149596901 10!
0.249950926990 102
0.268931339126 102
0.38456783500 1073
0.18872134621 1072
0.283038234122 1072
0.31328865409 10~3
0.117852587458 10~*
0.198136696321 107!
0.194594999220 102

7.43687 1012
2.60033 107!
5.29878 10!
3.53317 1012
6.38386 107!
470368 1072
1.51401 1071
1.20025 10~
7.43687 10712
2.60033 10!
1.05976 10~1°
1.41323 1071
9.57585 10~ 1!
1.69705 10~
1.00939 10~
2.05555 107!

Table 5

The 5th order isotropic aberration coefficients without inclusion OMI.

Coefficient DA Method Aberration Integral Relative error
As (m) 0.931253414197 102 0.931253414197 102 0

Bs, 0.288216273304 102 0.288216273301 102 1.0409 10~

Bs, 0.182823992662 102 0.182823992660 102 1.09395 107!
Cs; (m™ Y 0.141807872152 0.141807872149 2.11553 107!
Cs; (m™h) 0.118681906042 10! 0.118681906042 10! 0

Cs; m™ ) 0.141287570572 0.141287570570 1.41556 10~
Ds; (m™2) 0.442053911493 0.442053911492 226212 1012
Ds, (m™?) 0.493036611338 10! 0.493036611338 10! 0

Ds3 (m™2) 0.155757572463 0.155757572463 0

Es, (m™) 0.296971216887 10! 0.296971216884 10! 1.0102 10~

Es, (m™) 0.398051995876 102 0.398051995873 102 7.53666 1072
Fs (m™) 0.156360654477 10* 0.156360654475 10* 1.27909 10~
Table 6

The 5th order isotropic aberration coefficients with inclusion OML

Coefficient DA Method Aberration Integral Relative error
As, (M) 0931253414197 102 0.931253414197 1072 0

Bsim 0.288214942464 102 0.288214942461 10> 1.04089 10!
Bsom 0.182825057334 102 0.182825057332 1072 1.09395 10~
Csin (m™h) 0.141248593697 0.141248593696 7.07956 1072
Cspm (m™h) 0.118681963757 10! 0.118681963755 10! 1.68518 107!
Cs3n (m™h) 0.141287952144 0.141287952141 2.12332 1071
Dsyn (m2) 0.441881332967 0441881332967 0

Dsap, (m™2) 0.496483690697 10! 0.496483690694 10! 6.04242 10712
Ds3, (m2) 0.155527900500 0.155527900495 3.21486 107!
Esi (m™3) 0.296966329314 10! 0.296966329311 10! 1.01022 107"
Esy (m™3) 0.398051939731 102 0.398051939727 102 1.00489 10711
Fs, (m™) 0.156302530909 102 0.156302530906 102 1.91935 10~
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Table 7

The 5th order anisotropic aberration coefficients without inclusion OMI.

Coefficient DA Method Aberration Integral Relative error
as (m) 0.229990514369 105 0.229990514369 105 0

bs, 0.979213080534 10~* 0.979213080531 10~* 3.06381 1012
bs» 0.186258538323 103 0.186258538320 1073 1.61066 10~
cs; (mY) 0.198652606142 0.198652606140 1.00679 10~
cs (m™h 0.497138529482 10! 0.497138529480 10! 4.02302 1072
cs; m™Y) 0994282614349 10! 0994282614346 10! 3.01735 10712
ds; (m™2) 0.447156881002 102 0.447156881000 102 4.47281 10712
ds; (m™?) 0.304936612769 10! 0.304936612768 10! 3.27948 10~
dsy (m™2) 0.486108121043 10! 0.486108121042 10! 2.05708 1072
es; (m™) 0.100331064244 10? 0.100331064241 10? 2.9901 107!
esy (m™) 0.502285030465 10! 0.502285030463 10! 3.9818 10712
fs (m™) 0.997977018525 0.997977018524 1.002 10712
Table 8

The 5th order anisotropic aberration coefficients with inclusion OMI.

Coefficient DA Method Aberration Integral Relative error
s,y (m) 0.229990514369 105 0.229990514369 103 0

bsim 0.151808286866 1073 0.151808286864 103 1.31746 10711
bsom 0.143148955273 1073 0.143148955271 1073 1.39715 10~
Cspm (M) 0.204123983826 0.204123983825 4.89901 10~ "2
Csom (M) 0.497005108710 10! 0.497005108707 10! 6.03608 1072
Csym (M) 0.994240297786 10! 0.994240297785 10! 1.00569 10~ 12
dsi (m™2) 0.351050788405 1073 0.351050788402 1073 8.54574 10712
dsam (M%) 0.300019222401 10! 0.300019222398 10! 9.99935 1012
ds3m (m™2) 0.479555600780 10! 0.479555600777 10~ 6.25586 10712
st (m™3) 0.100319033847 102 0.100319033845 102 1.99364 107!
esom (m™3) 0.502182732501 10! 0.502182732500 10" 1.99113 10712
fom (m™) 0.951910465150 0.951910465147 3.15164 1012

effective, and accurate for high order aberration
analysis.
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