
Volume 7 Issue 1 Article 6

A Proposed Adaptive Least Load Ratio Algorithm to Improve Resources A Proposed Adaptive Least Load Ratio Algorithm to Improve Resources
Management in Software Defined Network OpenFlow Environment Management in Software Defined Network OpenFlow Environment

haeeder munther noman mr.
college of information technology/university of babylon, hydermu79@gmail.com

Mahdi Nsaif Jasim Dr.
University of Information Technology and Communications, mahdinsaif@uoitc.edu.iq

Follow this and additional works at: https://kijoms.uokerbala.edu.iq/home

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
noman, haeeder munther mr. and Jasim, Mahdi Nsaif Dr. (2021) "A Proposed Adaptive Least Load Ratio Algorithm to
Improve Resources Management in Software Defined Network OpenFlow Environment," Karbala International Journal
of Modern Science: Vol. 7 : Iss. 1 , Article 6.
Available at: https://doi.org/10.33640/2405-609X.2255

This Research Paper is brought to you for free and open access
by Karbala International Journal of Modern Science. It has been
accepted for inclusion in Karbala International Journal of
Modern Science by an authorized editor of Karbala International
Journal of Modern Science. For more information, please
contact abdulateef1962@gmail.com.

https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home/vol7
https://kijoms.uokerbala.edu.iq/home/vol7/iss1
https://kijoms.uokerbala.edu.iq/home/vol7/iss1/6
https://kijoms.uokerbala.edu.iq/home?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.33640/2405-609X.2255
mailto:abdulateef1962@gmail.com
https://uokerbala.edu.iq/en/
https://uokerbala.edu.iq/en/

A Proposed Adaptive Least Load Ratio Algorithm to Improve Resources A Proposed Adaptive Least Load Ratio Algorithm to Improve Resources
Management in Software Defined Network OpenFlow Environment Management in Software Defined Network OpenFlow Environment

Abstract Abstract
So far, the existing load-balancing schemes (static and dynamic) have not taken over a concise and
reasonable mechanism for systematic isolation of the resource counters monitored in the OpenFlow
switch periodically. To address the aforementioned issue, the adaptive least load ratio algorithm was
proposed and followed a straightforward procedure to generate the best possible decisions based on
significant motivation characteristics identified in dynamic load balancing schemes like Least
Connection-Based and Least Bandwidth-Based. the study was carried out using the HTTPerf tool as it
provided a flexible facility for the generation of various HTTP workloads to evaluate server performance.
Results revealed that, while Software defined network was under the influence of client requests load
ranging from 0 up to 180 (req/sec), the proposed algorithm confirmed a faster server reply time up to
13.37%, server connection time up to 16.3% and average network throughput was improved up to 8%.
Moreover, server CPU utilization time and average queue length were reduced to 2.5% and 14%.
respectively. accordingly, and based on what the proposed algorithm has achieved in terms of
quantitative performance parameters, it could be adopted in SDN-based data centers.

Keywords Keywords
ALLR, SDN-Based platform controller POX, SDN, Open Flow, mininet, HTTPerf

Creative Commons License Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

This research paper is available in Karbala International Journal of Modern Science: https://kijoms.uokerbala.edu.iq/
home/vol7/iss1/6

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://kijoms.uokerbala.edu.iq/home/vol7/iss1/6
https://kijoms.uokerbala.edu.iq/home/vol7/iss1/6

1. Introduction

As network-oriented services such as customer
management system, domain name and e-mail expand,
then a tremendous demand for server clusters is ulti-
mately needed. Recently, considerable attention has
been driven to manage network traffic usefully [1]. The
rapid development in internet technology has been
represented as a challenging task for the server cluster
in large internet service providers [2]. The growth of
users as well as network bandwidth have resulted in the
server needing to process many access requests in a
short period of time. In certain circumstances, the
server lacks the ability to handle users' requests in a
well-defined timing manner, eventually leading to a
great opportunity for an increment in the waiting
period accompanied with a reduction in the quality of
service (QoS). To improve the server's performance,
industries have been motivated towards adopting a
variety of actions, like the increment of CPU pro-
cessing speed, the development of server cache capa-
bility, the utilization of high-speed disk array, and the
construction of the server cluster [3]. When the server
cluster receives a request, a new challenge begins to
emerge which stems from selecting the appropriate
server to respond for user requests. Practically, in sit-
uation where the access requests being not assigned in
a reasonable way, then load imbalance state between
servers in the same cluster occurs. Accordingly, the
load balancing concept is recommended to allocate the
incoming traffic load among a group of servers to
obtain a significant improvement regarding request
response time, throughput, and fault tolerance, thereby
attempting to solve the load imbalance problems
among servers [4]. The traditional load balancing
techniques employ variety of expensive hardware de-
vices without precise traffic load control. This can lead
to making these load balancers unsuitable for large-
scale applications, costly, and hard to change [5].

2. Related work

Various algorithms for load balancing were pro-
posed for solving the server overloading problem [6].
An early example was based on a single load balancing
parameter found to be insufficient for selecting the best
server to handle the client's requests [7]. Reference [8]
proposed a flexible and cost-effective SDN load bal-
ancer methodology, which allowed network

development in the absence of supplier information. As
reported by [9], conventional load balancers were
inflexible to be changed or modified since they were
locked by vendors and their non-programmable design,
which led to the lack of the network administrators to
build their own algorithms.

SDN Load Balancing provides the programmers the
ability to design and develop their own load balancing
techniques. The Load balancing system is typically
classified into two; Static and Dynamic. Static scheme
distributes the load without taking into account the
capability of nodes, such as RAM, server processing
power or bandwidth, and links [10]. The static scheme
came with several advantages such as the appropri-
ateness for homogenous servers, less overhead, and the
easiness implementation. However, this scheme is
scalable and unable to reflect changes in dynamic at-
tributes [11]. For instance, if one server receives
numerous tasks, then there is a chance where a new
task happens to be forwarded to the same server after a
period of time independently on server capacity or task
size. On the other hand, the dynamic scheme distrib-
utes the load according to the current status of the
network nodes [12]. The Dynamic scheme ensures that
the load balancing system tests the server's load ability
and links at run time. However, the dynamic scheme
neglects the type of user request and the size with the
capability of using one algorithm for all of the different
services. In fact, the static scheme is basically utilized
for a small-sized network [13], so the performance is
better as compared with that of dynamic load
balancing. However, when the webserver is being
adopted for large areas having requests dynamically
generated, there is a possibility that the performance of
static scheme can decline. Reference [14], suggested a
dynamic scheme namely least connections relying on
counting live connections for each server. Furtherly,
the least bandwidth based scheme was proposed by
[15], which provided the ability to access the data
traffic transferred to the servers.

3. Contribution

The Contributions of this paper include:

� Load balancing has proved to be a very important
research field [16] and various strategies using
SDN technology have been suggested. Therefore,
it is necessary to focus on developing an algorithm

https://doi.org/10.33640/2405-609X.2255

2211-8020/© 2021 University of Kerbala. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

https://doi.org/10.33640/2405-609X.2255
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

that has the ability to maximize throughput, reduce
response time with an adaptive nature in load
balancing, agility, and less downtime.

� The main objective is structured around the
implementation of three innovative modules. The
first module is responsible for the collection of the
SDN OpenFlow switch statistics data records. The
second module reads the statistics from the first
module, leaves out the flow table, flow entry sta-
tistics, and carries out the process of gathering the
port counters that provided by the OpenFlow pro-
tocol, and forwards them periodically every 5
seconds to the third module. The third module
represents the load balancing module by acting as
the main building block, after receiving server link
bandwidth consumption during a particular timing
period from the second module. Besides, it carries
out the computations related to the selection of the
least loaded server among a pool of servers.

� Proving the effectiveness of the proposed scheme
through the evaluation of performance metrics
against traditional schemes.

4. Proposed Architecture and Design

Mininet simulates a set of Linux end-hosts,
switches, routers, and links. It utilizes the lightweight
virtualization identified as the capacity of an operating
system to be directly mounted on the hardware of the
computer so that the device appears similar to a
complete network. Mininet is a supportive tool for the
open-source SDN community due to the fact, that it is
frequently used as a simulation, verification, and
resource testing platform. Being hosted on GitHub,
mininet enables us to develop custom topologies and
build hosts, switches, and controllers [17].

To calculate the performance of the server, it is
important to utilize certain tools running on client
machines for generating specific workloads. HTTPerf
is a software tool which is employed to evaluate the
hypertext transfer protocol (HTTP) web server per-
formance [18]. HTTPerf tool comes up with several
advantages such as the ability to support HTTP 1.1
protocol, preserve and generate server overload, and
the extensibility towards statistics collectors and
workload generators. In this work, various parameters
are utilized for the simulation listed in Table 1, and
suggested to run in SDN-Based environment that rep-
resented in Fig. 1 The majority of parameters are
constant except the one related to the subjected load
which is represented by the number of client requests

per second. This varies gradually from 0 to 180 (req/
sec) in order to explore their influence on the perfor-
mance of the load balancing schemes.

5. Proposed load balance algorithm

The framework structure consists of two parts.
Firstly, the SDN console application modules and the
server clusters that communicate with the console via
OpenFlow switches. Secondly, the POX Console, one
of the well-known SDN controllers written in Python,
are used to implement SDN application modules. Be-
sides, OpenFlow API version 1.0 is accommodated to
communicate with the SDN controllers [19] and
OpenFlow switches to implement the server pool
segment. Three functional modules establish the

Table 1

SDN-Based Platform Design Parameters.

No. Item Assigned Value

1 Host operating system Linux (Ubuntu) ver 14.04

2 Programming language Python Ver. 2.7.6

3 Network emulator Mininet Ver. 2.2.1

4 Virtualization software VMWare workstation

5 Simulation tool HTTPerf

6 Total no. of connections 100

7 Max no. of requests per

second in each connection

180 (req/sec)

8 Min no. of requests per

second in each connection

0 (req/sec)

9 No. of HTTP web servers (3) HTTP Server 1 -10.0.0.1

HTTP Server 2 - 10.0.0.2

HTTP Server 3 - 10.0.0.3

10 No. of HTTP clients (9) Client 4 - 10.0.0.4

Client 5 - 10.0.0.5

Client 6 - 10.0.0.6

Client 7 - 10.0.0.7

Client 8 - 10.0.0.8

Client 9 - 10.0.0.9

Client 10 - 10.0.0.10

Client 11 - 10.0.0.11

Client 12 - 10.0.0.12

11 SDN controller platform POX

12 Virtual SDN switch OpenFlow switch

13 POX Controller to OpenFlow

switch communication port

6633

14 HTTP web servers listening

port

80

15 Virtual IP 10.0.1.1

16 POX Controller IP 127.0.0.1

17 Amount of time to wait for a

server to respond

1.0 sec

18 Load balancing policies Dynamic Least Connection

Dynamic Least Bandwidth

Proposed

19 No. of iterations 9

20 Link latency No

41noman, M.N. Jasim / Karbala International Journal of Modern Science 7 (2021) 40e47

application module namely the CollectStatisicsData
module (CSD), ServerMonitor module (SM), and the
ALLRCompute module (ALLRCompute).

5.1. CollectStatisicsData Module (CSD)

By using this module, various types of statistics
could be gathered. Firstly, there are statistics per table
which is represented by the counters for this table,
counters including matched packets, number of looked
up packets, and the number of active flow entries.
Secondly, there are individual flow entry statistics
represented by the counter field in a flow entry. Finally,
there are port statistics which in fact display the
comparable flow entry statistics. This includes the
number of packets and bytes sent and received via this
port among others. Statistical data provided the basic

network resources data which could be utilized for
different types of functions depending on the imple-
mentation (see Table 2).

5.2. ServerMonitor Module (SM)

The ability to determine the health of the server is a
crucial part of the load balancing process). There is an
urgent need to report server-related metrics such as
bandwidth consumption to the controller during regu-
lar timing periods to perform the required computa-
tions which is related to the current server load.
Without this information, the functionality of load
balancing may operate inappropriately and send falsi-
fied requests for connection to different devices that
are overloaded. Accurate and timely network resource
statistics must therefore be implemented at different
aggregation levels (such as flow, packet, and port) to
rapidly adjust forwarding rules in response to server
workload changes. Techniques such as NetFlow [20],
sFlow [21], and JFlow [22], were utilized to collect full
or filtered traffic statistics that mainly transfer confi-
dential monitoring with significant overhead measure-
ments to a central controller. Approaches like these
may not be as effective solutions to be applied in SDN
systems, such as large data center networks [23]. In
this module, statistics of the first module are sent here.
Accordingly, this module aggregates the counters
related to ports including the number of bytes trans-
mitted and received every 5 seconds and leave over the
other statistics. Implementation of the predefined
module involves invoking the executor at the interval
set as described below by passing two parameters, the

Fig. 1. SDN-Based platform network topology.

Table 2

CollectStatisticsData Algorithm.

Collect Statistics Data: Collection of OpenFlow switch statistics

data algorithm

Input: - SDN-Based Platform Network topology

Output: - Collects statistical data from OpenFlow switches

after requesting them by the POX controller and

report them to the ServerMonitor module

periodically for further computations

Procedure CollectStatisicsData ()

Step 1 While TRUE do

Step 2 Collect Switch statistics data ()

Step 3 Update, switch, switch port, flow table,

flow records

end while

42 noman, M.N. Jasim / Karbala International Journal of Modern Science 7 (2021) 40e47

switch [24] and OfPortNo [25] (Port number), which
returns the average received and transmitted bytes
counted every 5 seconds as presented in Table 3.

5.3. ALLRCompute module (ALLRCompute)

This section represents the main dynamic load
balancing module that carries out the responsibility of
measuring and distributing the incoming traffic to the
best available server. As clients send various requests
to the pool of servers providing a particular service,
different servers basically have various workloads. The
load balancing module mainly Relies on the least load
ratio per server equation (Li]B(Si)/W(Si)), where
(Bi) represents the server link bandwidth consumption
reported periodically from ServerMonitor (SM) mod-
ule and W(Si) is the static weight assigned by the
administrator to server (Si). This weight reflects the
capability of the server like server CPU and RAM.
Server with a larger weight receives more load in
comparison to the server with a smaller weight [26].
The list of IP servers is traversed only once, and the
time consumed by this algorithm is O (n) (see Table 4).

5.4. Dynamic Least Connection-Based algorithm
(L.C)

The requests received from the network are for-
warded to the node with the least number of existing

TCP connections. In situations where a load of requests
differs enormously, this approach is considered a good
option for smooth distribution since all the long re-
quests have no chance of being directed to a node.
However, the algorithm performs properly when nodes
of different processing capacities are available [27].

5.5. Dynamic Least Bandwidth-Based Algorithm
(L.B)

The server with the lowest network traffic con-
sumption during the last n second to respond to the
next request is being selected [28]. The balancer parses
and stores the number of bytes that are transmitted to
each server.

6. Experimental setup and evaluation

All experiments were carried out using the POX
controller, chosen due to free open source features.
This feature in fact facilitates the addition and removal
of restored units, and gives the experiments more
flexibility and performance. Port 6633 is the default
connection port for establishing communications be-
tween OpenFlow switch and POX controller [29]. In
addition, the POX controller includes a list of IP ad-
dresses assigned to each server statically.

Mininet emulator carried out the creation of the
virtual network topology, which is made up of three
hosts acting as web servers holding the same config-
uration to provide the same web services to the clients.
Nine hosts acted as clients attempting to access the
servers using a virtual IP address representing the

Table 3

ServerMonitor Algorithm.

ServerMonitor: Monitoring model algorithm

Input: - S, pool of servers {S0, S1, Sn-1}

- Switch, OfPortNo: OpenFlow switch with port

No.

- n, time rate adopted to count OpenFlow switch

Ports traffic information counters (n ¼ 5 seconds)

Output: - Bandwidth Consumption for each server link

Reported to the POX controller periodically

Procedure ServerBandwidthConsumption ()

Step 1 While TRUE do

Step 2 Call CollectStatisicsData ()

Step 3 Read Switch, Switch Port records

Step 4 Count rx_bytes (switch, OfPortNo)

Step 5 Count tx_bytes (switch, OfPortNo)

Step 6 Count rx_packets (switch, OfPortNo)

Step 7 Count tx_packets (switch, OfPortNo)

Step 8 Count dropped packets (switch, OfPortNo)

Step 9 BðSiÞ)
P

rx bytes� tx bytes

n
Step 10 return B(Si)

Step 11 Sleep (n units of time)

end while

Table 4

ALLRCompute Load Balancing Algorithm.

ALLRCompute: Adaptive Least Load Ratio (ALLR) load balancing

Algorithm

Input: - L, an array of the load per server ¼ (L0, L1,.,

Ln-1)

Output: - Best server to handle the incoming request

based on the Allocation of the Adaptive least

load ratio server among a pool of servers

Step 1 Call ServerMonitor (B(Si))

Step 2 Assign static weight W(Si) for Si

Step 3 LðSiÞ)BðSiÞ =WðSiÞ
Step 4 n ¼ number of servers

Step 5 for m ¼ 0 to n-1

Step 6 find minimum load sever

Step 7 if server [m] < minimum load server Then

Step 8 Exchange server [m], minimum load server

Step 9 end for

Step 10 return minimum load server

43noman, M.N. Jasim / Karbala International Journal of Modern Science 7 (2021) 40e47

service IP. If a particular client happened to request the
virtual IP (service IP), then the request would be for-
warded via the Open Flow switch to the POX
controller to make the necessary computations and
select the appropriate server to handle the request. The
proposed algorithm mainly relies on three modules
namely CollectStatisicsData, ServerMonitor, and
ALLRCompute. The algorithm updates packet header
including destination MAC and IP address of the
selected server then redirects these rules to the Open-
Flow switch, and forward the request to the port
assigned for the selected server. Accordingly, selected
server replies to the client's request through the
OpenFlow switch again. An important issue is to uti-
lize some tools running on any of the clients for
generating specific workloads. HTTPerf is a software
tool mounted on clients to measure the performance of
the Web Server hypertext transfer protocol under
stress. HTTPerf tool comes with many advantages such
as the capability to maintain and produce server
overload, the extensibility towards statistics collectors
and workload generators, and the support of the HTTP
1.1 protocol. Accordingly, HTTPerf plays an important
role in calculating parameters such as average
throughput, server reply time, server connection
length, and CPU time utilized by the client.

7. Results and discussions

This section discusses the empirical findings con-
cerning the impact of a gradual increase in client re-
quests on the performance of a load balancing system.
Results of five categories of metrics namely average
server throughput, server reply time, server connection

time, server CPU utilization, and server average queue
length, are presented and explained to validate the
assumptions considered when the dynamic load
balancing mechanism is designed. In these experi-
ments, a few numbers of requests are sent in each data-
trace, this is due to the limit of buffer for sending and
receiving data in situations where the HTTPerf tool
was adopted [30]. It is important to observe that the
differences in performance between the two dynamic
load balancing schemes other than our proposed al-
gorithm, namely Least Connection-Based and Least
Bandwidth-Based seem to be very close (less than 1%)
especially when the comparison was carried out in
terms of performance metrics.

7.1. Average Network Throughput

Average Network Throughput (A.N.T) could be
evaluated through Equation (1) [31, 32].
XNo: of Successful Packets * Average Packet Size

Total time spent in delivering that amout of data

ð1Þ

According to the global view information collected
by the POX controller basically provided by the
OpenFlow protocol, results from Fig. 2 Demonstrated a
close increment regarding average network throughput
for the three load balancing schemes especially when
the request rate was between 0 and 180. As the request
rate started to rise above 120 to 140, 160, and 180, then
our proposed scheme possessed a gradual increase of
average network throughput achieving an improvement
up to 7.25%.

7.2. Server Reply Time

Server Reply Time (R.T) [33], referred as transfer
time, which is defined as the time between the first byte
and the final byte of the response. Equation (2) illus-
trates the formula involved in the calculation of server
reply (RT) [34].

Tfbþ Tlb ð2Þ

whereas Tfb is the time of the first byte of the response,
Tlb is the time of last byte of the response. In general,
the reply time is less than the average response time
[35], and is affected by client requests. Results from
Fig. 3 revealed that as the request rate escalades grad-
ually from 0 to 120, then the performance of the three
load balancing schemes was again close to each other
with a slight improvement recorded in favor of ourFig. 2. Average Network Throughput Vs Request Rate.

44 noman, M.N. Jasim / Karbala International Journal of Modern Science 7 (2021) 40e47

proposed scheme. However, when the request rate
reached 140 and beyond, it could be obviously observed
that our proposed scheme points to clear progress in
server reply time up to 13.37%.

7.3. Server Connection Time

The next line in the output presented the server
connection time which reflected the lifetime statistics
for a successful connection [36]. The lifetime of a
connection is defined as the time between a TCP
connection initiation and connection termination. A
connection is considered successful if it had at least
one request that results in a reply from the server. Fig.
4 showed that our proposed scheme regularly improved
server connection time demonstrating an obvious
relative outperformance of up to 16.38%.

7.4. Server CPU utilization

CPU utilization [37], is exploited as the parameter
responsible for measuring server load, denoted as (U)
and determined through the use of Equation (3) [38].

BT

OT
ð3Þ

Three factors need to be taken into consideration,
OT (observation time) defined as the total server
monitoring time, BT (Business time) defined as the
total time where the server is being on during OT, and
the total number of requests completed during OT.

Fig. 5 clearly showed that the higher the request rate
to access the server, the higher the server CPU utili-
zation reported for that server. proposed scheme
improved this metric by approximately 2.5% in com-
parison with other schemes and at the same time
avoided the degradation of other metrics.

7.5. Server Average Queue length (M/M/1)

This metric is vital [39], as it assists us to be aware
about expected time delay due to the waiting time a
packet spends in a queue. Normally, servers are ex-
pected to create queues to process requests directed to
the servers. To get the length of this queue (Q), we
used Equation (4) [40].

U

1�U
ð4Þ

where U is the Server CPU utilization. After analyzing
the results shown in Fig. 6, our proposed load balance
scheme brought the attention that it reduced the server
average queue length by 14%. Due to working within
the virtual environment represented by the mininet
program to simulate the SDN mechanism, the
maximum number of users' requests was restricted to
180. Because if it exceeded that, all servers entered the
saturation stage, which caused the queues to be filled,
packets dropping, and the client re-sending. Hence, a
saturated server will operate but with less performance.
Therefore, results of the proposed algorithm

Fig. 3. Server Reply time Vs Request Rate.

Fig. 4. Server Connection Time Vs Request Rate. Fig. 5. Server CPU Utilization Vs Request Rate.

45noman, M.N. Jasim / Karbala International Journal of Modern Science 7 (2021) 40e47

improvements were close to other dynamic algorithms.
However, within the real working environment of the
SDN-Based platform, the maximum number of user
requests per second could reach higher limits like 5000
to 10000 before entering server saturation criteria.
Based on that, a wide difference in the number of client
requests between the real environment and the virtual
environment lead to a large variation in the enhanced
results of the proposed algorithm.

8. Conclusions

According to the results accomplished through this
study, it can be concluded that our proposed scheme
under SDN-Based platform is exploited server re-
sources and balancing loads in a better way in com-
parison with another load balancing schemes.
Obviously, an improvement is made regarding perfor-
mance, the main reason was due to the continuous
evaluation feature of the traffic consumed between the
servers that allowed the server with the least load to
respond to the next request. Moreover, the server
weights referring to loads of servers were not equally
distributed. Hence, servers owned different character-
istics. Moreover, it can be concluded that when the
request rate was above 180 (req/sec), the servers enter
the saturation criteria, which leads to a sudden
decrease in the transfer rate [Before the resources
exhausted, the acceptance queue of servers is not full.
Therefore, no packet losses are experienced despite of
the queue delay effect. The queue is complete and
several packets are dropped after saturation. This leads
to client retransmissions which causes even more
dropped packets. Thus, the saturated server operates
less efficiently].

9. Future work

It is possible, as future work, to implement the
proposed algorithm on any architecture in SDN-Based
platform, such as linear, single, tree, and fat tree, then
evaluating the performance through each architecture.

Acknowledgements

The authors would like to acknowledge the endless
support that has been provided by the staff of the
Software Department, College of Information Tech-
nology, University of Babylon. Furthermore, the
scholarship provided by the Middle Technical Uni-
versity, Ministry of Higher Education & Scientific
Research is gratefully appreciated.

References

[1] I.Z. Bholebawa, R.K. Jha, U.D. Dalal, Performance analysis of

proposed network architecture: OpenFlow vs. traditional

network, Int. J. Comput. Sci. Inf. Secur. 14 (2016) 30.

[2] A. Oussous, F.Z. Benjelloun, A.A. Lahcen, S. Belfkih, Big

Data technologies: A survey, J. King Saud Univ. Inf. Sci. 30

(2018) 431e448.

[3] E. ern�andez-Orallo, J. Vila-Carb�o, Web server performance

analysis using histogram workload models, Computer Net-

works 53 (2009) 2727e2739.

[4] C. Chen-Xiao, X. Ya-Bin, Research on load balance method in

SDN, Int. J. Grid Distrib. Comput. 9 (2016) 25e36.
[5] H.M. Kavana, V.B. Kavya, B. Madhura, N. Kamat, Load

balancing using SDN methodology, Int. J. Eng. Res. Technol.

7 (2018) 206e208.

[6] N. Shahzad, G. Mujtaba, M. Elahi, Benefits, security and is-

sues in software defined networking (SDN), NUST J. Eng. Sci.

8 (2016) 38e43.

[7] T.E. Emad, A.H. Morad, M.A. Abdala, Load balance in data

center SDN networks, Int. J. Electr. Comput. Eng. 8 (2018)

3086. .

[8] M. Karaku, A. Durresi, Quality of service (QoS) in software

defined networking (SDN): A survey, J. Netw. Comput. Appl.

80 (2017) 200e218.

[9] J.S. Sabiya, Weighted round-robin load balancing using soft-

ware defined networking, Int. J. Adv. Res. Comput. Sci. Softw.

Eng. 6 (2016) 621e625.
[10] M. Mehra, S. Maurya, N.K. Tiwari, Network Load balancing

in Software Defined Network: A Survey, Int. J. Appl. Eng.

Res. 14 (2019) 245e253.

[11] E.J. Ghomi, A.M. Rahmani, N.N. Qader, Load-balancing al-

gorithms in cloud computing: A survey, Journal of Network

and Computer Applications 88 (2017) 50e71.

[12] Y. Wang, X. Tao, Q. He, Y. Kuang, A dynamic load balancing

method of cloud-center based on SDN, China Communica-

tions 13 (2016) 130e137.

[13] P. Beniwal, A. Garg, A comparative study of static and dy-

namic load balancing algorithms, Int. J. Adv. Res. Comput.

Sci. Manag. Stud. 2 (2014) 1e7.

Fig. 6. Server Average Queue Length Vs Request Rate.

46 noman, M.N. Jasim / Karbala International Journal of Modern Science 7 (2021) 40e47

[14] M.E. Mustafa, A.M. Ibrahim, Load Balancing Algorithms

Round-Robin (RR), Least-Connection and Least Loaded Ef-

ficiency 1 (2017) 25e29.

[15] A.A. Neghabi, N.J. Navimipour, M. Hosseinzadeh, A. Rezaee,

Load balancing mechanisms in the software defined networks:

a systematic and comprehensive review of the literature, IEEE

Access 6 (2018) 14159e14178.
[16] A. Shukla, S. Kumar, H. Singh, Load balancing approaches for

web servers: A survey of recent trends, International Journal of

Engineering 31 (2018) 242e248.

[17] D.Y. Lee, A Study on the Flow Analysis on the Software-

Defined Networks through Simulation Environment Estab-

lishment, J. Korea Inst. Information, Electron. Commun.

Technol. 13 (2020) 88e93.

[18] M. Hamed, B. ElHalawany, M. Fouda, A.T. Eldien, Perfor-

mance analysis of applying load balancing strategies on

different SDN environments, Benha J. Appl. Sci.(BJSA) 2

(2017) 91e97.
[19] T.E. Ali, A.H. Morad, M.A. Abdala, Load balance in data

center SDN networks, Int. J. Electr. Comput. Eng. 8 (2018)

3086.

[20] P. Krishnan, J.S. Najeem, A review of security threats and

mitigation solutions for SDN stack, Int. J. Pure Appl. Math

115 (2017) 93e99.

[21] M. Afaq, S.U. Rehman, W.C. Song, A framework for classi-

fication and visualization of elephant flows in sdn-based net-

works, Procedia Computer Science 65 (2015) 672e681.

[22] M. Usman, A.C. Risdianto, J. Han, J. Kim, Interactive visu-

alization of SDN-enabled multisite cloud playgrounds

leveraging smartx multiview visibility framework, Comput. J.

62 (2019) 838e854.

[23] T. Chen, X. Gao, G. Chen, The features, hardware, and ar-

chitectures of data center networks: A survey, J. Parallel

Distrib. Comput. 96 (2016) 45e74.

[24] W. Li, W. Meng, L.F. Kwok, A survey on OpenFlow-based

Software Defined Networks: Security challenges and coun-

termeasures, Journal of Network and Computer Applications

68 (2016) 126e139.

[25] J. Xia, Z. Cai, G. Hu, M. Xu, An active defense solution for

ARP spoofing in OpenFlow network, Chinese J. Electron. 28

(2019) 172e178.

[26] G. Singh, K. Kaur, An improved weighted least connection

scheduling algorithm for load balancing in web cluster sys-

tems, Int. Res. J. Eng. Technol. 5 (2018) 1950e1955.

[27] A.M. Alakeel, A guide to dynamic load balancing in distrib-

uted computer systems, Int. J. Comput. Sci. Inf. Secur. 10

(2010) 153e160.
[28] P. Zhu, J. Zhang, Load balancing algorithm for web server

based on weighted minimal connections, J. Web Syst. Appl. 1

(2017) 1e8.

[29] W.H. Muragaa, K. Seman, M.F. Marhusin, A POX Con-troller

Module to Prepare a List of Flow Header Information

Extracted from SDN Traffic, Int. J. Comput. Syst. Eng. 11

(2017) 1305e1308.

[30] M. de la Cruz, J. Labrador, D. Dinawanao, WebSurge: A

Profile-based Stress Testing Tool with Distributed User Agents

for Web Applications, J. Comput. Innov. Eng. Appl. 1 (2016)

28e37.
[31] S.J. Jung, Y.M. Bae, W. Soh,Web performance anal-ysis of open

source server virtualization techniques, International Journal of

Multimedia and Ubiquitous Engineering 6 (2011) 45e51.

[32] D. Mosberger, T. Jin, httperf a tool for measuring web server

performance, ACM SIGMET-RICS Performance Evaluation

Review 26 (1998) 31e37.

[33] A.A. Abdelltif, E. Ahmed, A.T. Fong, A. Gani, M. Imran,

SDN-based load balancing service for cloud servers, IEEE

Communications Magazine 56 (2018) 106e111.

[34] M. Arman, Analisa Kinerja Web Server E-learning Menggu-

nakan Apache Benchmark dan Httperf, Jurnal Integrasi 8

(2016) 93e100.

[35] M. Paliwal, D. Shrimankar, O. Tembhurne, Controllers in

SDN: A review report, IEEE Access 6 (2018) 36256e36270.

[36] R. Hashemian, D. Krishnamurthy, M. Arlitt, Web workload

generation challengesean empirical investigation, Software:

Practice and Experience 42 (2012) 629e647.

[37] X. Ye, G. Cheng, X. Luo, Maximizing SDN control resource

utilization via switch migration, Computer Networks 126

(2017) 69e80.

[38] K. Sood, S. Yu, Y. Xiang, Performance analysis of software-

defined network switch using M/Geo/1 model, IEEE Com-

munications Letters 20 (2016) 2522e2525.

[39] F.R. Cruz, R.C. Quinino, L.L. Ho, Bayesian estimation of

traffic intensity based on queue length in a multi-server M/M/s

queue, vol. 46, 2017, pp. 7319e7331.

[40] T.C. Yen, C.S. Su, An SDN-based cloud computing architec-

ture and its mathematical model, in: 2014 International Con-

ference on Information Science, Electronics and Electrical

Engineering, vol. 3, 2014, pp. 1728e1731.

47noman, M.N. Jasim / Karbala International Journal of Modern Science 7 (2021) 40e47

	A Proposed Adaptive Least Load Ratio Algorithm to Improve Resources Management in Software Defined Network OpenFlow Environment
	Recommended Citation

	A Proposed Adaptive Least Load Ratio Algorithm to Improve Resources Management in Software Defined Network OpenFlow Environment
	Abstract
	Keywords
	Creative Commons License

