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Abstract Abstract 
We have investigated the conditions of quantum interferences in hydrocarbons with substituents using 
density functional theory and tight binding approximation combined with non-equilibrium Green’s function 
technique. The chosen model systems, namely benzene and tripyridyl–triazine molecules, have 
elucidated three prominent rules. The ‘first rule’ is the occurrence of inevitable, destructive quantum 
interference when 1,3-benzene ring incorporates single substituent at the fifth site. The ‘second rule’ is the 
chaotic occurrence of quantum interferences due the position and/or type of the substituents. The ‘third 
rule’: the substituents decrease (increase) the probability of destructive (constructive) interferences 
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1. Introduction

Exploiting quantum interference (QI) in molecular
electronics represents a pivotal factor that essentially
defines the quality of future electronic circuits [1e4].
These metal-molecule-metal devices allow electrons to
pass from one electrode to the other via a central
molecule in a coherent phase [5e9]. As a result,
quantum interferences occur between wavefunctions of
the passing electrons and wavefunctions of the mole-
cule localized states. These interferences appear in the
spectra of the transmission probability as specific
patterns, such as Fano [10e14], Breit-Wigner [15e17],
and Mach-Zehnder [18,19] resonances. The electronic
resonances can substantially be controlled [11,20,21]
utilizing advanced fabricating schemes such as chem-
ical modification [22] so that the consequent electrical
conductance of nanoscale devices can be effectively
ameliorated [23e25]. Therefore, understanding QI and
the corresponding controlling conditions formulate the
limits for practical engineering of advanced molecular
junctions. A well-known strategy used to tune the
electrical properties of molecular junctions is to adjust
the resonances of the transmission in the vicinity of the
Fermi level [23,26]. A typical approach to employ such
a strategy is Mach-Zehnder quantum interactions.
These interferences emerge from the recombination of
sub-waves resulting from a single incoming de Broglie
wave when it enters a multipath junction. The shattered
fractions of the original incident wave suffer from
phase shifting because they have flown through
different paths with different lengths before they
completely merge again [18]. For instance, cyclic-
molecules such as benzene exhibit variations in their
conductance (s) values as a consequence of para, meta,
and ortho (spara > sortho > smeta) connections
[18,27e31]. Thus, the ability to manipulate Mach-
Zender QI represents a promising technique to control
the electrical properties of nano-junctions. Researchers
worldwide have previously focused on the general
rules of Mach-Zehnder resonances and their tuning
conditions in, for example, electronic [32e38] and
optoelectronic circuits [39e41]. On the other hand,
Garner et al. [42] have found that QI patterns do not
follow the traditional para, meta, and ortho rules of
hydrocarbons when a single substituent is introduced
in the parent molecule. Furthermore, Sangtarash et al.
reported similar unusual behavior when a nitrogen
atom is deliberately substituted in the structure of

polyaromatic hydrocarbons [43]. Hence, this work
aims at mapping the new QI behavior in hydrocarbons
with substituents. To fulfill such aim, we have inves-
tigated QI patterns in a benzene ring and a recently
fabricated tripyridyletriazine (TPTZ) molecule [44].
In the case of the benzene molecule, we investigated
25-doped configurations and three classical intact para-
, meta-, ortho-connected structures. The present results
denote three rules in the currently studied molecules.
Rule-1, introducing one heteroatom may increase the
conductance by two orders. Rule-2, the type and
location of the substituent generate unpredictable
manifestation of QI. Rule-3, inevitable and invariant
DQI associates with the substituent locationdsite 5 in
benzenedregardless of the connectivity type (para,
meta, or ortho). We have also found that the probability
of destructive QI descends significantly from 35% in
pure benzene to less than 10% in doped rings. There-
fore, the rules envisage QI and electrical conductance
in hetero-hydrocarbons provided that the type and
location of the hetero-atom and the connectivity of the
backbone molecule are predefined.

2. Theoretical methods

The density functional theory within the quantum
chemistry package (SIESTA) [45] has been employed
to optimize the structure of benzene and
tripyridyletriazine molecules. We have added thiol
(SH) moiety as a linker in the case of benzene alone.
Thus, in the case of benzene, the term “molecule” will
refer to the benzene-dithiol unit. The optimization uses
the generalized gradient approximation (GGA) with
the PerdeweBurkeeErnzerhof (PBE) functional for
exchange and correlation [46], double zeta polarized
(DZP) basis sets for the atoms of the molecule plus
anchor (carbon, nitrogen, hydrogen, and sulphur), and
double zeta (DZ) basis sets for the gold atoms of the
leads. Such a reduction in the size of the basis sets of
the leads' atoms saves time and insignificantly affects
the conductance [47]. In addition, the DFT calculations
implemented norm-conserving pseudopotentials and
real space grid with 200 Rydberg mesh cut-off. Each
molecule, benzene-dithiol or TPAZ, was first opti-
mized in the gas phase and considered fully relaxed
when all forces on atoms were below 0.04 eV/Ang.
The leads consist of 84 Au atoms and extra four Au
atoms added to each surface close to the molecule. The
role of these four extra Au adatoms at the surfaces is to
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create an Au tip directly facing the molecule to elim-
inate any dependence of the transmission on the
structure of the contacts [48]. The adopted Au-adatoms
structure does not mean that our results will be
different for flat or irregular leads, it only means that
the present calculations were done under the most
highly reduced variations. Then, the optimum bond
length between the tips’ atoms of the leads and the
molecule was obtained by varying the distance be-
tween them until the whole system reaches its mini-
mum energy. The thiol units interact directly with the
gold leads due to their strong AueS bonds (2.4 Å) [49]
after losing their hydrogen atoms [50,51]. At the
optimized distance, we attached the molecule to the Au
adatoms, kept the system frozen, and ran SIESTA to
yield a mean-field Hamiltonian of the system. The
Hamiltonian was then used to calculate the electrical
properties of the molecule using GOLLUM, a quantum
transport code based on the non-equilibrium Green
function (NEGF) method [52].

In the phase-coherent condition, GOLLUM calcu-
lates the transmission coefficient T(E) of the molecular
junction using the relation, TðEÞ ¼
Tr½GRðEÞGRðEÞGLðEÞGRyðEÞ�;where, GR,L is the level
broadening which arises from the interaction between
the molecule and both right (R) and left (L) leads. The
retarded Green function is GR ¼
ðES� Hs �

P
L�P

RÞ�1, where E is the energy, HS

is the Hamiltonian of the scattering region, S is the
overlap matrix, and SL,R is the self-energy of the left
(right) lead. Using Landauer formula, the electrical
conductance takes the form,
sðEÞ ¼ so

R
TðEÞ½ �vEf ðEÞ�dE; where so ¼ 2e2/h is

the quantum conductance, f(E) is the Fermi-Dirac
function, e is the electron charge, and h is Plank's
constant [52].

To have insight into the DFT outputs, we calculated
the transmission coefficient of tight-binding (TB)
models of benzene and TPTZ molecules. These cal-
culations are reasonably accurate, inexpensive, and
straightforward since the models are defined by allo-
cating onsite energy for each site, considering coupling
energy with all first neighbor sites, and neglecting all
coupling elements between any non-adjusted sites.
GOLLUM can perform first-order TB calculations,
however, we preferred using Olife code. It requires
simple inputs, offers a friendly Graphical User Inter-
face (GUI), and takes efficiently short time to produce
transmission data. Furthermore, Olife similarly follows
the same Green function approach that is incorporated
in GOLLUM. More detail about Olife and its meth-
odology can be found in Ref. [53].

3. Results and discussion

To present a systematic study of the effect of sub-
stituents on molecular QI, we have considered the most
possible locations of the dopants in the structure of the
benzene ring. All structures with and without sub-
stituents were 28 models, see Fig. 1. We took advan-
tage of the symmetry of the molecule so that repeated
structures were omitted. For example, the substituted
site in model 4 (M4), Fig. 1, may take the locations
two, three, five, and six. However, due to symmetry, we
have only considered position two. Fig. 1 also shows
that the first three cases refer to the previously
mentioned para-, meta-, and ortho-connections,
respectively, while the other 25 structures represent
other probable sites that the substituents may occupy.
For simplicity, the substituted site of the benzene was
represented by a single heteroatom (nitrogen); how-
ever, these substituents may take different chemical
formulae, and/or multiple dopants may simultaneously
take various locations [42]. Within the formula of the
tight-binding (Hückel) model, the substituent is simu-
lated by allocating onsite energy to the specified site
different from the rest of the other sites. For instance,
the substituent (nitrogen atom) in Fig. 1 was set to be
equal to 1.00 while all other onsite energies were zeros.
The coupling matrix elements in the 28 models were
�1.00 in both left and right leads, �0.50 in the mol-
ecule's rings, �0.40 between rings, and �0.30 between
the left/right lead and molecule. It is worth mentioning
that the above onsite and coupling energies were fixed
for all structures and the only variables we had
changed were the number of substituents and their
potential locations.

Comparing the transmission coefficients at the
center of the band of panels (a) and (c) in Fig. 2 il-
lustrates convergent values near the predicted Fermi
energy. Such a trend is inconsistent with previous
theoretical calculations of Bauschlicher et al. [47] and
Sangtarash et al. [54]. The former studied the effect of
chlorine substituents on the currentevoltage curve of
1,4-benzedithiol molecule, and the latter elicited the
impact of nitrogen on thermoelectric properties of
hydrocarbons. Besides, we have obtained a reasonable
agreement with the experimental results of Ven-
kataraman et al. [55]. However, Venkataraman et al.
showed different arrangements of CH3 substituent,
where they have found that the conductance increases
with the number of substituents. In other words, the
conductance (s) of 1,4-diaminobanze would have the
following sequence: sð4�CH3Þ >sð2�CH3Þ >sð1�CH3Þ[55].
In comparison, we find that

84 A.A. Al-Jobory, Z.Y. Mijbil / Karbala International Journal of Modern Science 7 (2021) 83e89



Fig. 2. Tight binding transmission coefficient corresponds to benzene models shown in Fig. 1. In all panels, the black, blue, and red curves

represent models with para-, meta-, and ortho-connection, respectively.

Fig. 1. Illustrates the most possible locations for the substituent (nitrogen atom) to embed in the benzene molecular structure. The last model (M0)

depicts the labeling of the benzene, such that all other structures similarly follow.
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sð2�CH3Þ > sð1�CH3Þ > sð4�CH3Þ, which is similar to the
same measurements of 2-fluoro-1,4-diaminobenzene
and 4-fluoro-1,4-diaminobenzene [55]. Furthermore,
we obtained a reasonable agreement with the experi-
mental measurements of Vazquez et al. but not with the
theoretical results [56]. The group of Vazquez
measured the conductance of was 1,4-bis(methyl (thio)
methyl)ebenzene. They connected the main benzene
ring to external electrodes in para-connection, and they
separately studied the effect of adding four fluorine (F)
atoms and single methoxy (OMe) unit on the conduc-
tance of the junction. Experimentally, Vazquez et al.
found that the conductance take the following con-
sequence:spure ¼ sOMe >sð4�FÞ whereas, the theory
calculations presented different sequence, sð4�FÞ >
spure > sOMe, see table (1) in Ref. [56]. Such contro-
versial results of the transmission imply a very
complicated phenomenon governed by a large number
of variables including: the position, type and confor-
mation of the substituent and molecule, the surround-
ing environment, together with the formation and
quality of the connection between the active molecule
and the leads. Therefore, one cannot always simply
deduce the behavior of the transmission coefficient of
doped hydrocarbons.

The second model system is tripyridyletriazine,
TPTZ. The reason for choosing the TPTZ molecule
is firstly related to the engineering of conventional
electronic units, such as amplifiers [57] and transis-
tors, which require a three-terminal component.
Therefore, we have chosen a molecule with three-link
groups that can be attached to three external elec-
trodes, namely source, drain, and gate [58e61]. The
second reason is the general analogy between the
TPTZ core unit, so-called triazine, and benzene ring.
In other words, the structure of TPTZ can be deci-
mated to look like model M27 of the benzene ring in
which two carbons were attached to two external
leads, and the left four carbon atoms were substituted/
doped, see Fig. 1. Similarly, using the DFT and TB,
we have investigated the electrical characteristics of
TPTZ as shown in Fig. 3. Experimental measurements
of the electrical conductance of TPTZ done by Iwane
et al. reveal three distinctive conductance states (high,
medium, and low) depending on the path length which
the current takes through the molecule [44]. A high
conductance state (shortest path) emerges when the
input lead and output lead are attached to the central
triazine unit. Triazine (C3H3N3) is similar to the
benzene ring but contains three nitrogen atoms and
three carbon atoms attached to three correspondent
hydrogen atoms.

The medium state (the modest path) occurs when
one of the leads is attached to the central ring, and the
other lead is connected to one of the external rings. The
low conductance state (the longest path) results from
the configuration in which both leads were linked to
different peripheral rings. A very prominent feature of
all configurations of the TPTZ is the pinned peak close
to the Fermi level of the leads. The literature clearly
shows that this feature is generic in the molecules
containing nitrogen [50]. To verify the effect of nitro-
gen atoms on the transmission, we have first consid-
ered a model system without any dopant. Such a pure
hydrocarbon molecule named 1,3,5-triphenylbenzene
(TPB) is similar to the TPTZ molecule but without any
nitrogen atoms. Fig. 3c shows the transmission of the
TPB molecule, which presents symmetric transmission
curves with two destructive QI at the Fermi level due to
the meta connection. However, when we changed the
onsite energy of the model system to simulate the
TPTZ molecule, we can see a fixed peak next to the
Fermi level appears prominently, as shown in Fig. 3b.
Therefore, we deduce that the resonance next to the
Fermi level is primarily related to the dopant and
minorly to the geometry of the molecule.

The next characteristic of Fig. 3 is that all
destructive QI disappears as a result of the incorpora-
tion of the substituents in the molecular structure of
TPTZ. This disappearance can be viewed in terms of
the structure of similar models such as M27 and M28,
which clearly do not show any destructive interference,
see Fig. 2. Furthermore, the conductance of M27 is less
than the conductance of M28, a behavior that echoes
the low and medium states of TPTZ, respectively.

4. Conclusions

Using density functional theory and nearest
neighbor tight bind method, we have investigated
quantum interference rules in 30 molecules, including
benzene, tripyridyletriazine, and 1,3,5-triphe-
nylbenzene. We have found that for the chosen tight
binding conditions, destructive quantum interferences
only appear in two (meta attached) 1,3-six-mumbered
models. The benzene model shows destructive QI
when a single substituent occupies site number five,
and the tripyridyletriazine model exhibits destructive
QI when it incorporates three substituents at sites two,
four, and five. Besides, the results show (Rule-3) that
adding substituents to hydrocarbons decreases the
probability of occurrence of destructive quantum in-
terferences to less than 10% in benzene molecule and
zero percent in tripyridyletriazine molecule. Rule-2
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points out to the unpredictable behavior of quantum
interferences due to the position and type of sub-
stituents. The last rule (Rule-1) is the appearance of a
single, invariant, destructive QI associated with a site-
five-substituted 1,3-benzene molecule. The present
results reveal that doping the functional molecule with
one heteroatom can generally enhance the conductivity
by approximately two orders. The study also de-
termines the locations we should care about to avoid or
create destructive QI and to tune the electrical
conductance.
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