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Novel phenolic deep eutectic solvents for desulfurisation of petrodiesel Novel phenolic deep eutectic solvents for desulfurisation of petrodiesel 

Abstract Abstract 
In this work, a novel production of “deep eutectic solvents (DESs)” has been utilised for the elimination of 
sulfur composition, particularly from crude oil by liquid-liquid extraction. Herein, we present the first 
demonstration of the use of novel DESs formed by phenol, catechol, resorcinol and o-cresol as “hydrogen 
bond donors (HBDs)” with trimethyl hydroxyammonium chloride (ChCl) as the hydrogen bond acceptor to 
affect the efficient separation of organosulfur compounds from diesel. These DES electrolytes have been 
applied for the sulfur extraction from Iraqi real diesel fuel as determined using X-ray florescence sulfur 
measurements. The optimisation condition factors in this research have been studied, containing reaction 
time, the temperature of extraction process, the ratio of mass of diesel to DES and regeneration of DESs. 
The results indicated that phenol-based DESs extracted more than 38% of S-compounds from true diesel 
fuel when the mass ratio DES:fuel was 1:2 at 55 °C. Anhydrous ferric chloride (FeCl3) was also utilised as 
a catalyst in this work, where it was demonstrated that charge-dipole interaction between the DES and 
sulfide compounds was the key driving force behind the desulfurization process. We have shown that the 
extraction efficiency could be summarised as o-cresol + ChCl < catechol + ChCl < resorcinol + ChCl < 
phenol + ChCl. More than 44% of sulfur species could be removed when a 1:1:1 molar ratio of ChCl: 
phenol: acetic acid was utilised with H2O2 as an oxidant. 
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1. Introduction

With the current state of development of the modern
world, petroleum refineries need to produce environ-
mentally acceptable fuels due to the existence of un-
desirable and hazardous emissions associated with
their combustion [1], the emissions from which contain
toxic sulfur-based gases like SOx, which are produced
from the sulfur species combustion. The combustion
products can mix with water vapour in the air and give
rise to acid rain [2,3]. The presence of sulfur species
can result in major problems with regard to public
health, and owing to the fact that adsorption of sulfur
species on the active positions of catalysts during re-
finery chemical processes can lead to deactivation [4].

For the reasons mentioned above, the elimination of
sulfur materials has become a particularly important
issue for researchers [5]. Therefore, the purpose of the
research is to reduce sulfur compounds from petroleum
fractions to a minimum ppm level. Amongst the most
main catalytic processes that the petroleum industry
uses for the extraction of sulfur-containing materials
are hydrodesulfurization (HDS), which has been uti-
lised for around 80 years. In recent years, many addi-
tional developments or modifications through several
novel ideas about hydrodesulfurization catalysts have
been introduced in commercial areas to improve the
performances of these processes [6]. However, owing
to the lack of reactivity of certain refractory organo-
sulfur compounds (thiophenic compounds), the HDS
process has historically been unable to remove them
completely [7]. Thus, researchers have been constantly
searching for alternative methods to HDS including
extractive [4,8], oxidation [9,10], adsorption [11,12],
and biodesulfurisation [13,14], of which extractive
desulfurisation appears to be the best [15] owing to the
advantageous process characteristics such as low
pressure, low temperature, elevated extraction rate,
appropriate recycling of extractants, no hydrogen
consumption and the possibility to reuse extracted
compounds as raw materials. Over the last three de-
cades, different ionic liquids (ILs) based on extractants
have been utilised for extraction sulfur compounds in
fuels and as a complementary part of HDS such as
imidazolium [16], pyrrolidinium [17], pyridinium [18],

and phosphonium [19]. However, these liquids have
many drawbacks to their experimental application,
regeneration and recycling after utilisation, as well as
being expensive to prepare [20e22].

Recently, DESs have been successfully utilized to
extract sulfur and nitrogen compounds from petroleum
derivatives [23]. It is well-known that the constituents
of DESs are biodegradable, cheap and environmentally
friendly. Thus, these solvents are significantly used in
different aspects. Ionic liquids and DESs are similar in
terms of their physical and chemical properties,
therefore, applications of these new solvents have been
increasing considerably, especially in desulfurization
progression as they are biodegradable and readily
available [24,25].

“Deep eutectic solvents (DESs)”, as a modern kind
of green extraction solvent, might represent an alter-
native solvent to ILs for the sulfur removal from fuels
[26e28]. DESs are low melting point solvents due to
complex formation between mixtures of Brønsted and
Lewis bases and acids [29,30]. They are considered
alternatives to the more traditional volatile organic
solvents and ionic liquids [31,32] as extractants in the
extraction processes due to their properties being well
suited to such processes. DESs are known as green
solvents because they have low-cost production, are
easy to prepare, are chemically and thermally stable,
non-toxic, biocompatible, and biodegradable, and have
high conductivities [33]. These solvents show excellent
performance in many industrial applications such as
metal extraction as they are capable of dissolving metal
salts, and can be used in the extraction of non-
hydrocarbon species from petroleum products
[27,29,34]. Furthermore, DESs are extensively
employed in a wide range of fields in particular, metals
electrodeposition [35e38], polymer synthesis [39e42],
electropolishing [43], and metal recycling [44]. A
specific extraction process like desulfurisation is one of
the areas where DESs have seen extensive use [45].

The purpose of the current investigation was to
reduce the amount of sulfur-containing materials from
real diesel fuel in Erbil (a city in Iraq) by liquideliquid
extractions utilising novel phenolic-based deep
eutectic solvents for the first time. Initially, sulfur
species are extracted from local diesel fuel using four
deep eutectic solvents. Here, the DESs which served as
extractants were phenol, catechol, resorcinol, and o-
cresol, which acted as hydrogen bond donors to choline
chloride. These DESs provide the greatest ability to
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extract sulfur compounds. In the second part, the ex-
tractions were carried out using ferric chloride (FeCl3)
and hydrogen peroxide (H2O2) as the catalyst and
oxidising reagent, respectively. Therefore, various
factors such as functional group position of HBDs,
catalysts, oxidizing agents, temperature, and DES:-
diesel fuel molar ratios were utilised to optimize
desulfurisation processes.

2. Material and methods

2.1. Material

All chemical materials used in this study are shown
in Table 1 and were used as received.

The fuel used in this research was a hydrotreated
diesel produced by Kar Company (Kar Refinery, Iraq)
with a total sulfur content of 0.0573%. Table 2 illus-
trates the physicochemical features of the diesel.

2.2. Methods

DESs were synthesised in a similar manner to that
reported previously [46]. A mixture of ammonium salts

and the hydrogen bond donors are prepared regarding
to the specified salt:HBD molar ratio to form a ho-
mogeneous liquid. Choline chloride (ChCl): catechol
was synthesised by combining ChCl with catechol in
an equal molar ratio. The mixture was placed on a hot
plate, heated, and stirred by a magnetic constant stirrer
(500 rpm) at ca. 80 �C until a clear uniform electrolyte
was performed. The same strategy described above was

Table 1

Structure, purities and sources of materials used in this research.

Chemicals Structure Source Purity % CAS registry number

Phenol Thomas Baker 99 108-95-2

Catechol SigmaeAldrich �99 120-80-9

Resorcinol SigmaeAldrich 99 108-46-3

O-cresol SigmaeAldrich �99 95-48-7

Hydrogen peroxide H2O2 Scharlau 50 7722-84-1

Ferric chloride FeCl3 SigmaeAldrich 97 7705-08-0

Choline chloride SigmaeAldrich �98 67-48-1

Acetic acid CH3COOH Scharlau 96 64-19-7

Table 2

Some basic characteristics of the diesel fuel employed in this research.

Characteristic Value Test methods

Colour 1.0 ASTM6045

Specific gravity @ 15.5 �C / g ml�1 0.839 ASTM4052

Total sulfur content / % 0.0573 ASTM D4294

Flash point / �C 61 ASTM D6450

Kinematic viscosity @ 40 �C / mm/sec 2.91 ASTM D7042

Cetane number 52.4 ASTM D4737

Cetane index 53.2 ASTM D976

Pour point / �C �15 ASTM D97

Initial boiling point (IBP) / �C 169 ASTM D7345

Final boiling point (FBP) / �C 362 ASTM D7345

Aromatic containing compounds / % 25.6 ASTM D1319

Recovered / Vol% 98 ASTM D7345

Residue / Vol% 2 ASTM D7345

101I.B. Qader et al. / Karbala International Journal of Modern Science 7 (2021) 100e108



used for ChCl:phenol, ChCl:resorcinol and ChCl:o-
cresol, except for the molar ratios of ChCl:HBD which
were 1:2, 1:1, and 2:1, respectively.

In the extraction experiments conducted in this
study, DESs with real diesel fuel (wt/wt %) were
combined in a 1:2 ratio and stirred for different reac-
tion times at 30 ± 2 �C. In addition, the amount (X) of
sulfur compounds extracted at 1 atm pressure was
measured as follows:

X¼Ci�Cr

Ci
*100%

where Ci is the original sulfur concentration in diesel
fuel, and Cr is the remaining sulfur concentration in the
diesel phase after the reaction had continued for a
certain amount of time. The similar strategy was con-
ducted after adding FeCl3 and H2O2 materials into the
DES phase. The content of sulfur in the treated diesel
fuel phase before and after extraction was measured
utilising X-ray fluorescence spectroscopy (Tanaka Sci-
entific Sulfur Meter model RX-360SH) and the ASTM
D4294 method. The true diesel fuel was received from
the Ministry of Natural Source/Iraqi Kurdistan Region.
The applicable sulfur concentration of this method is at
least 10 ppm. The error bars for all the data are also
given. Aromatic-containing compounds in diesel were
measured by FTIR analysis (MiniScan VP Xpert ASTM
E1655 correlation to ASTM D1319 from Grabner
Company).

3. Results and discussion

3.1. Effect of functional group position

Functional groups and intermolecular forces pri-
marily control the extraction. In this experiment, four
extracting agents, which are closely correlated DESs,
were used. These DESs include phenol, catechol,
resorcinol, and o-cresol as the HBDs mixed with ChCl
separately. It may be noted that the eutectic point for
each mixture is different. For instance, phenol and o-
cresol form eutectic mixtures with ChCl at a molar
ratio of 2HBD:1ChCl, because each molecule of
phenol and o-cresol contains one OH group, therefore,
two molecules of these compounds are required to
produce a eutectic mixture with ChCl separately via
the chloride ion (Cl�), while it is apparent that the
eutectic mixtures for the diols (catechol and resorcinol)
occur in a 1:1 ratio with ChCl. This is due to the fact
that these diols, as the HBDs, contain two hydroxyl
groups. Therefore, one molecule of the latter can form
two hydrogen bonds to produce a eutectic system that

can complex each chloride ion. This result is exactly
same as the eutectic systems formed from carboxylic
acids and choline chloride described in the literature
[47].

In the current study, the effect of various phenolic
hydroxyl groups on the removal of sulfur species into
DESs was performed at 30 �C. The diesel fuel and
DESs phases were mixed in a mass ratio of 2:1,
respectively, for 1 h with a continual stirring rate of
500 rpm. The highest extraction efficiency for sulfur
was achieved in the 2Phenol:1ChCl eutectic system,
while the 2o-cresol:1ChCl eutectic system has the
lowest removal efficiency for sulfur, as demonstrated
in Fig. 1. These data indicate that the extraction
capability is different for each of the four systems,
which could be related to the different types of func-
tional groups present, the composition of the mixture,
and how these mixtures are formed by the HBD and
anion relation. Figure 1 shows that the extraction ef-
ficiencies for the sulfur contained in real diesel have
the order: o-cresol þ ChCl < catechol þ ChCl <
resorcinol þ ChCl < phenol þ ChCl.

Owing to the electron charge distribution in the
phenol molecule, the maximum amount of sulfur
removed (20%) was achieved using the DES contain-
ing phenol. Thus, with a decrease in the electron
density on the oxygen, the bond between hydrogen and
oxygen becomes weaker and then the proton can be
weakly donated.

Another possible explanation, in addition to that
given above, is that the mixture of o-cresol þ ChCl
showed the lowest extraction efficiency owing to the
existence of the methyl (-CH3) group on the HBD,
which is a weak electron donating group and which

Fig. 1. Sulfur removal as a function of DES at 30 �C. The ratio of

mass was 1 DES: 2 fuel for 1 h and the stirring rate was 500 rpm. The

error bars have been taken for three readings.
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increases the electron density on the phenolic ring.
Therefore, the bond between hydrogen and oxygen
becomes stronger. As a result, the sulfur removal ef-
ficiency was reduced. Chen and co-workers found that
sulfur extraction by ILs can be achieved due to the p-
electron density on the sulfur species [48]. This may
suggest that the presence of inter- and intramolecular
hydrogen bonding in catechol or resorcinol þ ChCl
weakened the interaction between p-electron density
on the sulfur species and catechol- or resorcinol-based
DESs. Therefore, the consequent extraction of sulfur is
relatively low when using catechol þ ChCl and
resorcinol þ ChCl mixtures compared to the
phenol þ ChCl mixture. Overall, we conclude that the
functional groups and their positions play an essential
role in the sulfur extraction processes.

3.2. Effect of H2O2 and FeCl3 as catalysts on the
sulfur extraction process

Yang et al. investigated the use of H2O2 in specific
amounts, which was found to increase desulfurisation
due to the formation amount of the species of catalytic
present [49]. Similarly, Al-Shahrani and co-workers
showed that H2O2 as a catalyst is suitable for the sulfur
removal in fuel [50]. To investigate the effects of H2O2

as an oxidant on the desulfurisation of real diesel,
experiments were achieved at 30 �C and under similar
reaction circumstances as previously used with a diesel
8:1 oxidant molar ratio, as shown in Fig. 2.

The sulfur removed from the diesel increased with
the adding of H2O2 and varied depending on the
phenolic DES under consideration. A comparison of
the two results from Figs. 1 and 2, respectively, it can
be observed that owing to the reaction of H2O2, as an

oxidizing agent, with all DES systems, the desulfur-
isation ability decreased due to the break down the
hydrogen bond interaction between ChCl and HBDs,
so a new product might be formed between H2O2 and
HBD. The extraction of sulfur from diesel into mix-
tures of catechol þ ChCl and phenol þ ChCl with
H2O2 is lower than that of those mixtures without
H2O2. This can be explained by the fact that the two
adjacent hydroxyl groups existed in catechol forming
an intramolecular interaction. Hence catechol-based
DES weakly reacted with H2O2. The extraction of
sulfur is relatively similar using phenol þ ChCl and
resorcinol þ ChCl with H2O2.

In addition to using H2O2, previous studies found
that the use of ferric chloride (FeCl3) as a catalyst also
has an important role in desulfurization. For instance,
sulfur compounds were significantly removed from
diesel fuel using FeCl3 when the amount of Fe3þ

increased in the organic phase [51]. Therefore, Fe (III)
has been utilised in this work. As can be shown from
Fig. 3, the use of FeCl3 has a relatively low influence
on the extraction of sulfur species, where catechol- and
o-cresol-containing DESs had extraction abilities of
9.2 and 1.3%, respectively. This might be due to the
fact that these HBDs were blocked by H2O2 at this
temperature. As a result, the colours of the DESs
turned black after peroxide addition.

3.3. Optimization conditions

3.3.1. Influence of temperature
In general, temperature is one of the significant

factors affecting sulfur removal efficiency. Caero et al.
investigated the removal of aromatic sulfur-containing
species from a fuel phase as achieved at a temperature

Fig. 2. Sulfur extraction from diesel fuel using DESs and H2O2 at

30 �C. The ratio of mass was 1 DES: 2 fuel, with the reaction allowed

to continue for 1 h at a stirring rate of 500 rpm and a molar ratio of

diesel: oxidant of 8:1. The error bars have been taken for three

readings.

Fig. 3. Effect of FeCl3 and H2O2 substances on the sulfur removal-

based molecules. The mole proportion for DES: fuel was 1:2. The

time of extraction process was 1 h at 30 �C whilst stirring at 500 rpm.

The error bars have been taken for three readings.
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of reaction of around 70 �C [52]. Similarly, Shiraishi
et al. reported that the desulfurisation of fuel into the
extractants phase increases as the reaction temperature
increases [53]. To determine the optimal temperature
for extractive desulfurisation, different temperatures
were used for the extraction. Figure 4 illustrates the
influence of temperature on the desulfurisation of the
chosen DES (2 phenol:1 ChCl) from diesel oil. The
diesel and DES phases were combined for 1 h utilising
a continual stirring rate (500 rpm) and a 2 diesel fuel:1
DES (2 phenol:1 ChCl) mass ratio. From the resultant
data, it can be shown that there were no significant
differences in sulfur extraction efficiency from real
diesel into a phenol-containing DES when increasing
the extraction temperature from 30 to 55 �C. This study
shows the extraction percentage is only slightly
increased from 20% to 23.2% as a result of increasing
the temperature of the solution.

3.3.2. Influence of reaction time
The influence of the time of extraction on sulfur

species was probed in this study. The experiment was
conducted at 30 �C with a 500 rpm stirring speed and a
mass ratio of the phenol þ ChCl to the fuel of 1:2. The
data are given in Fig. 5, which shows that the equi-
librium extraction probably can be obtained in 3 h for
the DES-based extraction desulfurization process.

Obviously, it can be seen from the above figure that
phenol:ChCl showed a comparatively low increase in
sulfur removal performance. For instance, the total
sulfur removal efficiency was 18.9% at a 30 min re-
action time and became 23.2% after three (3) hours.
The low increase in extraction ability could be

attributed to the following aspects. Firstly, the extrac-
tion reaction probably reaches to equilibrium state at
around 1 h, and therefore the efficiency of the desul-
furisation becomes relatively slow, as noted by Abbott
and co-workers [30]. Moreover, the major reasons for
the lack of extractive desulfurisation in treated real
diesel fuel are explained in this study. As mentioned in
Table 1, 25.6% of diesel is aromatic compounds, some
of which might be presented like phenanthrenes as
polyaromatic compounds which hinder or prevent
extractive desulfurisation, as shown by Xiao and co-
workers [54]. This is due to the high aromatic com-
pounds in diesel reducing the cetane number to
52.3434, which has a negative effect on the fuel
quality.

Similarly, Xu and Yu and co-researchers found that
the comparatively high quantity of water in real diesel
fuel requires additives to remove it. However, these
additives have a negative influence on desulfurisation
[54,55]. In addition, owing to the complicated
conformation of commercial diesel, including impu-
rities made up of various aromatic species, organic
nitrogen and oxygen species, the sulfur removal effi-
ciency decreases. Moreover, the existence of olefins
and aromatic materials in real diesel makes the fuel
more complex which has a direct negative impact on
the extraction of sulfur species [56,57].

3.3.3. Influence of DES/fuel mass ratio
In terms of industrial application, reducing the mass

of the S-extractants to a minimum is essential. To in-
crease the removal efficiency of the sulfur molecules,
four various mass ratios of “deep eutectic solvents”
(phenol þ ChCl)/fuel were investigated in terms of

Fig. 5. Elimination of sulfur species as a function of reaction time.

DES:fuel molar ratio was 1:2; extraction time 1 h; and stirring speed

was 500 rpm at a constant 30 �C.

Fig. 4. Sulfur species' extraction efficiency as a function of tem-

perature; the time of an interaction was 1 h and stirring speed was

500 rpm, and the molar ratio of the polar phase to the nonpolar phase

was 1:2.
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their desulfurization capabilities, as found in Fig. 6. As
indicated in this figure, the percentage of sulfur ma-
terials extracted from the diesel fuel into the phenol-
ChCl solvent was 18% when the ratio of mass of the
fuel:DES was 1:3. The extraction efficiencies reached
29% and 31% when the ratio of extractant: fuel was 1:1
and 2:1, respectively. This clearly shows that as the
amount of the extractant became larger, the extraction
efficiency increases.

The influence of the H2O2 substance as an oxidizing
agent to the sulfur composition that exist in diesel was
also studied in different molar ratio at 50 �C. Figure 7
illustrates the sulfur removal as a function of nH2O2/nS
at 50 �C using 2diesel: 1(phenol þ ChCl þ acetic acid

at 1:1:1 M ratio) as catalyst. In this experiment, we
added acetic acid into DES in order to form polar
sulfone and sulfoxide via H2O2 which strongly interact
with phenol-based DES and enhance the extraction
process of sulfur from diesel as has been reported in
the literature. It can be noted that the extractive
desulfurization process increased as the mole (n) ratios
of H2O2 to sulfur increased from 3 to 9.

As indicated in Fig. 7, the best result for sulfur
extraction was 44.1%, obtained for the nH2O2/nS of
9 at 55 �C. Owing to the transfer restriction in liquid-
liquid-phase reaction systems, the oxidant is
commonly employed in additional of the stoichio-
metric ratio. In addition, some of the hydrogen
peroxide decomposes to O2, H2O and some side re-
actions will occur in the oxidation of N-compounds
present in diesel [58]. As mentioned in Table 1, 25.6%
of diesel contains aromatic compounds. Therefore,
according to Kok-Giap's group, some oxidants are
consumed in epoxy formation with aromatic hydro-
carbons, and therefore the influence of H2O2 on the
oxidation of sulfur species is relatively slow [59].

3.4. Regeneration of DESs

Recycling of the consumed DESs after extractive
desulfurization is clearly essential [60]. This experi-
ment was carried out at 30 �C at a stirring rate of
500 rpm for 1 h and with a mass ratio of
phenol þ ChCl: fuel of 1:2.

After completed extraction process for each sample,
the ChCl: phenol was regenerated and was reutilised
up to three times. This indicates that the liquid can be
regenerated without any reduction in the removal po-
tential over all three cycles. Regeneration of the used
phenol:ChCl solvent was achieved by extraction using
diethyl ether in a rotary evaporator and, after recycling,
the DES composition was found to have remained
unchanged in each instance. It can be observed that the
phenol:ChCl as DES could be used at least three times
without decreasing extraction efficiency.

4. Conclusions

In this research, the extraction of sulfur materials
from real diesel into a number of DESs was carried out
by liquideliquid extraction. Four hydrogen bond do-
nors, namely phenol, catechol, resorcinol, and o-cresol,
were used to form DESs in different molar ratios with
ChCl as a quaternary ammonium salt. The HBDs used
in this work have an essential role in extraction pro-
cesses in different practical areas. Studies on the effect

Fig. 7. Influence of nH2O2/nS on the extracted sulfur in diesel. The

conditions of an interaction: 2 diesel - 1 ChCl-phenol system;

T ¼ 55 �C; no. of moles of H2O2 for nH2O2/nS equal to 3, 5, 7 and 9,

respectively, reaction time: 1 h and stirring rate of 500 rpm. The error

bars have been taken for three readings.

Fig. 6. Influence of stoichiometry of DESs: fuel (different mass

ratio) on sulfur removal efficiency at 30 �C and a 500 rpm stirring

rate; extraction time was 1 h.
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of functional group positions in HBDs, oxidant (H2O2)
and FeCl3 to diesel molar ratio on desulfurization were
performed. In the optimization conditions, we also
studied the effect of temperature, reaction time, DES/
fuel mass ratio. It was found that extraction was
preferred for molecules which could strongly form
hydrogen bond. The results have shown that that the
maximum amount of sulfur was removed by using
phenol þ ChCl due to low steric hindrance and no
intramolecular hydrogen bonding.

The extraction process of sulfur species occurs with
Cl� ion from ChCl via the charge dipole interaction.
This interaction is stronger than the hydrogen bonding
between the chloride of the DESs and HBDs.

The results of this investigation show that the
desulfurization efficiency, enhanced by increasing
temperature due to an increase of the mass transfer rate
between DES and diesel phases. Desulfurization effi-
ciency is increased from 20% to 44% by adding H2O2

as the oxidant supported by acetic acid in Phenol-based
DES at a temperature of 50 �C. This is due to forma-
tion of sulfone/sulfone oxides from oxidation of sulfur
components which lead to increasing solution con-
ductivity. It was found that the extraction efficiency
was ordered o-cresol þ ChCl < catechol þ ChCl <
resorcinol þ ChCl < phenol þ ChCl. In addition, it can
be shown that the species of the solutes are controlled
by the HBDs as the main constituents of the DESs.
This favours the transfer of sulfur molecules into such
DESs. The findings of this study have a number of
important implications for future practice; for instance,
they could be useful in an environmental sense in the
removal of carcinogenic and corrosive molecules in
industrial processes.
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