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Abstract Abstract 
Cytological evaluation of serous effusion specimens is an important part of cancer diagnosis. In this 
study we performed two-dimensional (2D) morphometric features and clustering analysis for 
development of useful techniques for identification and differentiation of malignant and begin cells in 
serous effusion specimens extracted from ten patients with clinical symptoms of pleural and peritoneal 
effusion. Our findings show that the two-dimensional (2D) morphometric features and clustering analysis 
are useful techniques for identification and differentiation of malignant and begin cells in serous effusion 
specimens, which can lead to development of new methods for rapid cells profiling in clinical application. 
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1. Introduction

In the human body, serosa is a thin layer of meso-
thelial cell lining at the surface of pleural and perito-
neal cavities [1]. A small amount of lubricating fluid
presents inside these cavities. This fluid allows the
internal organs to slide over each other [2,3]. Accu-
mulation of excess fluid due to disease conditions such
as infection, inflammation, or unbalanced pressure may
lead to a benign serous effusion [4]. Benign effusion
usually presents mesothelial cells, inflammatory cells,
macrophages, and blood elements [5]. The presence of
the malignant cells in effusion fluid defines malignant
serous effusion that is usually caused by tumor
metastasis. The most common types of malignancies
that develop malignant serous effusions are lung can-
cer, breast cancer, lymphoma, gastrointestinal carci-
noma, gynecological carcinoma, genitourinary
carcinomas, and so on [6e8]. Cytologic evaluation is a
sensitive and specific method to identify malignant or
benign effusion. It assists in diagnosing the type and
source of the malignancy with the help of accessory
tests [9,10].

Morphometric features of serous effusions cells can
provide useful indicators for detecting malignant cells
in conventional cytology as the gold standard cancer
diagnosis [11]. Accordingly, the development of
morphology based, and label-free methods are very
promising for their abilities to achieve simple and less
expensive malignancies detection and make significant
therapeutic and prognostic implications. For instance,
the polarization diffraction imaging flow cytometry (p-
DIFC) method showed the capability for the acquisi-
tion of high-quality diffraction patterns images for

different types of malignant and benign cells and
correlate their three-dimensional (3D) morphology by
recording spatial distribution of coherent light scatter
[12e17]. Other studies have been reported to visualize
3D structures of the cells and to study 3D morphology
on major intracellular organelles such as the nucleus,
mitochondria, cytoplasm, and cell membrane [18e20].
While investigations of two-dimensional (2D)
morphology as a diagnosis of differences between
malignant and benign cells are insufficient
[5,11,21,22]. Recently, different machine learning al-
gorithms have been used in different areas of cytology
such as in gastric, breast, thyroid, urothelial, and
effusion cytology to identify benign and malignant
cells [23e30]. However, cell area, nuclear area, and
nuclear to cell area ratio (Ac, An, and Arnc) have been
regarded as the essential markers in this study. We
focus our effort on profiling and differentiating ma-
lignant and benign cells in serous effusion samples by
comparing the results of machine learning analysis of
morphometric features with the visual cytopathologic
examination.

2. Material and methods

2.1. Cytology

We performed a quantitative study of the 2D
morphology of cells extracted from fresh serous effu-
sion specimens. Either pleural fluid or peritoneal fluid
was obtained from ten patients. The specimen is arbi-
trarily designated as P1 to P10. These specimens
consisted of six malignant serous fluids and four
benign serous fluids (Table 1). The specimens were

Table 1

The total number of both malignant and benign cells extracted from the cytology images of 10 patients.

Patient ID Effusion Type Status Diagnosis (Origin) No. of Malignant

Cells

No. of Benign

Cells

Total cells/Patient

P-1 Pleural Malignant Adenocarcinoma (Lung) 65 (45.8 %) 77 (54.2 %) 142

P-2 Pleural Malignant Adenocarcinoma (Lung) 27 (28.4 %) 68 (71.6 %) 95

P-3 Pleural Malignant Ovarian carcinoma (Ovary) 24 (47.1 %) 27 (52.9 %) 51

P-4 Peritoneal Malignant Ovarian carcinoma (Ovary) 12 (50.0 %) 12 (50.0 %) 24

P-5 Pleural Malignant Adenocarcinoma (Lung) 48 (46.6 %) 55 (53.4 %) 103

P-6 Pleural Benign Benign 0 (0.0 %) 129 (100 %) 129

P-7 Pleural Benign Benign 0 (0.0 %) 170 (100 %) 170

P-8 Pleural Malignant NSC lung cancer (Lung) 66 (45.5 %) 79 (53.4 %) 145

P-9 Pleural Benign Benign 0 (0.0 %) 58 (100 %) 58

P-10 Peritoneal Benign Benign 0 (0.0 %) 149 (100 %) 149

Total cells/Group 242 (22.7 %) 824 (77.3 %) 1066
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collected between July 2017 and August 2018 in the
Department of Pathology at the Brody School of
Medicine, East Carolina University (ECU). The study
was approved by the institutional review board (IRB)
at the school of medicine in ECU. All specimens were
prepared by the standardized method of cytospin slides
and stained by the conventional Diff-Quik (DQ) and
Papanicolaou (Pap) liquid-based technique. The diag-
nosis was made by cytopathologists in the department
of pathology, ECU. Patient's clinical history and cyto-
pathologic features of the cases were reviewed. The
cytology slides were imaged under a bright field mi-
croscope (Olympus, BX43 Upright Microscope,
Tokyo, Japan) of 40x objective magnification and
saved as “jpg.” image files format with dimensions of
2448 � 1920 pixels and bit depth 24. These images
were evaluated by cytopathologists for the generally
known diagnostic indicator features associated with
malignant cells such as single and cluster cells popu-
lation, cell size, nuclear to cell ratio, vacuolated cyto-
plasm, multinucleation, increased nuclear size, nuclear
shape, and presence of prominent nucleoli [3,4]. Fig. 1
presents examples of acquired microscopic images that
include different types of cells. A total of 1066 cells
were randomly marked and identified into two cate-
gories, 242 (22.7 %) malignant cells and 824 (77.3 %)
benign cells. These cells were further subjected to
quantitative measures for this study by using image
processing software. Table 1 shows details of the
clinical diagnosis of each serous effusion specimen and
the number of cells extracted from each one.

2.2. Two-dimensional features

We used Fiji (ImageJ distribution focuses on bio-
logical image analysis) to calculate marked cells’ 2D
morphometric features [31,32]. These features are
characterized by Ac parameter and related An param-
eter. The spatial dimensions of Fiji were calibrated
using a stage micrometer to provide accurate distances
measure. The cells of interest were segmented into two
regions of interest (ROIs), cell and nucleus, either
manually or automatically. We used the rectangular
selection tool from the Fiji user interface menu to
select the cell that needs to be analyzed.

We either manually creates a user-defined ROI
around the single cell or nucleus using the freehand
selection tool or use histogram analysis of the pixel
intensity and threshold method to detect the boundaries
automatically. Once the segmentation is completed, the
parameters of Ac and An are determined in a unit of
mm2. The values of mean and Standard Deviations F
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(STD) of all cells Ac and An along with Arnc are pre-
sented in Table 2. It can be noticed that malignant cells
tend to have large Ac and An compared to benign cells,
which indicates that cellular and nuclear size do
correlate to cell type and morphology. Statically, we
used one-way analysis of variance (ANOVA) method
for comparison between the two categories of cells
employing Minitab19 statistical software.

2.3. Clustering analysis

The 2D parameters calculated from the Fiji software
are analyzed for cells clustering using two different
machine learning techniques, Gaussian Mixture Model
(GMM) and Hierarchical Clustering (HC). These two
techniques used previously in the study of the 3D
morphology of effusion cells and showed good results
since they are assuming the size of cells and nucleus
follow the Normal distribution, which gives rapid
converges and accurate classification [17,33,34]. In
general, the GMM sorts a given input data into an
assigned number of clusters based on Gaussian prob-
ability density functions using methods of
maximumelikelihood parameter estimation, and
expectation-maximization iteration [33,35]. A MAT-
LAB integrated function (fitgmdst) was used for this
job [36]. The GMM clustering outcomes are overly
sensitive to the initial input values of mean and
covariance matrix elements. These values are randomly
obtained for each assigned cluster and used for
calculating the probability density functions [37]. As a
result, the outcomes of GMM clustering were not
consistent every time we run the clustering algorithm.
To avoid such problem, HC algorithm was introduced
before GMM to produce an initial set of parameters for

obtaining stable clustering outcomes based on the
minimum distance between the nearest pair of clusters
[38].

2.4. Statistical analysis

One-way ANOVA is applied to compare morpho-
metric parameters among the clusters. P < 0.01 is
considered a significant difference.

3. Results

We have performed quantitative measurement of
cell and nuclear area on 1066 serous effusion cells
selected from the cytology slides acquired from serous
effusion specimens of 10 patients. These cells were
evaluated by routine cytopathological examination,
excluding multinucleated cells, red blood cells, and
degenerate cells. The overall distributions of measured
cells are 242 (22.7 %) malignant cells and 824
(77.3 %) benign cells, Table 1. The means and standard
deviations (STD) of all parameters are summarized in
Table 2 according to patients and cell status.

Among the three parameters analyzed, Ac was
maximum in the malignant cases with a mean and STD
value of (229.5 ± 240.7), followed by benign cases
with mean and STD value of (49.62 ± 43.03). The An

was found to be lowest in benign cases with mean and
STD value of (23.26 ± 16.33), compared to those of
malignant (97.25 ± 136.0). Correspondingly, the
highest Arnc ratio was observed with mean and STD
value of (0.51 ± 0.149) in benign cases and
(0.42 ± 0.15) in malignant cases. The Ac, An, and Arnc
were found to be highly significant parameters in dis-
tinguishing benign versus malignant cases with

Table 2

2D morphological parameters for the two categories of cells.

Patient ID Malignant Cells Benign Cells

Ac (mm
2)

Mean ± STD

An (mm
2)

Mean ± STD

Arnc
Mean ± STD

Ac (mm
2)

Mean ± STD

An (mm
2)

Mean ± STD

Arnc
Mean ± STD

P-1 373.0 ± 341.0 157.4 ± 212.3 0.39 ± 0.16 44.21 ± 25.37 14.33 ± 13.38 0.31 ± 0.19

P-2 298.3 ± 293.8 116.3 ± 123.9 0.41 ± 0.15 54.27 ± 70.00 23.13 ± 20.71 0.48 ± 0.12

P-3 179.3 ± 61.75 89.76 ± 36.97 0.51 ± 0.15 36.08 ± 6.80 18.50 ± 3.81 0.52 ± 0.07

P-4 146.2 ± 60.61 84.73 ± 44.07 0.57 ± 0.14 29.10 ± 4.45 16.26 ± 2.80 0.57 ± 0.10

P-5 185.0 ± 173.8 80.92 ± 115.5 0.42 ± 0.12 35.36 ± 22.85 14.97 ± 6.29 0.46 ± 0.10

P-6 0 0 0 79.71 ± 47.31 34.39 ± 17.81 0.47 ± 0.13

P-7 0 0 0 69.43 ± 56.70 33.00 ± 22.15 0.53 ± 0.12

P-8 125.8 ± 69.20 47.11 ± 32.97 0.40 ± 0.13 30.16 ± 4.55 17.96 ± 3.06 0.46 ± 0.10

P-9 0 0 0 32.22 ± 6.79 18.24 ± 5.03 0.57 ± 0.11

P-10 0 0 0 31.62 ± 9.32 17.96 ± 4.87 0.59 ± 0.14

Total cells/Group 229.5 ± 240.7 97.25 ± 136.0 0.42 ± 0.15 49.62 ± 43.03 23.26 ± 16.33 1.51 ± 0.149
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p < 0.0001 based on one-way ANOVA method. To
gain more insight on identifying the measured cells, it
is useful to use clustering analysis algorithms.

All the measured data imported to in-house devel-
oped MATLAB code for clustering calculations. The
imported data is in the form of a 1066 � 3 matrix. The
1066 rows correspond to the malignant and benign
cells sequence, and the three columns correspond to
the 2D parameters of Ac, An, and Arnc. The calculated
parameters were analyzed for cell classification by
HC þ GMM clustering techniques. These techniques
are used to classify the measured data into three
clusters, malignant cell cluster (C-1), benign cell
cluster (C-3), and mixture cell cluster (C-2). Table 3
lists the results of clustering and corresponding
numbers of C-1, C-2, and C-3. From this table, one can
observe that clustering processes performed well for
identifying the cells based on their 2D morphology.
Among the three clusters, about 76.7 % of the cells
clustered in C-1 are malignant cells, and 98.8 % of the
cells clustered in C-3 are benign cells. C-2 has a mixed
portion of 39.4 % malignant cells and 60.6 % benign
cells. The confusion matrix of the clustering is shown
in Table 4.

Fig. 2(a), (b), and (c) present charts for the mean
and 95 % Confidence Interval (CI) values of Ac, An,
and Arnc of the three clusters of serous effusion cells.
The results show monotonous changes of area for cell
and nucleus, Fig. 2(a), (b). While we note in Fig. 2 (c)
that the small cell cluster C-3 exhibits the opposite
trend of area ratio change between cell and nucleus.

We further analyzed the clustering results using two
parameters Ac and Arnc, in 2D parameter space for the
measured data as shown in Fig. 3. The distribution of
malignant cells and benign cells in the two parameters
space for each patient shown in Fig. 3(a). One can find
from this figure that most of benign cells form all
patients are found on the left side of the graph spe-
cifically in the region of small cell area and while the
malignant cells are spread in the bigger region of
relatively large cell area with a certain number of
benign cells and malignant cells are overlapped in the
middle region. In contrast, both types of cells span a
wide range of nuclear to cell area ratio. Fig. 3(b)
presents the distribution of both types of cells in terms
of clustering results, and clearly demonstrates the
satisfactory results of the HC þ GMM clustering
method. In comparison with measurements

Table 3

The total number of both malignant and benign cells extracted from the cytology images of 10 patients and classified into three clusters.

Patient ID C-1 C-2 C-3 total

Malignant cell Benign cell Malignant cell Benign cell Malignant cell Benign cell

P-1 48 (34 %) 0 (0 %) 17 (12 %) 34 (24 %) 0 (0 %) 43 (30 %) 142

P-2 16 (17 %) 3 (3 %) 8 (8 %) 15 (16 %) 3 (3 %) 50 (53 %) 95

P-3 8 (16 %) 0 (0 %) 16 (31 %) 4 (8 %) 0 (0 %) 23 (45 %) 51

P-4 4 (17 %) 0 (0 %) 8 (33 %) 0 (0 %) 0 (0 %) 12 (50 %) 24

P-5 11 (11 %) 0 (0 %) 37 (36 %) 6 (6 %) 0 (0 %) 49 (48 %) 103

P-6 0 (0 %) 10 (8 %) 0 (0 %) 76 (59 %) 0 (0 %) 43 (33 %) 129

P-7 0 (0 %) 14 (8 %) 0 (0 %) 71 (42 %) 0 (0 %) 85 (50 %) 170

P-8 5 (3 %) 0 (0 %) 57 (39 %) 1 (1 %) 4 (3 %) 78 (54 %) 145

P-9 0 (0 %) 0 (0 %) 0 (0 %) 3 (5 %) 0 (0 %) 55 (95 %) 58

P-10 0 (0 %) 1 (1 %) 0 (0 %) 10 (7 %) 0 (0 %) 138 (93 %) 149

total 120 363 583 1066

Table 4

The confusion matrix of cells clustering.

Clusters C-1 Large cell cluster

(Ac: 380.26 ± 306.05 mm2

An: 165.08 ± 185.72 mm2

95 % CI: 361.1, 399.4 mm2)

C-2 Medium cell cluster

(Ac: 107.11 ± 44.99 mm2

An: 42.87 ± 19.23 mm2

95 % CI: 96.51, 117.71 mm2)

C-3 Small cell cluster

(Ac: 31.21 ± 6.03 mm2

An: 16.99 ± 5.28 mm2

95 % CI: 23.147, 39.272 mm2)

Total

Malignant cells 92 (76.7 %) 143 (39.4 %) 7 (1.2 %) 242

Benign cells 28 (23.3%) 220 (60.6 %) 576 (98.8 %) 824

Total 120 363 583 1066

219S. Al-Qaysi et al. / Karbala International Journal of Modern Science 7 (2021) 216e223



summarized in Table 3, these results provide educated
guess on the nature of cells, which are either malignant
cells or benign cells based the parameters of cell and
nuclear area value.

4. Discussion

The detection of malignant cells in serous effusion
specimens is thus critical for both therapeutic and
prognostic purposes [39]. However, in cytologic prep-
aration of isolated cells, malignancy is sometimes
difficult to detect on simple morphologic grounds, and
malignant cells are frequently difficult to differentiate
from particular cells in effusions such as macrophages
and reactive mesothelial cells [4]. This reflects not just
inherent problems in cytological diagnosis, such as
sample issues and the presence of particular cells, but
also systematic bias owing to cytologists' properly
cautious approach, who would rather underdiagnose
than overdiagnose certain conditions. Despite

morphological skill in identification, the employment
of certain additional procedures is frequently neces-
sary, regardless of the fact that it is typically time
consuming and costly [40]. Quantitative profiling of
cell morphology has the potential to be a useful
approach in these circumstances, both in terms of
diagnostic accuracy and as the foundation for an
automated screening program.

Recently, employing image analysis software has
been seen as a means of conducting quantitative
cytology surveys. This technique is capable of high-
lighting indistinguishable cellular variations. ImageJ is
a popular open-source image analysis program capable
of reading most common image file formats used in the
biomedical field, supporting image manipulations, and
preforming basic operations and calculations [41].
Nikousefat et al. conducted a study to test the useful-
ness of the ImageJ program in the classification of
lymphoma and hyperplasia with fine needle aspiration
from mandibular lymph nodes of dogs with

Fig. 2. This figure shows the mean values of cell area, nucleus area, and the area ratio of nucleus to the cell with the 95 % confidence interval (CI)

bars of three clusters resulted from GMM clustering process for the two-dimensional morphometric data.

Fig. 3. Scatter plots of Ac and Arnc of selected cells from cytology images of three patients: (a) malignant cells (MC) and benign cells (BC) of 10

patients marked in colors; (b) results of all analyzed cells clustered by HCþGMM.
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lymphadenopathy. The data obtained for nuclear
morphometric features (diameter, circularity, area, and
perimeter) revealed a significant difference between
the control group and the hyperplasia and lymphoma
groups. The cytology diagnosis technique used in this
study was rapid, simple, and cheap and the assessment
by image analysis software can increase diagnostic
accuracy [32]. In 2015, Raghavan et al. published two
independent studies that discussed the use of ImageJ
and three of its plug-ins to analyze the nuclear pa-
rameters in different kinds of carcinoma. The param-
eters analyzed in these studies were the nuclear area,
perimeter, and circularity. The results obtained were
statistically analyzed and suggested that morphometric
analysis of nuclear parameters using ImageJ is helpful
in the grading of tumors and in assessing their prog-
nosis [42,43].

Likewise, in the present study, we used Fiji (ImageJ
distribution) to extract both cell and nuclear morpho-
logical parameters such as Ac, An, and Arnc. These three
parameters were measured for identifying malignant
and benign cells in effusion specimens. Furthermore,
these parameters were found to be the most reliable
criteria for classifying the C-1, C-2, and C-3 clusters.
Two independent studies [5,44] emphasized the sig-
nificance of Ac and An as morphometric variables.
Arora et al. compared morphometric analysis of cells in
100 effusion samples and revealed that the observed
mean values for benign cells were (185.7 ± 43.69) and
(58.39 ± 12.22) versus (274.65 ± 61.01) and
(120.12 ± 16.28) for malignant cells [5]. In the present
study, the mean values of Ac and An in 10 effusion
samples were (49.62 ± 43.03) and (23.26 ± 16.33) for
benign cells, and (229.5 ± 240.7) and (97.25 ± 136.0)
for malignant cells respectively. The reasons behind the
differences in the measured values in both studies
belong to the total number of samples, the variety of
diagnosed cases, and the magnification power of the
microscope and imaging system. Athanassiadou et al.
discovered cytomorphometry of effusion smears to be
an improved approach for distinguishing benign or
malignant cells from suspicious/atypical reactive cells.
They measured two nuclear morphometric variables
(nuclear major axis length and nuclear area) using a
computerized image analysis system [44]. However,
there are significant differences in nuclei and cyto-
plasmic areas between benign and malignant cells, and
we discovered that quantified Arnc was another useful
measure in distinguishing these two groups (P < 0.001).

Separately from quantifying cell and nuclear fea-
tures, machine learning analysis has been found to be
an incredibly useful technique for segmentation,

identification, and differentiation of malignant and
benign cells not only in serous effusion but also in
thyroid, breast, and urine cytology specimens. Some of
the earlier studies suggested that a combination of cell
and nuclear morphometric features and supervised
machine learning algorithms of artificial neural
network (ANN) or deep learning would be valuable
tools in the analysis of cytologic data, while other
studies proposed unsupervised machine learning algo-
rithms of adaptive thresholding and Gaussian mixture
clustering segmentation method as a cytological diag-
nostic tool. The findings of these studies revealed a
high level of accuracy [23e30,45]. In this study, we
adopted the integrated algorithm of HC þ GMM
clustering techniques, a form of unsupervised machine
learning in which a computer can be used to cluster
effusion cells into three clusters (C-1, C-2, and C-3)
based on their similarity in the measured parameter
space without prior knowledge of cell types. The three
clusters were defined as the malignant cell cluster (C-
1), the benign cell cluster (C-3), and the mixed cell
cluster (C-2). The results showed that the clustering
process functioned effectively to identify the cells.
76.7 % of the cells in cluster C-1 are malignant,
whereas 98.8 % of those in cluster C-3 are benign. C-2
includes a mixed percentage of 39.4 % malignant cells
and 60.6 % benign cells. These results deepen our
understanding of cytological diagnosis in terms of 2D
morphology, which allows future development of
morphology tools for cytology.

5. Conclusion

In this study, we intend to quantify 2D morpho-
logical differences of cells extracted from 10 speci-
mens of malignant and benign serous effusion and sort
them automatically into three different clusters using
unsupervised machine learning tools of Hierarchical
Clustering and Gaussian mixture model (GMM). The
results associate the nature of cells to the morpholog-
ical parameters of the cell and nuclear area value. The
performance of clustering is evaluated using a confu-
sion matrix (Table 4). The results show that 62.6 % of
the cells well characterized by the clustering algo-
rithms: 76.7 % of the cells in the large cell cluster C-1
are malignant cells, and 98.8 % of the cells in the small
cell cluster C-3 are benign cells. The medium cell
cluster C-2 contains a mixture of malignant and benign
cells, 39.4 % and 60.6 % respectively. However,
quantitative morphology analysis allows clustering of
serous effusion cells objectively with a machine
learning tool requiring no training. While our current
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result can identify malignant cells with high specificity,
the sensitivity is still not high enough for practical
clinical use. This study is an encouraging beginning for
future development of new methods of research to
rapidly profile perfusion cells by morphometric fea-
tures for the identification of malignant cells in clinical
samples.
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