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Abstract Abstract 
This study aims to identify Para rubber species using a combination of five machine learning techniques 
to classify leaf images. The learning process is defined using a dataset for each classification method. 
Approximately 1,472 leaf images are prepared consisting of various sizes, shapes, quality provided for the 
model. The classification indicators are defined with the help of an algorithm to identify at least three of 
the top five potential classification outcomes. The algorithm accurately predicts 100% of the five 
classification methods. Methods can provide precise and rapid classification of large quantities, without 
the need for image preprocessing prior to classification. 
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1. Introduction

Para rubber is commonly grown in Southeast Asian
countries and part of the genus Hevea family
Euphorbiaceae, of which Hevea brasiliensis is the only
species grown to produce commercial latex [1]. The
yields differ according to the type of rubber species in
each cultivated area. Identifying different varieties of
Para rubber in cultivation can help to meet productivity
objectives. DNA profiling and visual classification is
two common methods for classifying Para rubber
species. Since the DNA profiling process is time-
consuming, the visual classification method for Para
rubber is preferred. However, visual classification of
rubber seedlings is difficult without specific knowledge
of agriculture. In general, trained professionals use the
rubber leaf as a visual and morphological characteristic
of plant organs for classification purposes. Neverthe-
less, identifying the organs of this plant is challenging
since the leaf of each species is visually similar.
Therefore, the lack of specialized taxonomists remains
a problem in agricultural farming.

The organs and characteristics of plants can be used
to examine their physiological aspects. Some studies
have examined the growth factor in plant photosyn-
thesis [2] while the canopy structure has been used in
research on carbon-water circulation [3]. Different
organ growth states are measured to estimate the
various nutrients of plant growth [4]. Traditional study
methods often require cutting parts of the tree, and the
adoption of technology can reduce the damage caused.
Plant classification can be performed using computa-
tional models of the leaf recognition system. Most
plant species have a unique leaf that differs in shape,
color, texture, and margin [5,6]. Various plant leaf
identification methods based on shape [7e10] or
texture [11,12] have been presented in recent years.
These approaches only study a single visual charac-
teristic of a leaf image, resulting in low accuracy. Thus,
some leaf identification approaches involve the inte-
gration of multi-visual features in leaves for plant
species recognition [13e15]. Such classification in-
cludes color and shape [16], color and texture analysis
[17], surface and contour characteristics [18], fused
properties of color, texture, and shape [19], leaf veins
[20], color combinations, vein properties, and shape

[21]. Each classification method has certain problems
which limit its use.

Therefore, artificial intelligence (AI) can be used to
automatically learn tasks to answer questions and
significantly reduce the time and cost involved in
essential practical applications [22]. One of the most
cited documents relating to this subject involve pre-
dicting the automation capabilities of nearly 1000
different human occupations [23]. Furthermore, the
abstract concept of AI in general [24] can bring about
more radical change [25]. As an AI method, machine
learning (ML) plays an important role in science ed-
ucation for plant recognition and classification [26].
The most common and widely used statistical tech-
nique is trend estimation which is very powerful and
effective [27]. In ML, a computer algorithm allows
computer programs to update automatically through
experience [28]. This technology is employed by sci-
entists to analyze large amounts of data, helping them
to automate tasks [29]. It can define processes for
extracting and interpreting data with a generic auto-
mated set of methods.

The ML combination has the same working
principles as the taxonomist collaboration. Moreover,
competent plant taxonomists specialize in a wide
variety of plant species. There is a wide range of
ML combinations, including numerical, textual,
sounds, images, and hybrids. The comprehensive
nature of ML facilitates the work of taxonomists.
Various ML techniques have been applied in fore-
casting. The use of large datasets in forecasting can
greatly improve the economic model [30] since ac-
curate prediction reduces operating costs [31]. The
ML method exhibits a better performance than con-
ventional forecasting [32] and is also used for clas-
sification [33]. The novelty lies in the application of
a single ML method. It has also been applied to the
classification of a radiology report for medical pur-
poses [34]. Moreover, ML has been used for defect
recognition in plant [35], industrial [36,37], and
medical applications [38]. The ML method
mentioned above works as intended but is still a one-
way decision. AI forecasters must ensure that pre-
dictions are used positively while minimizing their
misuse as much as possible to mitigate any adverse
impact [27].
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There are reasons to be optimistic that a concerted,
holistic research effort could reduce uncertainty about
future AI progress. Despite rubber species classifica-
tion being limited to only two methods, the use of AI is
another option. For this reason, the researcher is
interested in using the popular supervised ML method
and finding ways to increase the accuracy of rubber
species classification.

This article proposes a method for classifying the H.
brasiliensis species to aid taxonomists in defining the
unretouched leaf images of Para rubber by combining
ML methods. This study uses a combination of mul-
tiple judgments to increase accuracy. Leaf images of
the Para rubber species are defined according to the
association rule in the training and learning model. The
Para rubber leaf classification algorithm is then created
based on the k-nearest neighbors (k-NN), logistic
model, naïve Bayes, neural networks, and random
forest of the ML method. All technical issues can be
solved by ML methods based on the Wolfram pro-
gramming language [39]. The results suggest that
combined summation yields more accurate classifica-
tion than the single method.

2. Material and methods

2.1. Experimental data

In the study experiment, the ML algorithm trains
and learns the leaf characteristics of Para rubber and
memorizes the leaf properties with high precision. The
extraction of leaf properties relies on color identifica-
tion, leaf texture, and shape. The different leaf images
are classified into five cultivar classes of Para rubber,
namely, PB350, RRIM3001, RRIM600, RRIT251, and
RRIT408 as shown in Table 1.

Fig. 1 shows the Para rubber leaf images from a
preliminary study to select a suitable ML classification
using a background environment. In this study, the

accuracy of each method is different. The k-NN, lo-
gistic model, naïve Bayes, neural networks, and
random forest of the chosen ML method yield a clas-
sification accuracy of more than 85%. Whereas four
other methods, namely class distribution, decision tree,
gradient boosted trees, Markov, and support vector
machine yield less than 85% accuracy. A combination
of all methods will subsequently be used to increase
the accuracy of the results.

2.2. Machine learning method

2.2.1. k-nearest neighbors
The k-NN algorithm for local estimation is a non-

parameter classification and regression method. The
algorithm relies on the classification of distances. The
input consists of the k training examples closest to the
dataset. The output result depends on whether k-NN is
used for the model. All calculations are deferred until

Table 1

Leaf image samples of the Para rubber classes used for training and classification.

Type PB350 RRIM3001 RRIM600 RRIT251 RRIT408

Training

Classification

Fig. 1. Para rubber leaves with an environmental background.
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the function has been evaluated. If the properties
represent different physical units or have drastically
varying scales, normalizing the training data can
significantly improve accuracy [40]. Implementation
involves setting a neighbor's weight to the average
contribution rather than determining the distance (d).
The k-NN classifier sets the k-NN weight to 1= k and
the others to zero.

The order of the nearest neighbors is assigned by
weight wni; with

Pn
i¼1wni ¼ 1, where fwnigni¼1 is

determined as the weight of the nearest classifier Cwnn
n :

The results reveal similarities to the strong consistency
of a weighted nearest neighbor classifier. The excess
risk under the condition of class distribution consis-
tency shows asymptotic expansion [41] for constants
B1 and B2 as follows:
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for i ¼ 1; 2; :::; k* and w*
ni ¼ 0 for i ¼ k* þ 1; :::n:

The training cases with a class label are vectors in a
multidimensional feature space. The algorithm training
process involves a collection of vector attributes and an
example of a training class label. During classification,
k is a user-defined event, with an unlabeled vector
assigned a label prior to classification. This is most
common among the k training samples closest to the
query or test point. The best option for k depends on
the data. In general, a large k � value reduces the ef-
fect of noise in classification [42]. The nearest
neighbor algorithm predicts the closest training class to
the sample.

2.2.2. Logistic regression
The coefficient is estimated from the data and

verified by logistic regression with the given parame-
ters. The logistic regression model consists of two
predictors x1 and x2; and one binary response variable
Y ; denoting p ¼ PðY ¼ 1Þ: A predictor variable and the
log-odds (also known as logit) of events at Y ¼ 1
indicate a linear relationship for estimation, formulated
as follows:

[¼ logb
p

1� p
¼ b0 þ b1x1 þ b2x2; ð6Þ

where [ is the log-odds, b is the base of the logarithm,
and bi are the model parameters.

The purpose of logistic regression is to model
whether a random variable Y is 0 or 1 given the
experimental data [43]. A generalized linear model
function can be parameterized by q,

hqðXÞ¼ 1

1þ e�qTX
¼ PrðY¼1jX;qÞ: ð7Þ

Therefore,

PrðY¼0jX;qÞ¼1� hqðXÞ; ð8Þ

where Y2f0; 1g and PrðyjX; qÞ are provided by
PrðyjX; qÞ ¼ hqðXÞyð1� hqðXÞÞð1�yÞ:

Assuming all the probability functions observed in
the sample are independent, the Bernoulli distribution
could be calculated as

Lðqjy;xÞ ¼ PrðYjX;qÞ
¼
Y

i
Prðyijxi;qÞ ¼

Y
i
hqðxiÞyi ð1� hqðxiÞÞð1�yiÞ:

ð9Þ

Typically, the log-likelihood is maximized,

N�1 log Lðqjy;xÞ¼N�1
XN
i¼1

logPrðyijxi;qÞ; ð10Þ

using optimization techniques such as the gradient
descent.

2.2.3. Naïve Bayes
Naïve Bayes is a conditional probability model for

classifying a given problem, represented by vectors
x ¼ ðx1; :::; xnÞ rather than assigning n properties (in-
dependent variables) to assess the instance of proba-
bility for each K outcome [44] or class Ck following
pðCkjx1; :::; xnÞ [43]. If there are many properties n or
values for the attributes, it will be impossible to use the
model for probability. The conditional probabilities of
the Bayes theorem can be explained in terms of prior
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probability and the likelihood that it is proportional to
the evidence as follows:

pðCkjxÞ¼pðCkÞpðxjCkÞ
pðxÞ : ð11Þ

The class probability for the given example is:

pðCkjx1;…;xnÞfpðCkÞ
Yn

i¼1
pðxijCkÞ; ð12Þ

where f denotes proportionality, pðCkjx1;…; xnÞ is the
probability distribution of feature xi given the class,
pðCkÞ is the prior probability of the class, pðxjCkÞ is the
likelihood, and pðxÞ is the evidence. The distributions
are as expected from the training data. In the current
implementation, distributions are modeled using a
piecewise-constant function (i.e., a variable-width
histogram).

2.2.4. Neural networks
A neural network consists of interconnected per-

ceptron node layers and is similar to multiple linear
regression [45]. Perceptrons feed the signal generated
by multiple linear regressions into a potentially non-
linear activation function. The task of identifying
something which humans find difficult is easier for
neural networks. The neural network procedures help
to characterize samples. Given a set of N training ex-
amples in the form ðx1; y1Þ; :::; ðxN ; yNÞ; where xi is a
characteristic of the i� th sample order and yi is the
class of a Para rubber leaf image. The learning algo-
rithm discovers the g : X/Y functions, where X is the
input data and Y the output class. The possible data
attribute Y is a component function G; often called the
hypothetical space. It is sometimes convenient to
substitute the g� value using the grading function f ¼
X � Y/ ℝ so g is assigned to return the highest rated
gðxÞ ¼ argmax

y
f ðx; yÞ:

Let F denote the space for the grading function.
Although G and F represent the data of any function,
the learning algorithm is also a probability model
where g is the conditional probability model gðxÞ ¼
PðyjxÞ; or f is the common probability model f ðx; yÞ ¼
Pðx; yÞ: Two basic methods for selecting f or g are used
to detect the risk function best suited to the training
data or the control of bias exchange. It is assumed that
the training set consists of samples with the same in-
dependence and evenly distributed pairs ðxi; yiÞ:
L : Y � Y/ℝ�0 is defined as a loss function to mea-
sure its suitability for the training data. The risk RðgÞ
of the g function represents the expected loss of g;
estimated from the following training data RempðgÞ ¼
1=N

P
iLðyi; gðxiÞÞ; where gðxiÞ is the empirical risk.

2.2.5. Random forest
Random forest is a supervised learning algorithm

ensemble used in classification. It generally out-
performs the decision tree method since it represents
the mean of several deep decision trees practiced in
different parts of the same training set with the inten-
tion of reducing variance. An overfitting training set
will correct the random decision forest [46]. The
random forest training algorithm uses the common
technique of bootstrap aggregation or bagging. The
training is set to X ¼ x1; :::; xn with the solutions
Y ¼ y1; :::; yn: A random sample with a change to the
training set and tree fitting is repeatedly selected by
bagging (B times). Merely training multiple trees in
one training set will result in them being significantly
related.

The predictions for the invisible sample ðx0Þ after
training are obtained by taking the forecast averages
from each regression tree onbf ¼ 1=B

P B
b¼1fbðx0Þ.

This bootstrapping process leads to better model per-
formance since it reduces variance without increasing
bias. Moreover, prediction uncertainty estimation is
performed as the standard deviation of the forecast
from each regression tree on x0 as

s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPB
b¼1

ðfbðx0Þ � bf Þ2
B� 1

vuuut
: ð13Þ

It is common for a few hundred to thousands of
trees to be used, depending on the size and nature of
the training set.

2.3. Programming procedure

The calculations in this study are performed using a
MacBook Pro, 2.3 GHz Intel Core i5 computer pro-
cessor, with 8 GB 2133 MHz LPDDR3 memory.
Mathematica version 12 of the Wolfram Language is
used for algorithmic development. Firstly, the machine
is assigned to learn image recognition from the asso-
ciation rule, which is a rule-based ML method for
finding interesting relationships between variables in
large databases. Each type of Para rubber leaf image is
imported to designate the primary key of the associa-
tion rule as shown in Code Snippet 1.
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Fig. 2. Learning and accuracy curves for each ML method. (a), (c), and (e) represent learning curves with a loss value score as low as near-zero

when learning data is estimated at 250 images. (g) and (i) show that a total of 1472 images of learning data are required to achieve a near-zero loss

value score. (b), (d), (h), (f), and (j) represent high accuracy curves approaching 1 for all models using approximately 250 learning images.
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Code Snippet 1. Key aspects of the ML method
are determined based on each Para rubber leaf
image.

The Para rubber leaf images are trained to become
the association rule, acting as a symbolically indexed
list. The association rule is applied as a training set in
the ML method as displayed in Code Snippet 2. The
classification value result is associated with a given
critical component of the specification key.

Code Snippet 2. The training dataset is deter-
mined from the key ML aspects using a specific key.

The ML programming classification methods k-NN,
logistic regression, naïve Bayes, neural networks, and
random forest are illustrated in Code Snippet 3. The
classification function is used to create dataset training
rather than explicit programming.

Code Snippet 3. The training datasets assigned to
learn each ML classification method.

The classification method distinguishes potential
leaf features, such as shape, dimension, color, pattern,
and background. Each classification method is unique,
but all forms aim to find the sample's maximum
probability based on the training dataset. This study
brings together the best classification possibility for
each method. The programming defines the likelihood

that at least three out of the five data classification
indicators can be included in the results.

3. Results

3.1. Learning model

The learning results for each method are illustrated
in Table 2. The classification model is trained from a
dataset after modifying the output layer to satisfy the
classification requirements. The probability prediction
for each sample class follows the interest classification
problem of modeling mapping input variables to class
labels. Predicting the probability of binary and multi-
ple-class classification problems might indicate the
likelihood of an example belonging to the first class
and each of the other classes, respectively. A set of
model weights that mitigate the difference between the
model's predicted probability distribution from the
dataset and the probability distribution in the training
dataset is known as cross-entropy in maximum likeli-
hood estimation. Cross-entropy is used in this study to
estimate the difference between predicted and esti-
mated probability distributions. The model shows
perfect training results of almost zero, demonstrating
promising improvements in learning for each model
classification, yielding an accuracy of over 99% for the
different approaches.

Moreover, ML is required to minimize errors. The
objective function determines the error measurement
and is often called the cost or loss function. The loss
function provides the best performance in terms of
mean classification accuracy. A near-perfect loss range
is approaching zero in this study, confirming the
excellent training of the model. Furthermore, each
classification method allows speedy computation times
while consuming few machine resources, as shown in
Table 2 and Fig. 2.

The learning curves indicate the level of develop-
ment. In the early stages, the model experiences
underfitting, meaning that it could not learn the
training dataset. Optimal results for the learning algo-
rithm goal exist between the overfitting and

Table 2

Learning results of each method, demonstrating low loss and high accuracy with minimal machine resources.

Method Loss Accuracy % Speed (examples/s) Training Time

k-NN 0.0703 ± 0.0029 99.48 ± 0.12 12.1 2 min 19 s

Logistic Regression 0.0243 ± 0.0040 99.61 ± 0.13 12.3 3 min 1 s

Naïve Bayes 0.0497 ± 0.0078 99.20 ± 0.34 9.61 2 min 41 s

Neural Networks 0.0131 ± 0.0060 99.80 ± 0.26 11.7 3 min 27 s

Random Forest 0.0865 ± 0.0021 99.20 ± 0.06 12.3 2 min 16 s
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underfitting models when the loss value of the learning
curve starts to approach zero. The results of this study
range from 0.0131 ± 0.0060 to 0.0865 ± 0.0021. A
good fit is identified when the training and validation
losses are reduced to a stable point with minimal mean
gaps between the two final loss values. Continuous fit
training for logistic regression, naïve Bayes, and neural
network methods lead to an overfit when entering 250
training samples. This is an undesirable situation
because the resulting overfit does not accurately esti-
mate the response to new observations that do not form

part of the original training dataset [47]. Fig. 2(e) in-
dicates overfitting in the neural network method, where
learning curves increase the loss value score after
learning with 250 images. However, it does not reduce
the accuracy, as shown in Fig. 2(f).

3.2. Classification

The Para rubber classes were selected based on the
most common cultivation in Thailand. The Para rubber
leaf images for this study were obtained from the

Fig. 3. The confusion matrix plot showing a comparison between the actual and predicted classes of the Para rubber leaves and confirmation of

the training data fit for each ML method. (a), (b), and (c) show misclassification for 1 out of 50 images. (d) presents a maximum of 3 out of 50

misclassifications. (e) reveals the accuracy of all classifications.

Table 3

Average probability of each ML method for Para rubber leaf classification.

Actual k-NN Logistic Regression Naïve Bayes Neural Networks Random Forest Summary Time (s)

PB350 0.98 1.00 1.00 1.00 0.65 PB350 0.000058

RRIM3001 0.98 0.89 0.90 0.86 0.65 RRIM3001 0.000049

RRIM600 0.98 0.99 1.00 0.99 0.88 RRIM600 0.000048

PRIT251 0.97 1.00 1.00 1.00 0.97 RRIT251 0.000047

RRIT408 0.87 1.00 0.90 1.00 0.80 RRIT408 0.000053
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Rubber Research Center, Thailand, with a total of 1472
rubber leaf samples used for training. Leaf images with
approximately 50 unadorned background problems
were used for the test classification. Each model
method could recognize characteristics. A total of 250
rubber leaf samples were used in the classification
according to the confusion matrix plot shown in Fig. 3.
All methods appear to be slightly less effective when
examining RRIM3001 and RRIT408. However, the use
of a combined analysis technique improved more than
three out of the five classification conclusions. The
analysis results achieved an accuracy of 100%. More-
over, each class was analyzed rapidly, ranging from
0.000047 to 0.000058 s as shown in Table 3. An
example of the classification combining five ML pro-
gramming methods is demonstrated in Code Snippet
4.

Code Snippet 4. An RRIM600 unretouched
image sample of the combined five ML programs.
Each ML analysis gave the highest probabilitydfi-
nally, all evaluated methods are summarized with
the matching results as RRIM600.

4. Discussion

Various researchers use traditional leaf image pro-
cessing to identify and classify plants [48]. Neverthe-
less, some have experienced problems with
formulating methods and results in general, such as a
lack of automated processes regarding the selection of
suitable qualifications for classification [49]. In other
words, traditional image processing methods are based
on hand-designed peculiarities such as feature selec-
tion, image property extraction, and image pre-
processing. The preprocessing step consists of image
reorientation, binary thresholding, contrast stretching,
edge recognition, gray scaling, noise removal, and
threshold inversion. Rather than using traditional
methods, whereby manual feature extraction must be
flawless to achieve successful results, there is a need
for a model that does not require preprocessing to

perform successful classification. However, in this
study, the combined five ML methods using automa-
tion can be classified precisely without modifying
images beforehand, as evidenced by the results.

The study model can be used in agriculture,
forestry, rural medicine, and other commercial appli-
cations. Identifying Para rubber species is vital for
correct crop selection and effective agricultural pro-
duction. It is also essential to the study of biodiversity
and automatic identification in high demand by the
agricultural industry [50]. AI computing methods are
becoming more automated, enabling machines to
perform similar tasks to those requiring human intel-
ligence. AI involves giving computers access to a
wealth of information and finding the most suitable
solution without applying human-like feelings.

Plant leaf image classification at the species level is
often referred to as a granular problem. High homo-
geneity at the species level and background problems
make species identification difficult [51]. The model
presented in this study can classify the leaf image of
the Para rubber species. The key to obtaining high
classification efficiency is to use a combination of ML
methods with an advanced function program, leading
to a larger variety of properties and higher accuracy
than individual depletion.

In the context of model optimization, algorithms are
used in this study to evaluate a set of weights, known
as an objective function or criterion. The operation can
help to maximize or minimize the objective function
and identify candidates with the highest or lowest
scores, respectively. The optimization process involves
the selection of the loss function during the calculation
of model errors. This is a challenging issue because the
operation must capture the problem properties and be
motivated by critical concerns in the study data. These
ML programs can help to solve the problem. An
automated program can find patterns in data and apply
them to new interests. Generally, ML algorithm
learning demands large amounts of data and is highly
resource intensive. Pre-trained network data helps to
reduce data shortages consistent with a specific task
(e.g., VGG [52]). This is known as transfer learning
[53]. However, this study provides a solution to the
problem by considering the loss value.

In addition, many ML methods can be imple-
mented, such as monarch butterfly optimization
(MBO), the earthworm optimization algorithm (EWA),
elephant herding optimization (EHO), the moth search
(MS) algorithm, slime mold algorithm (SMA), Harris
Hawks optimization (HHO), and so on. The ML se-
lection method for the task may use complex or
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straightforward sample testing and yield satisfactory
results with a similar level of accuracy as those ob-
tained from this study.

If this study only considered one method for iden-
tifying Para rubber leaves there could be a chance of
misclassification. The likelihood of this error could
coincide with the use of two methods and would still
be classified correctly for three methods. However, if
three or four summation methods are applied, an
invalid final summation could result. This research
suggests that at least five ML methods should be used
together to reach an appropriate conclusion. Plant
classification using a combination of ML methods can
be performed quickly on large quantities. The results
confirm that ML is a highly accurate operation and
could resolve the problem of a taxonomist shortage. A
high impact could be achieved through continuous
development, such as implementing a mobile applica-
tion to determine the image obtained from the planted
plots and sending the processed photos for classifica-
tion via the Internet.

In future works, this study can be developed into a
mobile application. Para rubber classification by ML
on a mobile device would provide an easily accessible
tool to assist farmers in making informed decisions.
However, hardware and software architecture should
be considered when implementing classification sys-
tems on mobile applications to ensure the interopera-
bility of ML methods. Finally, it is unlikely that all ML
methods would be used in any study. Therefore,
defining the number of ML methods for collective
decision-making may require optimization to be per-
formed by AI since it is the most powerful all-purpose
technology in this era. The impact of such technology
will ultimately benefit agriculture, biodiversity, busi-
ness, and the economy, while also inspiring further
innovation.

5. Conclusion

Combining ML techniques will facilitate the fast
and accurate classification of large volumes of infor-
mation. A program that enables a learning accuracy of
more than 99.20% and attains a slight learning loss
value approaching zero is the key to successful
research. The algorithm was 100% accurate in pre-
dicting the five ML methods. The success of the al-
gorithm speed factor in both model training and data
classification is due to the use of a computer language
with the capability to process and manipulate data. The

ML algorithm in the programming language provides
advanced ML capabilities, as demonstrated by the fast
performance of five analytical computations with five
information classes. Each Para rubber class takes less
than 0.000054 s to process. This ML program is easy to
implement and supports a wide variety of research
areas. Specifically, the imaging analysis could abandon
the need for the retouching process commonly per-
formed in conventional programming. Therefore, this
research provides a guide for data scientists and tax-
onomists using ML on specific tasks. This technique
can also be used in various applications in the future.
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