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Detecting Malicious DNS Queries Over Encrypted Tunnels Using Statistical
Analysis and Bi-Directional Recurrent Neural Networks

Abstract

The exponential rise in the number of malicious threats targeting computer networks and digital services
puts network infrastructure in jeopardy. Domain name protocol attacks are one of the most pervasive
network attacks posing a threat to networks, whereby attackers send harmful information to the network;
this type of threat is identified as DNS tunneling. The DNS protocol has recently gained increased
attention from cyber-attackers, targeting organizations with a web presence or reliance on e-commerce
businesses. Cyber-attackers can subtly exploit the contents of encrypted DNS packets that are sent
across covert network tunnels, which are difficult for firewalls and blacklist detection methods to detect.
Therefore, efficient methods for detecting DNS intrusions in the network are required. Machine learning
(ML), deep learning (DL), and computational intelligence models have proved to be increasingly effective
in dealing with these cyber-attacks, especially when using an appropriate dataset. This paper proposes an
intrusion detection model to detect malicious DNS over HTTPS (DoH) queries among network covert
tunnels, using statistical analysis and Bi-directional Recurrent Neural Network (BRNN) techniques, based
on the flow level of the network traffic. The proposed approach was tested and evaluated based on a
realistic dataset called CIRA-CIC-DoHBrw-2020, provided by the Canadian Institute for Cybersecurity.
Experiments have shown that the robustness of the model is strong, with a detection rate of 100%.
Furthermore, the proposed model achieved high performance in terms of the accuracy rate in detecting
malicious DoH queries, with low false-negative and false-positive rates. Furthermore, the number of
features used is fewer than other approaches, making it perform faster in the training and testing phases.
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1. Introduction

DNS protocol has been the core of the Internet
infrastructure since 1985. It is a query-response pro-
tocol to help users reach host servers by resolving
hostnames and corresponding IP addresses Bilge et al.
[1]. DNS provides services through the Internet
depending on domain names and their IP addresses,
such as email services, load balancing, and distribution
networks, etc. Torabi et al. [2]. DNS traffic flows
unencrypted through the organization's network, which
enables the organization's administrators to monitor
how insiders browse websites and broadcast media
consumption, and monitor network traffic against any
malicious activities Ashi et al. [3]. This seems bene-
ficial, but at the same time it is against the principle of
protecting user privacy, which is always an essential
consideration. Additionally, transmitting unencrypted
traffic is a vulnerability that can be exploited by cyber-
attackers, compromising the confidentiality, integrity,
and availability of such data.

Popularizing protocols to encrypt DNS traffic is the
best solution to improve the confidentiality and integ-
rity of user privacy. Such protocols include DNS over
HTTPS (DoH) and DNS-over-TLS (DoT), which are
double-edged swords; while they protect user privacy,
they create challenges for organizations trying to pro-
tect their environments from outsider malware or ma-
licious insiders Stevanovic et al. [4]. These protocols
have made monitoring the network traffic more com-
plex, and have facilitated the malicious activities of
attackers by hiding their malicious malware within
DoH queries, to impose dominance on command-and-
control servers and thereby launch attacks Stevanovic
et al. [4].

The “IDC 2020 Global DNS Threat Report”
announced that in 2020 DNS attacks were launched
against 83% of the Internet service providers, and 79%
of all telecommunications providers, affecting the
availability of their services and causing losses of over
USD 5 million in losses.

The more creative cyber attackers become, the more
efforts researchers in the field must undertake. In
recent times, detecting DNS attacks has become the
primary focus of many researchers, and awareness has
increased that the traditional blacklisted intrusion
detection methods are no longer working effectively.
Although blacklisted systems have low false detection
alarms, they are unable to detect zero-day attacks Jafar
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et al. [5]. Furthermore, keeping them up-to-date with
the evolution of DNS attacks is incredibly expensive
Satoh et al. [6].

Therefore, increasing attention has been redirected
towards careful network traffic analysis, to improve
accuracy and effectiveness in distinguishing between
malicious and benign DoH queries Almashhadani et al.
[7]. Related approaches extract the intelligence of Big
Data, computational intelligence, and ML technolo-
gies, all of which can build Intrusion Detection Sys-
tems (IDS) that provide organizational capabilities to
monitor networks and prevent violations of user pri-
vacy Torabi et al. [2]. Moreover, researchers have
attempted to provide more development by looking for
new trends, including adding a preprocessing layer to
extract the most significant features in the dataset, and
combining multiple classifiers to improve performance
Kailas et al. [8].

Despite that, IDS to detect malicious DoH queries
based on conventional ML and Big Data technologies
has challenging issues, like processing large volumes
of network traffic promptly and accurately, and the
ability to generalize training predictions for new and
different types of attacks Yang et al. [9].

With the revolutionary growth of computational
power, DL techniques have demonstrated remarkable
progress and have been able to overcome many chal-
lenges and limitations Roy and Cheung [10]. DL
neural networks - such as Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN)
- have delivered progress in a wide range of applica-
tions, including self-driving vehicles, voice/image
recognition, and traffic prediction Rusk [11]. More-
over, new algorithms recently introduced for CNN and
RNN can extract a sequential connection between
features, to solve more difficult issues that were
traditionally addressed by less efficient conventional
methods Sherstinsky [12].

Additionally, the importance of statistical feature
analysis cannot be overlooked, as it has been observed
experimentally that these features can analyze network
traffic flow while removing any redundant information,
thereby providing an effective classification of benign
and malicious DoH queries Moustafa et al. [13].

These accumulated challenges and the available
new DL trends highlight the motivation for this paper,
which proposes an IDS model to detect malicious DoH
queries in covert tunnels by conducting statistical
analysis on the network traffic flow level using BRNN
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model. This paper looks for answers to the research
question of how IDS model performance can be
enhanced in terms of accuracy and error rates.

This paper evaluates the performance of the BRNN
model based on the accuracy and error rates to build
IDS. For future work, we aim to optimize the model to
be implemented in real-time as Intrusion Prevention
System (IPS) to prevent any malicious DoH queries
within an organizational network.

This paper's structure is as follows: Section 2 re-
views previous work in this area, while some back-
ground information is explained in Section 3. Section 4
explains the CIRA—CIC—DoHBrw-2020 dataset, and
the methodology is described in Section 5. Finally,
Section 6 concludes this paper.

2. Literature review

The misuse of DoH queries poses an escalating
threat to the Internet's infrastructure by paving the way
for attackers to launch their attacks. A variety of IDS
have been implemented over the past decade to elim-
inate this threat, depending on the trend of ML, DL,
and data mining technologies. In order to achieve the
desired goals, researchers are trying to maintain the
highest accuracy rates in detecting malicious DoH
queries. Therefore, researchers have increasingly
focused on improving the performance of supervised
and unsupervised ML techniques by increasing interest
in manipulating the dataset, trying to optimize features'
dimensions, and selecting the most appropriate solu-
tions to achieve the desired outcomes. To categorize
these features, four groups can be used:

1. Relational: relational features are related to pre-
defined malware, predefined malicious IP ad-
dresses, and zone/location of the malicious domain
names and IP addresses. Defining the relation
provides intuition to classify and cluster the po-
tential malicious IP addresses and domain names
Torabi et al. [2].

2. Statistical: statistical features are calculated by
performing statistical data analysis to distinguish
between malicious and benign network traffic
without any redundant information Moustafa et al.
[13]. These include analyzing the frequencies of
the packets in particular network traffic or
analyzing the TTL values related to domain ac-
tivity to identify that domain Torabi et al. [2].

3. Text-based: text-based features can identify the
domain name according to its meaning, the
randomness degree of its alphabets, and alphabets'

similarities. These features are useful to identify
patterns of malicious domain names which are
generated automatically by a Domain Name
Generating Algorithm (DGA) Almashhadani et al.
[7].

4. Time-series: time-series features represent the na-
ture of the network traffic, in which TLS protocol
encrypts the traffic in a series of packets flowing in
a time-periodic manner Montazeri Shatoori et al.
[14]. This provides the ability to monitor packets'
behavior during a period of time and detect
anomalous behavior. An example of a time-series
feature is request/response time Al-Fawa'reh and
Al-Fayoumiy [15].

Numerous DNS intrusion detections techniques
have been explored in the literature in relation to these
feature types. Almashhadani et al. [16] called their
detection system ‘“MaldomDetector”, to detect com-
munications to Command and Control (C&C) servers
using malicious DGA-based domain names. The
“MaldomDetector” system used the RMA algorithm to
select text-based features responsible to determine if
there is a random relationship between the characters
of the tested domain names in the “DGArchive”
dataset. They relied on the randomness of characters,
as attackers used random algorithms to generate ma-
licious domain names. They trained and evaluate their
detection system with Decision Tree (DT), Support
Vector Machine (SVM), Ensemble, Naive Bayes (NB),
and K-Nearest Neighbor (K-NN) (k = 5) classifiers.
“MaldomDetector” achieved 98% accuracy rate in
detecting malicious domain names by depending on
the relation between the name characters.

Satoh et al. [6] built their blacklist-based approach
to detect the malicious DNS queries by classifying
them according to their causes. They noted that ad-
ministrators cannot rely on ordinary blacklist-based
approaches, as their results are mostly unreliable. Their
detection approach depended on numerical analysis of
benign DNS queries before and after malicious queries,
to estimate their causes. Using the blacklist concept to
reduce the number of investigated malicious queries,
they utilized ML techniques to consistently update
their dependent blacklists and increase the reliability of
results for the benefit of administrators.

To improve the detection capability of this method,
several studies have attempted to automatically update
blacklist entries by using ML techniques. They have
adopted Word2Vec and several Gaussian ML models
for the numerical analyses of 388 entries in their
blacklist.
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Nguyen et al. [17] suggested a new approach to
detect malicious DNS queries, combining two unsu-
pervised ML algorithms: “Density-Based Spatial
Clustering of Applications of Noise Clustering”
(DBSC) and K-NN. Their approach was based on
behavioral analysis of DNS queries, such as the num-
ber of exchanged bytes and the time series of the sent
messages. They achieved 100% detection accuracy
rate, and a 98% ROC-AUC score.

Liu and Gou [18] proposed a DNS detection model
depending on load-based and traffic statistical analysis
of DNS tunnels to extract the most significant features.
For classification, they used the Random Forest (RF)
classifier. For evaluation, they used the ROC-AUC
score, and they obtained average accuracy of 99.6%.

The efficiency of IDS is enhanced when appropriate
datasets and corresponding ML techniques are employed.
However, researchers continually attempt to provide
ever-more improved solutions. Recently, many studies
have incorporated additional processing for dataset fea-
tures to improve their act during ML model training.

Al Messabi et al. [19] suggested an approach based
on the behavioral analysis of suspicious DNS, with
marking prior to user visits. Depending on the previous
approaches that they had studied, they chose text-based
features such as the number of characters, dots, digits,
and hyphens in the domain name, the order of the
words, and other textual characteristics. They then
sorted these features according to their rank rate (using
the WEKA tool), and excluded all with a low-ranking
rate. They collected their data from malicious malware
websites, Google search engines, and Alexa. Their
model was trained by the Decision Tree classifier, and
achieved 77.52% accuracy.

Almashhadani et al. [7] discussed new cyber-attacks
in which attackers target business infrastructures for
extortion. One of these attacks attempts to encrypt the
victims’ data and block their computers, utilizing C&C
communication protocols such as DNS, HTTP, and
NBNS, to inject their encryption public key. The re-
searchers followed a methodology to analyze the
network traffic in both packet and flow levels using the
“MCFP” dataset, and built their IDS using independent
classifiers. While analyzing the DNS traffic, they found
that informative features can be extracted by error
statistics in domain names, as well as by differences
between illegitimate and legitimate traffic time.
Behavioral features can be extracted from a number of
DNS queries for meaningless domain names,
employing Shannon Entropy metrics, programmer-
defined Python functions, and Weka tools. All extrac-
ted features were used to train two classifiers, one

based on packet level and the other on flow level. Both
classifiers built two accurate IDS, with accuracy rates
of 97.92% and 97.08%, respectively.

Alsaadi et al. [20] built IDS by implementing Ant
Colony Optimization (ACO) and Particle Swarm
Optimization (PSO) algorithms to extract features, and
three classification algorithms: K-NN, SVM, and NB.
Their datasets were KDD cup and NSL-KDD, which
contain several network attacks collected at the packet
level, such as Denial of Service, Probe, User to Root,
and Remote to Local. The accuracy rate achieved by
the K-NN to detect those attacks in both datasets on
average was 99.53%, while the NB achieved 91%, and
SVM achieved 85.6%.

Damodaram [21] proposed a framework to identify
malicious botnets according to their DNS queries.
They used a genetic algorithm to extract the appro-
priate features and hyper-parameters as a pre-process-
ing step for the TI-2016 DNS dataset. RF was used to
train the framework, which achieved 94.71% accuracy.

Many other researchers have adopted DL tech-
niques to seek further improvement in the IDS domain.
DL implements the ML process using a hierarchal
artificial neural network (NN), including CNN and
RNN. The main characteristic of such techniques is
generalization, and the ability to recognize new pat-
terns of malicious NN traffic on which the model was
not trained Lecun [22].

The IDS model presented by Fawcett [23] identified
malicious network traffic using one class dataset,
whereby the whole dataset had only normal traffic data to
avoid manual labeling. They used CNN and support
vectors (SV) as unsupervised DL techniques and evalu-
ated their IDS model by comparing the CNN and SV
performance, finding that SV had the highest accuracy
rate of 96% in detecting malicious network traffic.

Kwon et al. [24], introduced an IDS model for an
“IEEE based power system network” using BRNN.
They analyzed the network traffic of the IEEE cyber-
physical system and separated the header and payload
for each packet. The BRNN-model training phase was
performed. First, they used the packet header data to
learn the pattern of the NN communication flow, then
they used the packet payload to validate the power
system data and detect anomalies. The proposed model
could fully detect advanced power system attacks by
unauthorized commands and identify NN communi-
cation problems.

Yuan et al. [25] proposed an approach to detect
DDoS attacks in network traffic using the BRNN
technique. In the data preprocessing phase, they
extracted text, Boolean, and numerical features. In the
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experiment, they implemented one conventional ML
technique, RF, and many DL techniques, including
CNN and the BRNN with different window sizes.
Comparative evaluation between all the implemented
techniques revealed that BRNN outperformed all other
techniques in terms of generalization and error rate
reduction, with an accuracy rate of 98.410%.

Bouzar-Benlabiod et al. [26] built a model to detect
NN attacks using Principle Component Analysis
(PCA) for feature dimensionality reduction, and
LSTM-RNN for training the model. After the evalua-
tion, the achieved accuracy rate was 98.85%, with a
low FP rate (4.86%).

Wang et al. [27] attempted to provide enhanced al-
gorithms for building efficient IDS by optimizing the
“single-layer hidden forward neural network” and
“extreme machine learning” algorithms, to increase
learning speed and performance efficiency in classifica-
tion models. They proposed a “self-adaptive extreme
learning machine (SaELM)” algorithm, which adapts it-
self automatically by selecting the adequate number of
neurons in the hidden layer to build the optimal neural
network. To evaluate the proposed SaELM  they
compared its performance against the Italian wine and
Iris classification problems, with the performance of BP,
ELM, and “general regression neural network (GRNN)”
algorithms. SaELM was effective in speed training and
automatically finding the optimal number of neurons
without adjusting the weight in the training phase.

Cui et al. [28] built their malware detection
approach based on an innovative method by utilizing
the ability of deep learning in image recognition. They
stated that malware code poses serious threats against
Internet infrastructure, entailing significant risks in IoT
and mobility devices. Their approach, based on image
visualization techniques, converted malware codes into
greyscale images to extract features automatically.
CNN is advantageous in such situations as its structure
reduces neural network complexity, especially with
greyscale images as multidimensional input. They used
CNN to extract the malware images features and
classify them. They obtained 25 types of malwares
represented by 9342 greyscale images for their dataset.
They used a bat resampling algorithm to overcome
imbalanced data and achieve higher accuracy rates.
Comparing their experimental results with those of
previous relevant researches, they achieved a higher
accuracy rate of 94.5%, a precision score of 94.6%,
and a recall score of 94.5%. Despite the promising
results, the CNN algorithm is only used with fixed-size
images, and this was a limitation of the proposed
approach.

In 1980 a mathematical and analytical method
called the wavelet transformation theory was proposed.
Wavelet transformation theory proves the ability in
time domain localization and focal features. Wavelet
Neural network (WNN) combines the advantages of
the wavelet algorithm and the robustness of the neural
networks to solve classification problems, but it is
hampered in finding a suitable activation function.
Wang et al. [29] proposed a threat assessment model,
considering it the mainstay to prevent cooperation at-
tacks. They developed an algorithm that can be lever-
aged to determine the optimal activation function of
the WNN, which they called “Multiple Wavelet
Function Wavelet Neural Networks”. The results
showed that “Morlet” is the optimal activation function
that outfits the proposed problem.

“Probabilistic Neural Network PNN” was used by Yi
etal. [30] to diagnose faults in the mechanical equipment.
Their contribution was derived from striving to exploring
more models with accurate and real-time predictions at
low computational costs. They proposed a self-adaptive
PNN (SaPNN), which automatically supplied the original
PNN with the most suitable parameters. To prove the
performance of SaPNN when implemented with a fault
detection problem, it was compared to the performance of
BP, ELM, GRNN, and SaELM algorithms. Experimental
results proved that SaPNN achieved higher accuracy rates
with lower computational costs and better generalization.

3. Background
A. IDS vs. Prevention Systems

Confidentiality, integrity, and availability (CIA)
constitute the security objectives triangle in any
network, and any measure to penetrate this triangle is
called an intrusion, such as viruses, worms, and at-
tacks. Network intrusions are a primary concern for
cyber defenders, who are always trying to create sys-
tems to detect and prevent these intrusions Ashoor and
Gore [31], as explored in this research. IDS identifies
intrusions by monitoring network traffic, preserving
network logs, and reporting intrusions to the network
administrator IDS. IDS copies network traffic for read-
only analysis to detect any intrusions that have already
been launched, and notify the administrators about
what is going on so they can apply manual in-
terventions. IDS is implemented outbound of the
network line without affecting the network data flow
Ashoor and Gore [32].

IDS plays a critical role in network security, but
after-occur responses and the manual interactions
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delays, which range from a few seconds to minutes
Ashoor and Gore [32], may enable intrusion attacks to
succeed. With the increasing development of network
intrusions, a small worm can exploit a vulnerable
server within 30 s Ashoor and Gore [31].

Therefore, IPS automates responses to detected in-
trusions to prevent them before any negative conse-
quences, by blocking, dropping, or terminating their
network traffic Wu et al. [33]. To do this, IPS is
implemented within the network line (as shown in
Fig. 1), so high processing and storage capabilities are
required to cope with the high network traffic volume
without any delay Ashoor and Gore [31].

B. DNS Protocol Potential Risks

DNS infrastructure is a popular target for cyber-at-
tacks, targeting organizations that have a web presence
or which rely on e-commerce. Attackers can abuse
DNS infrastructure to collect users’ identifying cre-
dentials, such as IDs and passwords. For example,
DDoS attacks against DNS servers can be executed by
numerous compromised devices (as in botnet attacks),
to overwhelm these servers with bogus queries until
they become unable to respond to legitimate queries
Hassan [34].

Two main techniques help to constitute sophisti-
cated DNS attacks:

o IP-Flux/Fast-Flux Technique

Repeatedly random and short time-to-live (TTL)
IP addresses are assigned to a specific domain
name by “Domain Change Algorithm” Stevanovic
et al. [4]. Every 3 min, the DNS server can
generate a different IP address for a specific
domain name to ensure service continuity, and to
support more traffic volume for that domain name
Cochran and Cannady [35]. Attackers abuse the IP-
Flux technique to distribute their attacks across the
wide networks, including DDOS, phishing, data
theft, and other attacks Stevanovic et al. [4]. Taking

Fig. 1. Intrusion Detection System vs. Intrusion Prevention System.

advantage of changeable and short TLL IP ad-
dresses, attackers can avoid any IDS and hide the
existence of their malicious servers Torabi et al.
[2]. An attacker can create a hidden layer between
the compromised user and the desired web server.

In normal situations, the user gets the IP address
in response to a DNS query for the requested
website, but when an attacker appears in the mid-
dle, the user will get an IP address for a malicious
website Cochran and Cannady [35]. For example,
when a user sends a DNS query requesting the IP
address of his bank website to a compromised DNS
server, he will get back an IP address of a mali-
cious website, which looks exactly like the bank
web site. When the user enters his user's name and
password, he gets an error message and an in-
struction to try again; for the retry, the malicious
site redirects the user to the real bank website, to
continue without any awareness that his username
and password have been taken over by the hackers.
Domain-Flux

A botnet generates an enormous number of short
life domain names using Domain Generation Al-
gorithm (DGA), sending them one after another to
Control & Command (C&C) servers, depending on
DNS queries to locate one of them. When attackers
allocate a C&C server, they open a secret tunnel to
control a botnet through it Torabi et al. [2]. To
block and detect these malicious domain names,
the covert tunnels between the attacker and the
C&C server must be detected before any successful
malicious activity occurs Khare et al. [36].

C. Deep Learning (DL) Techniques

DL neural network is an advanced form of ML that
uses hierarchical data representation. Features in the
higher level, having more abstractions, are extracted
from the lower level, using various activation functions
Rusk [11]. The complicity of the hierarchical structure
of the DL models can improve the performance of
classification and regression problems by increasing
the achieved accuracy and reducing error rates Kami-
laris and Prenafeta-Boldu [37]. DL neural networks
(CNN and RNN) have delivered an artificial revolution
in a wide range of applications, such as self-driving
vehicles, voice/image recognition, and traffic predic-
tion, etc. Rusk [11].

Supervised DL model manipulates large labeled
datasets, just like the dataset of this study is labeled with
benign or malicious DoH queries (y). At each time point
in the training phase, a training set of features (X;,X>,X3,
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X4, ..., Xpy) is presented to the DL model with initial
weights (Wi, Wy, W3, Wy, ..., W,). In a hidden layer,
predictions () are produced by activation functions. The
error rate between the actual (y) and the predicted ()
values is then calculated to adjust the weights, until the
error rate reaches the minimal, as shown in Fig. 2. After
the training phase, the model performance is evaluated,
to determine its ability to output a reasonable prediction
for new inputs Lecun [22].

D. Recurrent Neural Network (RNN)

RNN, one of the models that demonstrated profi-
ciency in DL neural networks, depends on the input

sequence connection (x(t_ 1),x<’),x(t+ 1))

Zhong et al. [38]. The hidden layer in the RNN consists

of sequential activation function nodes <h(t_ 1),

h, h(H_ 1)> The sequence goes in forward or

backward propagation operations, whereby the input
for the next h depends on the output of the previous h.
In other words, the output of the previous h participates
in the production of the output of the next h during a

time series (O(t 1),0@,0("7L 1)) Zhong

et al. [38], as shown in Fig. 3.

Despite the stability of RNN models, they suffer
from limitations in keeping long input sequences dur-
ing elongated time series situations. This problem is
called “vanishing or exploding gradients” Sherstinsky
[12].

Long Short-Term Memory RNN (LSTM) models
are designed to avoid the vanishing gradients problem
Al-Emadi et al. [39]. With long time series, LSTM

e
X3 W3 - \ B ACtha.thIl
Function

v

Hidden Layer
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cells are employed in the RNN nodes to learn the long
sequential connections of Meng et al. [40]. Besides the
activation function, each LSTM cell has three gates
Sherstinsky [12]:

1. Input gate (i;) determines which Xi from the pre-
vious cell will remain in the long-term memory.
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Fig. 5. BRNN architecture.
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Equations (1) and (2) calculate the input gate and
the cell state, respectively.

2. Forget gate (fy): determines which X, from the
previous cell will be forgotten from the long-term
memory. Equations (3) and (4) calculate the forget
gate and the cell state, respectively.

3. Output gate (0y): determines which outputs will be
passed to the next LSTM cell. Equations (5) and
(6) calculate the output gate and the vector of the
hidden sequence, respectively.

Fig. 4 shows the LSTM cell in each RNN node.

iv=a(wi.[h_1, X, +b;) (1)
C,=tanh(w..[h,_1,X,]+b.) (2)
fi=a(wp.lh1, X+ by) (3)
C,=f.C_1 +1i,.C, (4)
0,=a(W,.[h_1,X,] +b,) (5)
hy = O,.tanh(C,) (6)

where b is bias, C,, C are the memory new state, and h, is
the sequence of hidden vectors.

E. Bi-Directional RNN (BRNN)

BRNN models employ two layers of LSTM cells in
a hidden layer, to be able to process the sequential
input in forward and backward directions. This re-
inforces the BRNN to build its predictions_in a Bi-
directional way Kwon et al. [&4}]. In Fig. 5, (h; ) is the
backward output sequence, (/,) is the forward output
sequence, and tlﬁ output Y is calculated by combining
both (h; ) and (h,) as in equation (7).

v=o(h k) (7)

where G is concatenation, multiplication, sum, or
average.

4. CIRA—CIC—DoHBrw-2020 dataset

DNS protocols have several vulnerabilities that have
been continuously exploited. DNS misuses have al-
ways attracted researchers looking for the best pro-
tection methods to preserve the privacy of DNS queries
across the network. HTTPS protocol encrypts DNS
queries and associates a secret tunnel for their trans-
mission between the client and the DNS server, to

protect them from potential security attacks and protect
users’ privacy. It is impossible for firewalls to discover
these tunnels, but attackers can utilize them to send
many malicious DNS queries in the same connection,
reducing the potentiality to detect them Montazer-
iShatoori et al. [14].

CIRA—CIC—DoHBrw-2020 dataset was created
due to the importance of the dataset quality to enhance
the performance of ML techniques MontazeriShatoori
et al. [14]. It was subsequently verified by the Cana-
dian Institute for Cybersecurity (CIC). CIR-
A—CIC—DoHBrw-2020 analyzes DoH traffic within
an application to distinguish benign from malicious
DoH queries Banadaki [41]. In this study, after the
network traffic was generated, all its packets were
filtered and aggregated to get rid of the impurities and
to represent the collected data succinctly.

Fig. 6 illustrates the process used to capture simu-
lated network traffic, in which:

e 10,000 Alexa websites were accessed to generate
HTTPS (non-DoH-related) traffic.

e Mozilla Firefox and Google Chrome web browsers
were used for benign DoH traffic.

e DNS tunneling tools were utilized to generate
malicious DoH traffic, creating covert tunnels to
send encapsulated DNS queries using encrypted
HTTPS requests to DoH servers Banadaki [41].

Two-layer systematic approach was implemented to
capture malicious and benign network DoH traffic. At
layer one the traffic was classified into DoH-related
traffic and non-DoH-related traffic, using statistical
features. At layer two, the collected data was used to
train time-series classifier to label DoH-related traffic
into benign and malicious DoH, as shown in Fig. 6.
Table 1 shows more detailed information about the
data capturing process.

Python programmer defined tools were created for
the following purposes:

e “DoH Data Collector” tool was used to capture the
HTTPS traffic.

e “DoHLyzer” tool was used to read pcap files
(network packets), and to generate and then
analyze the flow of DoH-related traffic.

e “DoHMeter” tool was used to produce the output
csv file with labelled data, by extracting 28 features
(statistical and time-series) from pcap files on the
flow level, as shown in Table 2.
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Level 1 Approach

Non-DoH Traffic Statistical Analysis
DoH Traffic

Malicious Time Series Classifier

DoH

Level 2 Approach

Benign

Simulated Network
DoH

Traffic

Fig. 6. The proposed two layer approach.

5. Methodology

This section demonstrates the implemented meth-
odology (shown in Fig. 7) to build the proposed
BRNN-IDS model, which distinguishes between
benign and malicious DoH queries, using Python 3
programming utilities and libraries (Skilearn, Pandas,
Keras, etc.).

A. Data Selection Phase

Extracting the statistical features on the network
flow level, CIRA—CIC—DoHBrw-2020 Dataset's
pcap files were used. 34 features were collected in
csv files, to be used by the ML learning classifiers. In
this implemented methodology, only statistical fea-
tures were used, therefore the six non-statistical fea-
tures were excluded. Table 2 shows a sample of
features.

B. Data Pre-processing Phase

Choosing the best statistical features to improve the
performance of the classifier is not sufficient if the
dataset is not properly prepared. In this phase, the
dataset was pre-processed by:

Table 2
Sample of features.

Description of features

Fl1 # of FBS"

2 Rate of FBS

F3 # of FBR"

F4 Rate of FBR

F5 Mn" pkt len

F6 Mdn" pKt len

F7 Md" pkt len

F8 Variance of pkt len

F9 STD" of pkt len

F10 Coefficient of pkt len

F11 Skew of Mdn pkt len

F12 Skew of Md pkt len

F13 Mn pkt time

F14 Mdn pkt time

F15 Md pkt time

F16 Variance of pkt time

F17 STD pkt time

F18 Coefficient of pkt time
F19 Skew of Mdn pkt time
F20 Skew of Md pkt time

F21 Mn Reg/Res time

F22 Mdn Reg/Res time

F23 Md Reg/Res time

F24 Variance of Req/Res time
F25 STD of Reg/Res time

F26 Coefficient of Req/Res time
F27 Skew of Mdn Req/Res time
F28 Skew of Md Req/Res time

STD: Standard deviation.
? FBS: Flow bytes sent —FBR: Flow bytes received.
® Mn: Mean, Mdn: Median, Md: Mode.

1. Deleting All Redundant Values and Treating
Missing Values.

This is to reduce the computational overhead
and the training time; null or missing values could
be replaced with the median of other correspond-
ing values or zero, or easily be deleted with their
entire row. In this methodology the redundant and
the missing values were deleted.

2. Normalizing
All the values were normalized within a specific

Table 1
Data capturing process.
SERVERS — AD Guard Cloudflare Google DNS Quad9

Packets Flows Packets Flows Packets Flows Packets Flows
HTTPS (DNS-unrelated-Benign DNS queries)
Google Chrome 5609 K 105,141 6117 K 132,552 58,578 K 108,680 10,737 K 199,090
Mozilla Firefox 4943 K 50,485 4299 K 90,260 6413 K 138,422 4956 K 92,670
Malicious DNS queries
DNS to TCP 128 K 5459 3694 K 6045 28,711 K 17,423 8750 K 138,588
DNSCAT2 1301 K 5369 12,346 K 9230 48,069 K 11,915 9309 K 9108
LODINE 3938 K 11,336 5932 K 14,110 73,459 K 12,192 22,668 K 8975
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Fig. 7. The proposed methodology.

range, to improve the classification algorithms'
calculations and to avoid any overflow due to
particularly high- or low-ranging (non-normal)
values Al-Fawa'reh and Al-Fayoumiy [15].
3. Data Labeling
All the values of benign and malicious DNS
queries in the label column were represented by
0 and 1 values, respectively.
4. Splitting
The data set was split: 80% to the training set,
and 20% to the testing set.

C. BRNN Classification Phase

The BRNN model is built so as to concatenate the
output of bi-directional LSTM layers. The Sigmoid
function (o) shown in equation (8) was selected to be
the output activation function, which indicates the final
prediction (¥):

1
o(x)= 1+e>

(8)
The BRRN model is used in two phases:

1. The BRNN training phase, in which the BRNN
model learns how to identify benign and malicious
DoH queries patterns, utilizing the sequence of
statistical features in the 80% training set.

2. The BRNN testing phase, in which the BRNN
model is fed with new inputs from the 20% testing
set, to test its generalization ability.

As demonstrated in Fig. 8 the selected BRNN
consists of three layers of hidden units, made up of 64
units for the first hidden layer and 128 for the second
and third hidden layers. The activation function on the
first layer is tanh, where ReLU in the second layer, and

sigmoid activation function for the last output layer.
The architecture was implemented using Keras v2.2.4
and TensorFlow.

D. Testing and Evaluation Phase

For evaluation, the BRNN training and testing
phases were compared in terms of their performance
accuracy and error rates, as shown in Figs. 9 and 10.
The error rate between them was undetected, and the
performance of the BRNN model displayed a rapid
improvement after a few iterations of training. The
accuracy of both training and testing phases was
completely achieved.

Input

|

Bidirectional

LSTM
TanH

Kernel (128 *¥128)
bias (128)

Dense

Kernel (128 *1)
bias (1)

Sigmoid

dense 6

Fig. 8. BRRN model.
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Fig. 9. BRNN model accuracy rate.

The achieved accuracy rate for the BRNN model was As shown in Table 3, most ML studies used old
100%. In comparison with previous studies (as shown in datasets to test their work, whereas only two recent
Table 3), the proposed BRNN model can distinguish studies have used realistic network traffic to test their
between benign and malicious DoH queries more effi- systems. Experiments have shown that our model
ciently, without any FP and FN rates. In conclusion, the achieves the state of arts using only statistical
proposed BRNN model is adequate to build DoH IDS that features.
organizations can rely on to protect their environment.

0.035

—— Train
Test

0.030

0.025

o
o
¥]
o

Error Rate

0.005

0.000

0 1 2 3 4 5 6 7 8
Epoch

Fig. 10. BRNN model error rate.
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Table 3
The achieved accuracy.
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Study

Feature extraction algorithm

Classification algorithms

ML DL

Highest achieved accuracy

Jafar et al. [5]
Almashhadani et al. [16]
Nguyen et al. [17]

Al Messabi et al. [19]
Alsaadi et al. [20]
Damodaram [21]
Fawcett [23]

Yuan et al. [25]
Bouzar-Benlabiod et al. [26]
Banadaki [41]

This Model

X NX X X NN X X XN

RF, SVM, DT, K-NN X 99.9%
DT, SVM, NB, K-NN X 98%
DBSC, K-NN X 100%
DT X 77.52%
K-NN, SVM and NB X 99.53%
RF X 94.71%
X CNN, SV 96%

X BRNN 98.410%
X LSTM-RNN 98.85%
LGBM and XG Boost X 100%
X BRNN 100%

6. Conclusions

DNS abuse is one of the most difficult threats
cybersecurity experts seek to combat. However, since
many DNS tunneling tools are available online and do
not require a high level of skill to use, businesses must
be aware of this potential security violation. This paper
proposes an IDS model to detect malicious DoH
queries among the network's covert tunnels using sta-
tistical analysis and DL techniques by applying a bi-
directional recurrent neural network model. Comparing
the achieved accuracy and error rates with previous
studies, the proposed IDS model can distinguish be-
tween benign and malicious DoH queries more effi-
ciently. This model can be used to detect any malicious
DNS queries or DNS tunneling type in the real world.
One of the most important concerns to consider is the
size of the dataset, since the most innovative DL has a
large dataset. The overall conclusion is that combining
the CIRA—CIC—DoHBrw-2020 dataset with DL
techniques is a highly effective method for detecting
DNS tunneling, with a distinct impact on internet
security.

The only limitation or constraint that was experi-
enced was the size of the dataset, since the state-of-the-
art DL has a large dataset. In future work, advanced
methods will be applied for hyperparameter optimi-
zation and feature selection, such as Monarch Butterfly
Optimization (MBO), Earthworm Optimization Algo-
rithm (EWA), Elephant Herding Optimization (EHO),
Moth Search (MS) algorithm, Slime Mold Algorithm
(SMA), and Harris's Hawk's Optimization (HHO).
Furthermore, distributed IDS deployment using
different ML and DL methods will be implemented on
a real network, to enhance the design and increase its

throughput and performance, and to strengthen effort
to prevent malicious DoH queries within organiza-
tional networks.
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