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Abstract Abstract 
NetworkIntrusionDetectionSystem(NIDS), widely used network infrastructure. Although many datamining 
has been used to increase the effectiveness of IDSs, current ID still struggle to perform well. therfore; 
proposed a new NIDS focused on feature_selection. The proposed 
CorrelationFeatureSelection_ForestPanalizedAttributes(CFS_FPA) used for dimensionality_reduction and 
selects the optimal_subset. based on two steps: first check each feature with a target(class) and choose 
only features that most effective by applying CFS filter using a statistical_method, then applied FPA to 
select only features will enhance ID and reduce_dimensionality. proposal tested with the NSLKDD 
experimental results of accuracy 0.997% and 0.004 FAR, wherein UNSWNB15_dataset accuracy and FAR 
are 0.995%, 0.008 consequently. 
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1. Introduction

Detecting zero-day incursions is a difficult task that
may risk a company's survival. Massive amounts of new
vulnerabilities are discovered daily, and the conse-
quences of these invasions are becoming increasingly
grave [1,2]. Computer attacks are becoming more
complex, thus posing difficulties such as incorrect
detection of an intrusion [3]. Intrusion detection systems
(IDSs) provide warnings when they identify unusual
behaviors or known threats. Any action that causes harm
to an information system can be classified as an intrusion
[4]. IDSs detect malicious activity in computer systems
that use software or hardware. IDSs are used tomonitor a
computer system for unusual behavior that a regular
packet filter might miss. Given that IDSs monitor
network packets for hazardous activity signals, high
cyber resiliencies against damaging activities and un-
authorized access to a computer system are essential.
IDSs employ two ways to detect intrusions: Signature
Intrusion Detection Systems (SIDS) and Anomaly
Intrusion Detection Systems (AIDS).

SIDS, also known as Knowledge Detection or
Misuse Detection, is a system that generates a signa-
ture identification for known malware to identify it in
the future [5]. The trace can be marked as malware if
the same signature is found again. SIDS typically has
high detection accuracy, particularly for previously
detected intrusions. As a result of SIDS's success in
updating the signature database, three issues arise.

First, the polymorphic features of malware make it
simplertofoolsignature-basedsystems.Asthistechniquein
the IDS database does not correspond to any signature, the
similarity test fails, enabling an attacker to access the
computer system.Second, the larger thesignaturedatabase,
thelongerittakestoevaluateandinterpretallofinformation.
Finally, given that the signature is not saved in the database,
SIDS has trouble detecting zero-daymalware [6e8].

The limitations in SIDS have been rectified by using
AIDS techniques, which are currently being used to
identify malicious machine assaults. This method is
based on the assumption that a harmful activity has a
different profile than typical user behavior [9e12].
AIDS generates a statistical model of usual user
behavior, and any deviation from this model is recog-
nized. The AIDS design definition profiles and repre-
sents the typical and predicted standard behavior
profile by tracking behaviors and categorizing
abnormal events according to how much they deviated

from the norm. AIDS analyzes data such as how many
emails a user receives, how many unsuccessful login
attempts a user has made, and how much CPU a host
consumes in a specific interval to find trends. Anomaly
detection techniques offer a high degree of generaliz-
ability and the potential to discover new threats, but
they may have significant false alarm rates owing to
the shifting cyber-attack climate. Considering that they
vary from standard practices, alien user preferences are
known as intrusions. The planning phase and the
research phase are the two stages of AIDS. The normal
profile is trained using data that show normal behavior
during the training process, and the model is then
assessed using data that were not used during the
training phase. Depending on the methods used to
learn about AIDS, it may be divided into many sub-
categories, such as, mathematics, knowledge-based,
and machine learning [13e15].

The ability to detect zero-day attacks is a key
advantage of AIDS, as it does not rely on signature
databases to do so. When the examined conduct de-
viates from the standard, AIDS sends out a warning
signal [16]. AIDS also has several advantages. First, it
can detect internal malicious activity. When an attacker
begins transacting on a compromised account, which
may be mistaken for regular user behavior, an alarm is
triggered. Second, given that the framework is built
from personalized profiles, figuring out what a regular
user does without triggering alarms is exceedingly
difficult for a cyber criminal [4]. Traditional IDSs have
many flaws, including the inability to discriminate
between new vulnerabilities, updates that were needed,
and produced high FAR and low accuracy. AIDS has
flaws and a high rate of false alarms [17e19]. To
overcome these shortcomings, a novel IDS model
integrating SIDS and AIDS is presented as a way to
enhance accuracy and to lower FAR. SIDS was able to
identify well-known incursions, whereas AIDS was
able to identify novel ones.

Furthermore, various attack types and network traffic
attributes offer Machine Learning with still another
hurdle, that it expands the problem's search area and
raises computational and temporal complexity [20].
Feature selection is a good solution for IDSs that identify
highly important features and removes useless ones with
minimal performance degradation [21,22]. Wrapper,
filter, and embeddedmethods are the threemajormodels
for feature selection dependent feature selection or in-
formation gain ratio (IGR). The IGR is the ratio of

https://doi.org/10.33640/2405-609X.3166

2405-8572/© 2021 University of Kerbala. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).



information gain to intrinsic information in a standard
filter method. Although it minimizes the bias against
multi-valued characteristics and eliminates the disad-
vantage of knowledge acquisition, in other cases it may
favor features with fewer values. Correlation-based
feature selection, unlike the knowledge gain ratio, en-
hances the relevance of input and output features while
decreasing duplication. This method selects one func-
tion at a time according to how closely it correlates with
the outputs, allowing for greater attribute flexibility and
tuple reduction [12,23e28]. In this paper, we provide a
standard method for dimensionality reduction and
redundancy removal, as well as a natural-inspired FS
methodology for extracting a subset of the original
features. FS via ensemble learning increases the IDS's
stability and accuracy while demanding minimal
computational and time resources.

On an extended test consisting of two datasets, the
NSL-KDD and UNSW BN15 datasets, the idea is
compared against existing approaches. The proposed
method outperforms comparable algorithms by using
measures of accuracy, F-measure, and DR while
maintaining normal FAR levels, according to experi-
mental data. The rest of the paper is organized as
follows. In Second 2, similar works are reviewed. In
Section 3, the proposed hybrid CFS-FPA in feature
selection is defined in detail. In Section 4, the experi-
ment results are presented. Section 5 provides a review
and discussion of the previous articles.

2. Related works

Various IDSs for detecting anomalous activities are
found in the literature. However, the majority of these
IDSs create a large number of false positives and have low
detection accuracy. Many hybrid IDSs have been pro-
posed to mitigate the shortcomings of SIDS and AIDS.

� [3], offered a multi-class support vector machine-
based intrusion detection algorithm on the basis of
chi-square feature selection (SVM). A parameter-
tweaking strategy is used to optimize the over-
fitting constant “C” and the gamma parameter of
the Radial Basis Function kernel. These are the
only two parameters that allow the SVM model to
function. The primary goal of this application is to
develop a multi-class SVM, which has never been
used for IDS before, to reduce training and testing
time while improving individual network attack
classification accuracy. Our suggested methodol-
ogy improves detection rates while minimizing
false alarm rates, according to the NSL-KDD

dataset, which is a recent version of the KDDCup
1999 dataset. Using in time-critical circumstances,
an evaluation of the computing time necessary for
training and testing is also carried out.

� [9], Investigations NSLKDD dataset, a variant with
the well KDD Cup 99 data set, were used to assess
the suggested hybrid intrusion detection approach.
The experimental findings show that the suggested
technique outperforms traditional approaches in
terms of detection rate for new and known assaults
while having a low FAR. Furthermore, the sug-
gested solution considerably decreases the training
and testing processes' high time complexity. The
anomaly detection model's training and testing
times are only 50% and 60% of the time required
for traditional models, respectively, in experiments.

� [21], This work uses many current feature selection
approaches to develop a robust classifier that is
computationally efficient and effective to minimize
unnecessary features from the NSL-KDD data set.
Info Gain, Correlation, Relief, and Symmetrical
Uncertainty are four additional feature selection
approaches that are combined with the C4.5 deci-
sion tree algorithm to form IDS. The experiments
used the WEKA open-source data mining program,
and the results show that C4.5, when employing
the Info Gain feature selection process, had the
highest accuracy of 99.68% with 17 features.
Symmetrical Uncertainty with C4.5, while having
only 11 characteristics, is as promising, with
99.64% accuracy. The findings outperform those of
previous research in this subject.

� [22], In this study, a wrapper methodology based
on a genetic algorithm as a search strategy and
logistic regression as a learning algorithm was used
to select the best subset of features for network
intrusion detection systems.

Several techniques for improving the detection rate of
intrusion detection systems have been developed.
However, such techniques struggle to create and update
the signature of new malware, as well as producing a
high number of false alarms or low detection rates.

� [29], Four different data mining algorithms were
offered as basic classifiers for such ensemble ap-
proaches: J48 (decision tree), JRip (rule induction),
and iBK are all examples of Nave Bayes (nearest
neighbor). According to our research, the proto-
type, which uses four base classifiers and three
ensemble algorithms, correctly detects current in-
vasions at a rate of over 99%. However, it fails to
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detect fresh incursions at a rate of more than 60%.
Bagging, boosting, and stacking do not enhance
accuracy considerably. Stacking is the only strat-
egy that significantly reduced the false positive rate
(46.84%); yet, it is the most time-consuming
technique to deploy, making it inefficient in the
intrusion detection sector.

� [30], “K-Means þ C4.5” is a suggested anomaly
detection mechanism for distinguishing between
abnormal and normal occurrences in a computer
system. By using Euclidean distance similarity, the
K-Means clustering algorithm separates the training
data into k groups. In terms of accuracy, the hybrid
method outperforms the individual methodology,
although it has a high proportion of false alarms.

� [31], A C5 DT classification and one class SVM
combine to form hybrid IDS (HIDS) (OC-SVM).
HIDS combines SIDS with IDSs based on anom-
alies (AIDS). A C5.0 DT Classification has been
utilized to build SIDS, whereas one-class SVM has
been utilized to build AIDS. This technique finds
known intrusions with excellent detection accuracy
and low false alarm rates, together with zero-day
threats. The proposed HIDS is examined utilizing
the NSL-KDD and ADFA datasets for Network
Safety Laboratory-Knowledge Discovery.
Research demonstrates that HIDS has greater DR
and a lower number of FAR than SIDS and AIDS.

� [32], In the suggested study, the Hidden Naïve
Bayes model (HNB) might be applied to dimen-
sionality, high-related functionality, and large
network data stream volumes intrusion detection
issues. HNB is a paradigm of data mining that
relaxes the conditional autonomy of the Naïve
Bayes procedure. Experimental results showed
that, with the standard Naïve Bayes model, leading
extended Bayes models and 1999 winners of the
KDD Cup, the HNB model demonstrates higher
global performance in precision, error ratio, and
error cost. Our model fared better in predicting
accuracy than other leading cutting-edge models
such as SVM. The results also show that our
approach enhances the accuracy of Denial of Ser-
vice (DoS)detection considerably

� [33], This work aims to remove redundant instances
that result in an unbiased learning algorithm (ii) by
using a wrapper-based feature selection approach to
determine the appropriate subset of characteristics
(iii) to achieve greater detection accuracy. The IDS is
designed using a wrapper-based function selection
method that enhances the specificity and sensitivityof
the IDS and uses an iterative approach for neural

group decision-making to produce optimum features.
A comprehensive experimental assessment has been
carried out to find anomalous grid patterns, including
the suggested methodology with a family of six de-
cision tree classifiers, namely, Decision Stump, C4.5,
the Naïve Bayes Tree, Random Forest, The Random
Tree, and the Representative Tree model.

� The feature selection technique [34,35], The control
plane, data plane, and energy plane make up the
three-plane software-defined green 5G architecture
for big data. Networking and processing equipment
that The data plane, which is part of the energy
plane, can be powered by both standard grid and
renewable energy sources. The control plane mon-
itors the state of a system and makes necessary
adjustments to increase energy efficiency and ser-
vice quality. Furthermore, the purpose of this FRS
study is to eliminate duplicate system monitoring
data and software-defined architecture overhead. We
propose an AIFS for mining latent rules among
characteristics to incorporate features in software-
defined architecture. Our solutions appear to be
more efficient in the green 5G system, according to
simulation results.

3. Hybrid CFS-FPA

The purpose of FS is to select a subset of the
original set's attributes that is adequately representative
of the outcomes, because the subset's attributions are
crucial to the prediction. Wrapper, filter, and embedded
feature selection are the most common feature selec-
tion methods [36].

Wrapper techniques use classification results to
assess and pick feature subsets, whereas filter tech-
niques determine if a dataset's relevance and feature
selection are based on statistics.

Embedding techniques are much less computational
than wrapper techniques, because they interact with the
selection of features. A regularized risk function is
utilized in embedded techniques to enhance feature
designation and predictor parameters [37]. Moreover,
making adjustments to the categorization model to
enhance outcomes is complex [38].

Redundant and useless features are found in today's
intrusion detection databases [39]. They decrease the
effectiveness of data mining algorithms and lead to
unintelligible findings [40]. Therefore, the first stage in
this research is to minimize the dimensionality of the
dataset and choose the function subset [41]. In this
research, a hybrid strategy is developed to increase
feature selection efficiency and classification accuracy
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by combining correlation-based feature selection
(CFS) and the bagging method of ensemble learning
(RF). Before looking for the optimal solution in the
given search space, this approach evaluates the validity
and redundancy of a function subset. Fig. 1 depicts the
proposed model.

3.1. Correlation Feature Selection (CFS)

CFS is a conventional filter method that selects
features by using a heuristic (correlation-based) eval-
uation function [42]. This function favors subsets with
characteristics that are highly connected to the class
but not to one another. Although unimportant charac-
teristics with low-class affiliation should be dis-
regarded, repeating characteristics are selected because
they have a strong association with at least one of the
other traits. Acceptance is determined by how well a
feature predicts classes in parts of the instance space
where other characteristics have yet to predict them.
The evaluation function for feature subsets [43] in CFS
is shown in Eq. (1).

ms¼
krcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ kðk� 1Þ þ rff
p ð1Þ

where rcf is the average degree of correlation between
attributes and Label of category rff denotes the inter-
relationship average of the characteristics. In acquired
subsets, a larger rcf or a smaller random forest (RF)
provides a higher evaluation value. To decrease the
sizes of training and testing systems, a collection with
the highest value achieved over the whole project is
used.

3.2. Random_Forest (RF)

Breimanis suggested Random_Forest in Ref. [44],
which is a decision_tree methodology that works by
building several DT. It classifies hundreds of variables
input according to their relevance without removing
any variables. RF is a collection of classification trees,
and each of them assigns the responsibility of finding
the most prevalent class in the input data a single vote.
When RF is utilized instead of other machine learning
approaches, less parameters are offered, SVM and
ANN, for example. A set of individual tree-structured
classifiers in RF can be defined as:

fhðx;qkÞ;k¼1;2…g ð2Þ

where h stands for RF classifier and k represents a group
of identical vectors dispersed randomly.

At input variable x, for the most prestigious class,
each tree has a vote. The proportions and style of the
tree structure are influenced by its use. For RF's suc-
cess, establishing every decision-making tree is
essential.

Outliers and parameters have little effect on RF,
which has a low computation cost. In addition, over-
fitting is less of a problem than with a single DT, and
the trees do not have to be trimmed [45]. The variance
of an average of Bagging random variables, with the
volatility of 2, each has a 1/B2 volatility. Eq. (3) il-
lustrates the average variance assuming the
variables were simply identically distributed but
necessarily independent and had a positive P-relation-
ship fairway.

ps2 þ 1� p

B
s2 ð3Þ

3.3. Penalizing attributes in the forest (FPA)

Unlike prior strategies that only use a subset of
nonclass features, FPA develops an accurate collection
of decision-making bodies using the strength of all
non-class functions accessible in a source of informa-
tion [46]. Simultaneously, to assure individual accu-
racy and to encourage excellent diversity, aspects
connected to weight, such as weight assignment tech-
niques and weight gaining methods, are considered.
FPA will alter the weights of the characteristics in the
most recent tree randomly within a weight range (WR)
was demonstrated in the 4th equation.

wRl¼

8>><
>>:

�
0:000;

�1

el

�
;l¼ 1

h
e

�1
l�1 þP;e

�1
l

i
; l>1

ð4Þ

The attribute's level is as follows:
The p variable is used to prevent overlapping of the

WR at various levels.
For instance, the value of an attribute in the root

node is 1. The value of an assessed attribute for a root
node infant is 2. Moreover, FPA features a mechanism
that progressively increases the weights of properties
unchecked in future trees, thereby lowering the adverse
effects of maintaining weights not found in the most
recent tree. Assume that an attribute Ai is evaluated at
Tj*1*tree Level p with height and weight i. Then,
compute Ai's weight increment value I as follows: 5th.
Equation.
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si¼ 1:0�ui

ðnþ 1Þ � l
ð5Þ

3.4. Hybrid CFS-FPA approach for feature selection

To establish the significance and correlation of a
feature subset, Hybrid CFS-RF proposed a based
feature selection methodology. To shape fitness

functions and test the reduced feature subset's integrity,
the CFS-RF technique uses a correlation-based feature
technique. Given a feature subset, determination of the
intercorrelation between average feature class and
average feature correlation. (S ¼ s1; s2; sk) S with k
characteristics. Based on the outcome of the correla-
tion-based evaluation function, CFS, as a traditional
filter algorithm, may swiftly choose a subset of inde-
pendently good features. Owing to functional

Fig. 1. Proposed hybrid CFS_FPA general structure.
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duplication, this functionality subset may not be the
optimum combination. Random forest is used to
reduce dimensionality and remove redundant features,
as well as to increase bagging variance reduction by
reducing the connection between the trees without
increasing variance too much. This is accomplished in
the tree-growing method by selecting input variables at
random by using Eq. (2). When growing a tree on a
bootstrapped dataset, in particular. Algorithm 1, was
demonstrated the main steps for this proposed method
as following steps:

� Read datasets as the main input, and divide them
into a training dataset and a testing dataset.

� Then the dataset is pre-processed, which is
explained in detail in section 4.2.

� At the first step committee the initialization of each
CFS using Eq. (1). This step is fast because this
method of CFS is based on statistical operation can
choose the most relevant feature to the target

(class). In this process, redundancy is the problem,
and FPA is used to reduce the redundancy and
choose only features that are the most effective by
using the weight to each feature through applied
Eq. (5). And then generate sets of Random Forest
RF (using 10 estimators [forest]) by applying Eq.
(2).

� Begin all processes applied to the training dataset
by computing CFS, then reduce the redundancy by
applying FPA. Update the weight and compute the
variance to choose the best set with less variance.

� Update the iteration.
� Output can choose the best subset of a feature that
is useful in detecting the intrusion easily when
applied to an intrusion detection system.

The two types of reasoning are rational and
computational reasoning. First, the optimal represen-
tation in the space of hypothesis is impossible for a
single classificatory. As a result, separate classifiers

Algorithm 1: Hybrid CFS-FPA 
Input: datasets

Output: most effective features (X best)
1. Split datasets into two parts: a training set and a testing set. 
2. Pre-processing the steps by using algorithm 2.  
3. Initialization: iteration t=1.

4. Divided the datasets into classes   

5. for a training_set part do :
a. At the first step committee the initialization of each CFS using Eq.1.
b. Generate new RF using Eq. 2.
c. Initialize each feature weight value Wi by applying Eq. 5.
d. Generate the number of RF as 10_forests (estimators), n_jobs=2, 

n_feature selection=30, and step=1.

e. Xi selection from Xbest.
f. While Xbest > Xi do :         

a. Use Eq. 3 to generate new Xnew.

b. Compute Xnew CFS using Eq. 1.
c. If Xi<Xnew and N(0,1)<Atti then

d. Update Xi using Eq. 3.
e. Compute Wi for each Xi generated from RF using Eq. 4.

f. Compute σ2 for each Xi using Eq. 5 generated from RF.

g. Update Wi and σ2

g. end if

h. end while
i. Xbest= Xnew

6. Endfor
7. t = t + 1

8. Output: the best subset selected (Xbest).
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must be combined to improve prediction efficiency.
Second, if the learning algorithm's training dataset is
inadequate, then the result may be a faulty or erroneous
hypothesis. In the latter instance, a single classifier
may spend a large amount of time computing an
acceptable hypothesis, thus increasing the likelihood of
the approach failing.

4. Evaluation of the hybrid CFS-FPA approach
according to results

The main aim of this paper is to build reliable IDSs
with low false alarms and high accuracy. To achieve
this objective, a hybrid approach called CFS-FPA,
which combines CFS and FPA, is used to decide the
best subset of the original features to remove unnec-
essary features and increase classification performance.
Two datasets are used to test this proposed system:
NSL_KDD and UNSW BN 2015. Experimental results
were evaluated and executed by using Python language
8.3 Using a laptop with the following processor spec-
ifications: Intel(R) Core (TM), i7
10510UCPU@1.80 GHz 2.30 GHz, RAM 6.0 GB with
10G, and operating system type 64-bit operating sys-
tem, x64-based processor. 4.1 Datasets for bench-
marking a brief description. Finding an appropriate
dataset is one of the difficulties that researchers face to
evaluate IDSs. Obtaining a real-world dataset that
accurately reflects network traffic without any ano-
nymization or alteration is an issue that the cyberse-
curity research community has been grappling with for
years [47]. In the event of a publication or transmission
of the data, the data are severely anonymized or
modified. Many of the important data items on which
researchers rely would therefore be lost or become
unreliable. As a result, some studies have decided to
use the well-known data set of KDDCup’99 [48] or the
NSL-KDD dataset [49]. That's a contemporary of her.
Recently, great efforts have been made to construct
datasets that represent genuine data. This research thus
uses NSL-KDD and UNSW BN15 datasets to carry out
experiments.

4.1. NSL_KDD dataset

In 2009, the NSL-KDD dataset [49] KDDCup’99,
an updated version of the original dataset, was devel-
oped [48]. NSL-KDD had the KDDCup’99 benefits
and problems. By deleting superfluous information, It
addressed some of the flaws in the original dataset,
reducing the number of cases while retaining sample
diversity. The NSL-KDD dataset was designed to

enhance prediction complexity, which is one of its
most noticeable features. Different benchmark classi-
fiers were used to categorize the records into five de-
grees of complexity, with each instance labeled with
the number of correct predictions made [12]. The
number of records picked for each difficulty level
categorization is inversely proportional to the record
percentage in the original KDDCup'99 dataset. The
KDDTrain collection has 125.973 instances in this
sample, with 58.630 attack traffic instances and 67.343
normal traffic instances. By comparison, the KDDTest
set has a total of 22,544 instances with 11,850 extra
events in the KDDTest subset. Table 1 shows the de-
tails of the dataset concisely.

4.1.1. UNSW NB15 dataset
We use the UNSW-NB15 attacks dataset [50] for

our experimental procedures. Table 2 summarizes the
42 characteristics of the UNSW-NB15 in its clean
format. Three of the 42 attributes are category (non-
numeric), whereas the other 39 are numeric. The
UNSW-NB15 is broken down into two primary data-
setsUNSW-NB15-TRAIN (100%) is used to train
various models, whereas UNSW-NB15-TEST (100%)
is used to test the models that have been trained. We
divided the UNSW NB15 TRAIN into two portions for
our research: UNSW NB15 TRAIN-1 (75% of the
overall training set) for training and UNSW NB15
VAL (25% of the whole training set) for validation
before testing. The findings acquired throughout the
training phase are checked against this second partition
as a sanity check. Avoiding training a model on the
evaluation or test set while employing this technique is
crucial, as this practice might lead to a problem known
as data leaking.

During the training process, data leakage happens
when a model obtains the information it shouldn't,
resulting in a bias in the final model. As a result, the
model's performance when dealing with previously
encountered data is poor [31]. The UNSW-NB15
contains network threats like backdoors, shellcode,

Table 1

NSL-KDD dataset.

Class KDD_Train KDD_Test

DoS 45,927 7,458

R2L 995 2745

PRB 11,656 2,421

U2R 52 200

NORMAL 67,343 9,711

Attack 58,630 12,833

Total 125,973 22,544
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reconnaissance, worms, fuzzes, DoS, generic, analysis,
shellcode, and exploits. Within the data subsets, Table
3 illustrates the characteristics and distribution of
values for each assault type.

4.2. Dataset preprocessing

The preparation of data is the longest, most important
element of data mining. Typically realistic data are
noisy, redundant, partial, and inconsistent, and are ac-
quired from many sources [51]. Therefore, converting
raw data into a format that can be used for analysis and
information discovery is critical. Data filtration, data
transformation, and data normalization are all part of the
preprocessing phase in this study which uses Algorithm
2. Fig. 1 shows the distribution of datasets.

4.2.1. Data filtration
Before the filtration, datasets were divided into

training and testing sets. The raw data will invariably
contain aberrant and redundant occurrences as a result
of platforms’ heterogeneity, which may have a detri-
mental impact on classification accuracy. These re-
cords must be deleted from the datasets at the start of
our trials to overcome this problem, and categorical
characteristics must be inserted into a 2D array.

4.2.2. Data transforming normalization
The data sets have employed symbolic, continuous,

and binary values. In NSL KDD datasets, for example,
the “type of protocol” feature is provided. Symbolic
values such as “tcp,” “udp,” and “icmp” are included.
The conversion phase is critical because some

Table 3

UNSW-NB15 repartition instances.

Attack Type UNSW-NB15 UNSW-NB15- TRAIN-1 UNSW NB15-VAL UNSW-NB15-TEST

Norms 56,000 41,911 14,089 37,000

Generic 40,000 30,081 9919 18,871

Exploits 33,393 25,034 8359 11,132

Fuzzers 18,184 13,608 4576 6062

DoS 12,264 9237 3027 4089

Reconnaissance 10,491 7875 2616 3496

Analysis 2000 1477 523 677

Backdoor 1746 1330 416 583

5hellcode 1133 354 279 378

Worms 130 99 31 44

Table 2

UNSW_NB15 features.

Feature no. Feature Format Feature no. Feature format

f1 du float f2 dtccpb Int.

f3 proto int. f4 dwin Int.

f5 service categoric f6 state Flaot

f7 spkts categoric f8 dpkts Float

f9 sbyte float f10 dbyte categoric

f11 rate int. f12 sttle Int.

f13 dttle int. f14 dload Int.

f15 sloss int. f16 dloss Int.

f17 sinpikt int. f18 dinpikt Int.

f19 sjit float f20 djit Int.

f21 swin int. f22 stcpb Int.

f23 dwin int. f24 tcprtt Int.

f25 smean int. f26 synack Int.

f27 dmean int. f28 ackdat Int.

f29 trans_depth float f30 resonse_body Int.

f31 ct_src_port float f32 ct-srv-src Int.

f33 ct_src_dest. float f34 ct-state Int.

f35 Ct_item int. f36 ct_dst. Int.

f37 Is_sm_ips float f38 Ct_src Binary

f39 Ct_flow int. f40 Ct_src_sport Int.

f41 Ct_src_des.item int. f42 Ct_ftp_login Int.
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classifiers only take numerical inputs, and it has a
considerable influence on IDS accuracy. To replace
each value with an integer in this article, we use the
following format: Transform category characteristics
into numbers with:

a) LabelEncoder ()
b) One-Hot-Encoding

Furthermore, differing scaling among features may
impair the classification outcome. As a consequence,
normalization is a change that reduces the size of
functions to a standard set of values. In our tests, we
employed the MinMaxScale technique, which is a
straightforward and quick way [52]. It can be described
as:

x¼ x� xmin

xmax � xmin

ð6Þ

5. Discussion and results

An IDS's capacity to classify network traffic into the
appropriate kind is used to evaluate its performance. To
avoid the effects of data sampling while assessing
IDSs, we compare the proposed model's output to no
feature selection and various state-of-the-art ap-
proaches in terms of numerous detection metrics in this
study, including Accuracy (ACC), Precision, Detection
Rate(DR), F-Measure, Attack Detection Rate(ADR),

and False Alarm Rate (FAR) [53]. Explains the sta-
tistical equations for the used evaluation criteria.

First, important features are determined by assessing
the integrity of the reduced feature subset by using the
suggested CFS-PFA-Ensemble approach in the feature
selection step. Second, from the initial characteristics,
candidates for the following step are identified.

Table 4 shows the numbers and names of selected
attributes for the NSL-KDD and UNSW BN15 data-
sets. When used alone, CFS-FPA reduces dimension-
ality and eliminates superfluous attributes from a
dataset. The recommended technique, in general, is
based on selecting relevant features for all classes
rather than a single class, which does not guarantee the
performance of all types of assaults, particularly those
with few cases in datasets. The known feature selection
approaches may be used to identify intrusions because
the classification conclusions for typical occurrences
are largely consistent across varied datasets.

5.1. Model evaluation

Evaluation metrics used in IDS. Table 5 shows the
confusion matrix for a two-class classifier that is
widely used in an IDS. The instances in a predicted
class are represented by each column of the matrix,
whereas the instances in an actual class are represented
by each row.

Typically, an IDS is evaluated by using the confu-
sion matrix calculation as follows:
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5.1.1. True positive rate (TPR)
The quantitative link between the number of attacks

and the overall number of attacks is calculated. When
all intrusions are identified accurately, the TPR is 1,
which is rare for an IDS. Also known as the TPR, the
rate of detection is defined In Eq. (7).

TPR¼ TP

TPþFN
ð7Þ

5.1.2. False positive rate (FPR)
FPR is a quantitative measure of the connection

between the number and a total number of normal
instances identified as assaults. To measure the FPR,
the following formula is presented in Eq. (8).

FPR¼ FP

FP þ TN
ð8Þ

5.1.3. FNR (false negative rate)
The FNR indicates that the system for intrusion

detection could not recognize and characterize the
incursion as natural. The FNR is established in Eq. (9).

FNR¼ FN

FN þ TP

ð9Þ

5.1.4. Accuracy
Accuracy is an IDS's accuracy obtained in catego-

rizing normal and intrusion assaults, as assessed by Eq.
(10).

Acc¼ TPþ TN

TPþ TN þFPþFN
ð10Þ

5.1.5. Precision (P)
In Eq. (11), the ratio of total true positives (TP) to

total true positives (TP) and false positives (FP) in-
stances is the ratio of total true positives (TP) to total
true positives (TP) and false positive (FP) instances.

P¼ TP

TPþFP
ð11Þ

5.1.6. Recall (R)
True positives (TP) are the percentage of total

relevant outcomes accurately classified divided by the
total number of true positive and false negative (FN)
occurrences. Eq. (12) demonstrates this.

Recall¼ TP

TPþFN
*100% ð12Þ

5.1.7. The F-measure (FM)
The FM is a measure of recall and precision. F-

measure is used as an evaluation measurement when
only one accuracy metric is required. Eq. (13) provides
a good example.

F measure¼2*Recall*Precision

RecallþPrecision
ð13Þ

Table 4

Selected features name of datasets.

FS_name of NSL_KDD

dataset (30 features)

FS _name of UNSW

BN2015 dataset (30 features)

Count “dst bytes”

Diff srv rate “diff srv rate”

Dst bytes “srv diff host rate”

Dst host count “dst host count”

Dst host diff srv rate “Dst host_srv_count”

Dst host error rate “dst host_same_srv_rate”

Dst host same src port rate “dst host_diff_srv_rate”

dst_host_same_srv_rate “dst host_same_src_port_rate”

dst_host_serror_rate “num access_files”

dst_host_srv_count “num shells”

dst_host_srv_diff_host_rate Num failed_logins

dst_host_srv_rerror_rate “num root”

dst_host_srv_serror_rate “su attempted”

flag_RSTR “root shell”

flag_S0 “num compromised”

flag_SF “serror rate”

“hot” “count”, “srv_count

“num_compromised” “is_guest_login”

Protocol_type_icmp “is host_login”

Protocol_type_tcp “num outbound_cmds”

rerror_rate “same_srv_rate”

same_srv_rate “srv rerror_rate”

serror_rate “rerror_rate”

Serviceecr_i “srv_serror_rate”

Service HTTP “dst_host_srv_rerror_rate”

service_private “dst_host_rerror_rate”

Src bytes “dst_host_srv_serror_rate”

Srv. count “dst_host_serror_rate”

Srv. rerror_rate “dst_host_srv_diff_host_rate”

Table 5

Confusion matrix.

Actual class Normal intrusion

Normal TN FP

Intrusion FN TP
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5.2. Comparison of the hybrid CSF_FPA ensemble
with no feature-selection

We compare the suggested feature selection tech-
nique to the performance of the technique without
feature selection in terms of identifying attacks from
regular instances to assess the effectiveness of the
proposed hybrid CFS FPA technique. As a result of the
suggested hybrid CFS FPA method's gathering of key
characteristics, the average values of several metrics,
including as Acc, precision, DR, and F-Measure, have
risen significantly. Table 6 summarizes the output of
the basic and ensemble classifiers using the NSLKDD
dataset. It is hypothesized that the ensemble classifier
would not be strong enough in some measures if fea-
tures were not selected. However, the hybrid CFS FPA
Ensemble technique outperforms on both sets. NSL-
KDD dataset On the basis of these results, our model is
the most accurate and has the smallest FAR. The
ensemble classifier that employs the original features
performs worse in terms of accuracy and ADR than
simple classifiers that employ the suggested feature
selection approach, highlighting the relevance of the
suggested feature selection approach. Furthermore, the
proposed hybrid CFS FPA system ensemble model
decreases the time overhead when applied to feature
selection and ensemble model due to the dimension-
ality reduction of the subsets. Table 7 was demon-
strated confusion_matrix performance categorization
for a. NSL KDD and b. UNSW BN15.

5.3. Comparison with other FS methods

The benchmark datasets, as discussed in Section
4.1, depict a contemporary and complicated threat
environment. Owing to the rising number of assault
groups and their extremely uneven records, any ma-
chine learning technique confronts difficulty. We
compare our proposed IDS model to various well-
known feature selection approaches, such as IG (In-
formation Gain) [54], IGR (Information Gain Ratio)
[55], GA (Genetic Algorithm) [56], and PSO (Particle
Swarm Optimization) [57], by conducting tests on two
datasets. In this comparison research, we also employ
standard measures such as Acc, F-Measure, DR, and
FAR. To measure the effectiveness of the suggested
IDS, a comparison was made in terms of the number of
selected features and the time it took to choose them.
Compared with several FS techniques based on the
same recommended voting-based ensemble classifier,
Fig. 2 illustrates our model's average performance.
First, our proposed model outperforms previous feature
selection-based techniques in every dataset, as
demonstrated in Fig. 2(a). Similarly, our proposed
model outperforms existing feature selection tech-
niques in terms of F-Measure on all datasets, as shown
in Fig. 2(b), by extracting more particular feature
subsets. Our proposed model, as shown in Fig. 2(c),
has a high attack detection rate. Furthermore, our
proposed CFS-FPA-based model yields the lowest FAR
values of 0.004% and 0.008%, respectively, on the

Table 6

Classification Performance for FS using NSL-KDD.

Classifier Accuracy Precision F-measure DR FAR

a. Results of performance using original features (42 features)

RF 0.949 0.944 0.947 0.949 0.021

FPA 0.945 0.942 0.944 0.945 0.028

Hybrid CFS_FPA 0.994 0.993 0.993 0.992 0.016

b. Results of performance using CFS-FPA (30 features)

RF 0.949 0.944 0.947 0.949 0.021

FPA 0.945 0.942 0.944 0.945 0.028

Hybrid CFS_FPA 0.997 0.998 0.997 0.998 0.004

Table 7

Classification Performance for FS using UNSW_BN15.

Classifier Accuracy Precision F-measure DR FAR

a. Results of performance using original features (49 features)

RF 0.979 0.982 0.996 0.989 0.004

FPA 0.966 0.982 0.981 0.981 0.019

Hybrid CFS_FPA 0.982 0.982 0.999 0.990 0.002

b. Results of performance using CFS-FPA (30 features)

RF 0.992 0.992 0.992 0.992 0.004

FPA 0.990 0.989 0.990 0.989 0.003

Hybrid CFS_FPA 0.995 0.995 0.995 0.995 0.08
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Fig. 3. Performance measures of NSL and UNSW BN15 datasets.

Fig. 2. Normalization process a. NSL_KDD dataset b. UNSWNB15 dataset.
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basis of the NSL-KDD and UNSW BN15 datasets, as
shown in Fig. 2 (d). Compared with earlier feature
selection methodologies, our proposed model dramat-
ically reduced FAR on each dataset, assuring the IDS's
efficacy. Figs. 2(e) and 3(f) show the number of fea-
tures selected using various approaches and the time it
took to pick them, respectively, which may reflect the
efficiency of an IDS.

Although the proposed methodology takes longer
time than IG and IGR, CFS-FPA chooses fewer fea-
tures and has considerably higher accuracy than IG and
IGR, as shown in Fig. 2 (a). GA and PSO are depen-
dent feature selection methods that acquire fewer

features than CFS-FPA on the UNSW BN15 dataset,
but they take longer to FS on all five sets and do not
improve detection accuracy. To explain in detiels
these results confusion matrix was demonstrated in
Table 8.

5.4. CFS_FPA Complexity_Time and runtime

To evaluate the complexty time of proposed algo-
rithm with runtime using big o notation.

For both datasets NSL_KDD and UNSW BN15.
Compute the complextity time of the proposed Algo-
rithm 1 as follow:

Table 8

Confusion_matrix explain the true negative of all classes of datasets.

a.NSL_KDD dataset with five classes b.UNSW BN15 dataset

Normal DOS probe R2L U2R

Normal 310 1 0 15 0

DOS 0 9666 0 11 0

probe 0 16 9548 0 0

R2L 18 7 0 9511 2

U2R 0 1 0 2 9711

normal intrusion

Normal 16774 0

Intrusion 0 35829

Algorithm 1: Hybrid CFS-FPA for feature selection
Input: datasets

Output: most effective features (X best)

9. Split datasets into two parts: a training set and a testing set. O(1)
10. Pre-processing the steps by using algorithm 2.  
11. Initialization: iteration t=1. O(1)

12. Divided the datasets into classes   O(1)

13. for a training_set part do : o(n)
j. At the first step committee the initialization of each CFS using Eq.1. o(1)
k. Generate new RF using Eq. 2. O(1)

l. Initialize each feature weight value Wi by applying Eq. 5. O(1)

m. Generate the number of RF as 10_forests (estimators), n_jobs=2, n_feature 

selection=30, and step=1. O(1)

n. Xi selection from Xbest. O(n)

o. While Xbest > Xi do :         o(n)
h. Use Eq. 3 to generate new Xnew. O(1)

i. Compute Xnew CFS using Eq. 1. O(1)

j. If Xi<Xnew and N(0,1)<Atti then o(1)

k. Update Xi using Eq. 3. O(1)

l. Compute Wi for each Xi generated from RF using Eq. 4. O(1)

m.Compute σ2
for each Xi using Eq. 5 generated from RF. O(1)

n. Update Wi and σ2 O(1)
p. end if

q. end while
r. Xbest= Xnew O(1)

14. Endfor
15. t = t + 1 O(1)
16. Output: the best subset selected (Xbest).
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Therefore; the time complexity of this algorithm is:
Big O:O(N̂2) and run time increase when the input is
increases.

6. Conclusions

Although various machine learning strategies for
enhancing the efficacy of IDSs have been described,
current IDSs are not successful. On the basis of the
recommended feature selection by using hybrid ap-
proaches, in this study, we describe a novel intrusion
detection approach for dealing with imbalanced and
high-dimensional network traffic. To determine the
optimum subset based on function correlation, a hybrid
CFS_FPA algorithm was introduced for a sample of 30
features. The final experimental results of CFS_FPA
when using NSLKDD dataset are: acccuracy is
0.997%, precision is 0.998%, F-measure is 0.997%,
DR is 0.998%, and FAR is 0.004. The UNSW NB15
results are: Accuracy is 0.995%, Precision is 0.995%,
F-measure is 0.995%, DR is 0.995%, and FAR is
0.008. Compared with the no-feature-selection tech-
nique, the outcomes on a variety of measures are
favorable.

Our technique surpasses similar FS methods in terms
of: Acc, DR, F-Measure, and performance. FAR should
be kept to a bare minimum. Furthermore, our approach
surpasses existing classification algorithms and the
suggested CFS-FPA Ensemble methodology. In the
intrusion detection business, this can give a major
competitive advantage as evidenced by comparison with
state-of-the-art techniques. Although the suggested CFS
FPA Ensemble technique is more efficient, further work
may be necessary to increase its capacity to deal with
rare network traffic threats. Except the methods used in
the paper, some of the most representative computa-
tional intelligence algorithms can be used to solve the
problems, like monarch butterfly optimization (MBO),
earthworm optimization algorithm (EWA), elephant
herding optimization (EHO), moth search (MS) algo-
rithm, Slime mould algorithm (SMA), and Harris hawks
optimization (HHO).
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