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Abstract Abstract 
Several open-source 3D modeling software tools have recently been featured to reconstruct a 3D image-
based model using Structure from Motion (SfM) algorithms such as +IDonBlender. It is, therefore, 
necessary to evaluate the accuracy of the models extracted from this tool to prove effectiveness for 
different applications. This paper aims to evaluate the +IDonBlender methodology tool in rehabilitating 
facial deformations. +IDonBlender is an add-on tool programmed within Blender software and designed 
for medical applications. In this research, two individuals from different genders have volunteered to 
contribute to this study, one with severe facial deformation and the other is healthy with no defects. To 
assess the robustness of the derived digital model from the +IDonBlender methodology, Agisoft 
Metashape was used to process the data and create a reference model for comparison purposes. Various 
scenarios were followed for evaluation: (i) scaling the model based on reference ground truth points, (ii) 
scaling the model based on known real distance between two reference points, and (iii) cloud-to-mesh 
(C2M) analysis was applied to individual scenarios to assess the accuracy of the +IDonBlender model 
through cloud compare analysis. Next, the density analysis of the model was also used to investigate the 
model resolution for further post-processing and prototyping. The results show that the variation between 
the tested and the reference models in terms of coordinates and distance measurements was (0.470 
mm) and (0.471mm), respectively. Despite the fact that the +IDonBlender model resolution was lower 
than the Metashape model, the overall results delivered acceptable geometric error values. Therefore, 
following visual and statistical point clouds data analysis, one can claim the robustness of the 
+IDonBlender 3D modeling tool for maxillofacial rehabilitation, surgical planning and other clinical 
applications. 
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1. Introduction

Patients who may experience cancer treatments,
accidents, or congenital diseases can suffer from facial
defects [1,2]. As part of the solution, 3D digital
workflow procedures have been increasingly proposed
to improve the quality of life under scientific cooper-
ation among medical, engineering, artistic, and com-
puter-vision fields [3,4]. For medical applications,
body anatomy scanning requires a high level of accu-
racy and reliability in the methods used for 3D data
acquisition and extraction [5]. Today, the acquisition of
3D body measurements by computer vision and image-
based remote sensing techniques is becoming highly
essential in clinical studies. 3D modeling methods of
the diagnosed human body limb are highly versatile,
accessible, and can be used in a variety of medically
relevant domains (e.g., replacement of anatomical parts
with prostheses, replication of skeletal remains, and so
on) [6e8]. Thus, accurate 3D models of human anat-
omy are needed in clinical routines like diagnosis,
computer-assisted surgical operations, follow-up, and
other biomechanical applications. There are many
techniques used for 3D modeling, including computed
tomography (CT), magnetic resonance imaging (MRI),
laser scanning, and 3D photogrammetry systems
[9,10]. Each technique has weaknesses and strengths,
whether in terms of cost or accuracy of the final model.
Close-range photogrammetry (CRP) can play a sig-
nificant role in obtaining an image-based dataset of the
damaged 3D body and reconstructing the 3D realistic
anatomy with computer-based technologies, reverse
engineering (RE) algorithms, and rapid prototyping
(RP) [11]. Various software (commercial and open
source) can be used for processing the captured images
to reconstruct the final model. Commercial software
has more functionalities than open source software. On
the other hand, the open source software allows pro-
fessionals to develop their own reconstruction algo-
rithms [12]. Recently, “Blender”, which is an open
source software, is being used as one of the photo-
grammetry processing software through the Orto-
gOnBlender add-on tool along with þIDonBlender
methodology. Blender is an open-source 3D recon-
struction suite that offers a wide variety of key fea-
tures, including modeling, rendering, animation, and
video editing [13]. The þ IDonBlender is a specialized
add-on in OrtogOnBlender for designing and
manufacturing 3D facial prostheses and related virtual

surgery planning. It was developed by the “þID
Institute” as a part of the OrtogOnBlender add-on
(OOB), coded inside Blender [3]. This methodology is
based on SfM algorithms in reconstructing image-
based models like other available open source photo-
grammetric software. But the efficiency of the final
results in this type of software remains different from
one application to another and must be evaluated for
the required purpose. þIDonBlender has many photo-
grammetric algorithms for reconstructing the
modeling, such as (OpenMVG þ OpenMVS (stan-
dard), SMVS þ MeshLab, Meshroom, and Open MVS
Linux on Win). In the past, many studies worked on
using 3D photogrammetry in maxillofacial rehabilita-
tion without considering the evaluation of the model.
Since 3D facial scanning represents an important tool
for taking a digital impression of patients' faces in
advanced methods used for maxillofacial rehabilitation
in þIDonBlender. Therefore, verifying the accuracy
and reliability of the scanning process and the recon-
structed models is a prerequisite for clinical applica-
tions. Therefore, this study was presented to evaluate
the accuracy of the 3D model generated through the
þIDonBlender methodology tool in rehabilitating
facial deformations. Whereas the þIDonBlender is an
add-on tool programmed within the open source
Blender software and particularly designed for medical
applications, the research focuses on evaluating the
generated model through the use of þIDonBlender tool
by calculating the error in model point coordinates,
linear distances, and surfaces’ deviation. It also as-
sesses the resolution of the generated model by taking
density analysis into consideration, which highly af-
fects the quality of the printed prototype prosthetics
later on. Thus, the contribution of this research as an
end result can be summarized as follows:

� Design the optimal data capture plan to deliver the
best raw images for facial rehabilitation and pros-
thetic prototyping through CRP 3D modeling
techniques.

� Using reference ground truth points to calculate the
global error in the generated 3D model through the
þIDonBlender tool.

� Evaluating the þIDonBlender methodology as a
free tool in open source software which represents
an alternative solution to SfM-MVS commercial
photogrammetry software and a practical solution
for low-budget clinics.
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2. Related works

In the last decades, various low-cost and free
photogrammetric software have been invested which
depend on SfM algorithm in reconstructing the objects
for medical rehabilitation and facial prosthetics.
Reference [14] employed photogrammetry to obtain a
3D model to digitally scan the face to be used later to
fabricate prostheses for the defective body part by
using open-source software and a low-cost device
(smartphone). They concluded that this technique
could help rehabilitate maxillofacial deformities and
represent a practical alternative for low-budget clinics.
Later, reference [15] examined the efficacy of digital
hand-held cameras to design an orbital prosthesis.
Images were shot at a distance of 1.5 m away from the
patient with three different levels. The images were
processed using free 3D reconstruction software apps
(Autodesk 123D Catch, Autodesk, Inc.) and used Z-
brush software (Pixologic Inc., USA) for restoring an
affected eye. They found that this procedure provides
acceptable results and minimizes the cost of data
collection and modeling efficiently. However, it is
necessary to analyze and compare the results provided
by open source software with commercial photo-
grammetry software to investigate their efficiency for
use in medical applications.

Many studies like [16e20] worked on evaluating
the facial scanning system in maxillofacial rehabilita-
tion. Reference [16] worked on evaluating two facial
scanning systems (structured light (3D CaMega,
BWHX), and stereophotogrammetry (3dMD)). For
evaluation purposes, ten healthy volunteers (5 males
and 5 females) have been selected. They relied on
measuring the error in the linear distances in their
assessment. Where 21 linear distances were measured
for individual volunteers using a Vernier caliper with
0.01 mm accuracy. The authors mentioned that both
systems have achieved high reliability and can be used
to scan human faces. In a similar study, reference [17]
assessed three 3D-scanning systems (Avanto MRI,
M4D Scan, and Structure Sensor). The 3dMDface
System has been used as a reference for this evaluation.
Eight volunteers' faces have been scanned with the
three scanning systems. They evaluated the model ac-
curacy as a data percentage (within a 2 mm range from
the reference scanning system) and calculated the root-
mean-square error (RMSE) in model deviation dis-
tance and facial distance surfaces. The results show
that M4D Scan achieved the highest accuracy (90%
within 2 mm, and the RMSE was 0.71 ± 0.28 mm).
The Avanto MRI system delivered (86%, RMSE

1.33 ± 0.46). Whereas the precision of the M4D Scan
and Structure Sensor was (0.50 mm ± 0.04 mm) and
(0.51 mm ± 0.03 mm), respectively. On the other hand,
a study was carried out to evaluate the portable Vectra
H1 facial scanning system, and 3dMD was used as a
reference [18]. 26 volunteers’ faces have been scanned
with both systems to obtain results. They considered
many aspects for this evaluation (error in linear dis-
tances, 3D facial surface deviation, and global RMSE).
The authors found that the error value in the outcome
measurements was 0.84 mm within (0.19e1.54) mm
range distance. However, the average RMSE of the 26
surface-to-surface deviations was 0.43 mm within the
(0.33e0.59) mm range. Therefore, they claimed that
the Vectra H1 system is appropriate for many clinical
applications. In the same context, reference [19]
investigated the measurement accuracy of soft tissues
obtained from two scanning systems, 3D photogram-
metry and Cone Beam Computed Tomography
(CBCT). 60 wax facial models have been scanned
using the two systems. For validation purposes, they
selected 19 linear distances and used a coordinate-
measuring machine (CMM) to record the coordinates
of the reference points, and a T-test has been applied to
compare and analyze the results. It was found that the
accuracy of 3D photogrammetry was greater than that
of the CBCT for patients with facial deformities taking
into consideration the protuberant face areas. However,
this accuracy can be highly influenced by the facial
deformity area. Furthermore, reference [20] assessed
two free facial scanning systems (Bellus3D and þID
ReCap Photo). The (ATOS Core) 3D scanner has been
used as a reference to scan a mannequin head and
create control points in a local coordinate system for
validation purposes. They used (GOM Inspect) soft-
ware to evaluate the 3D data measurements and found
that the accuracy of Bellus3D and þID ReCap were
0.34 ± 0.14 mm and 0.28 ± 0.06 mm, respectively.
Following these acceptable clinical results for both
scanning systems, they recommended to use them in
planning esthetic restorations.

On the other hand, many evaluation studies have
been applied recently to assess the OrtogOnBlender
add-on as a professional tool for medical restoration
and rehabilitation. Reference [21] presented a com-
parison between preoperative simulation and post-
operative findings, showing a relevant ability of OOB
workflow to reproduce surgical movement reliability
(<2 mm error). They conclude that OOB can produce
accurate soft tissue planning for orthognathic surgery,
but mesh deformation methods still require improve-
ments. Furthermore, reference [22] reported a
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combined usage of modifiers to obtain high-resolution
3D face models. Also, modifications of the available
protocol have been reported when site-specific anat-
omy is needed to be acquired in some cases [23]. The
previous highlighted studies focused on evaluating the
3D photogrammetry systems and not the entire pro-
cessing through calculating the error in the distance
and the surface-to-surface deviation. They lacked an
evaluation of geometric measurements of the point
clouds forming the model. In addition, model resolu-
tion analysis was not taken into consideration. There-
fore, this study will address this gap by evaluating the
maxillofacial 3D digital model by calculating the error
in the point cloud coordinates, linear distances, and
surface deviation. The density analysis was also
applied to assess the resolution of the generated model,
which highly affects the quality of the printed proto-
type prosthetics.

3. Structure from motion (SfM) photogrammetry

Structure from Motion (SfM) is a photogrammetric
computer-vision technique based on automatic image
orientation estimation following computer vision al-
gorithms to allow successful orientation of a complex
block of images [24]. It depends on several computer
vision algorithms such as Scale-Invariant Feature
Transform (SIFT) to detect features, Random Sample
Consensus (RANSAC) to refine matching results, and
LevenbergeMarquardt to minimize re-projection er-
rors. The photogrammetric process in the computer
vision environment also includes 3D point cloud
extraction following Multi-View Stereo (MVS) algo-
rithms. Therefore, applying a photogrammetric
workflow based on computer vision algorithms is
usually called SfM-MVS Photogrammetry. These
methods are considered very effective in analyzing,
understanding, and manipulating images of different
types, such as medical images. In general, the SfM
workflow consists of three major phases [25], as
illustrated in Fig. 1:

1) Detect features from images (points, lines … etc.)
which represent key points to match features be-
tween images automatically using the SIFT.

2) Estimate cameras' location (using key points and
relative pairs of camera location).

3) Generate 3D structures (sparse point clouds) using
features and the estimated camera locations, and
after that, MVS matching is used to generate dense
point clouds.

4. Methodology

Many aspects have been considered to meet the
research objectives. These aspects are explained in
detail in the next sub-sections.

4.1. Case study

Two people volunteered to take part in this research:

Case 1: A 60-year-old female who has lost her
entire left eye socket due to a cancerous tumor.
Fortunately, the patient's right eye is still functional,
which was later used to rebuild the missing eye
using the RE approach.
Case 2: A 50-year-old male who is one of the
employees in the Paulista University UNIP post-
graduate program offered to be a case study as part
of the scientific cooperation with the University of
Baghdad. He is healthy and has no defects, and his
involvement was solely to evaluate the
þIDonBlender model.

Although case study 1 patient has defects in her left
eye which need to be restored by fabricating an orbital
prosthesis, the main focus in this study is to assess the
þIDonBlender model and check its geometric effi-
ciency in order to be utilized to restore the defected
part in future work.

4.2. Camera network design

In order to achieve high-quality and low-cost 3D
image-based models, the optimal camera positions
must be determined and this is called camera network
design in CR-Photogrammetry. Several constraints
may affect determining the approximate camera posi-
tions. These can be classified into three types: range,
visibility, and accessibility [27,28]. Range-related
constraints represent the most critical constraints that
affect the results of the CR procedure. These include
imaging scale, resolution, camera field of view (FOV),
depth of field (DOF), number and distribution of
points, and workspace [27]. Therefore, in this research,
we focus on range constraints in designing a camera
network as the accuracy of the final medical photo-
grammetric products is a primary demand, especially
in prosthetics rehabilitation applications.

The pixel size (pixel pitch) and the ground sampling
distance (GSD) (i.e. the minimum required resolution)
are significant factors when determining the maximum
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range (depth) between the camera and the object [29].
Therefore, in this research, Equation (1) has been
applied to determine this range (depth distance) [29]:

Depth ¼ GSD*f=pixel ð1Þ

where GSD represents the amount of ground coverage
per pixel, f is the camera's focal length, and pixel is the
camera pixel size.

In camera network design, we assumed that the
shape of the patient's head is circular, and by using the
arc length formula and trigonometry laws, the exposure
stations were determined, which is depending on the (i)
base to height (B/H) ratio and (ii) images overlap
value. In order to compute the relationship between the
B/H value and the ground coverage of camera position
estimation (G), Equations (2)e(9) were applied and as
described below. Fig. 2 shows the image-network
design assumptions and Fig. 3 shows the parameters
used for image network calculation.

After setting the object distance (H) and the given
(B/H) ratio value, it is easy to calculate the distance
between two adjacent stations (B). Then, by applying
the law of sine, the angle (q) was calculated, which
represents the angle between the two successive cam-
era stations and as shown in Equation (2):

q ¼ 2*sin�1ðB=2*HÞ ð2Þ

Then the number of capture stations can be easily
calculated according to Equation (3):

No:of station ¼ 360=q ð3Þ

It is useful to add an additional capture station to
ensure full coverage of the object to be photographed.
On the other hand, to calculate the overlap between the
images, which represents a distance on the circle (arc
distance), we must first calculate the central angle
corresponding to this arc, which is (23 þq). The angle
(a) in Fig. 3 represents half of the angle whose sides
are tangential to the object (patient's head). This angle
is governed by two main factors: focal length (f) and
object distance (H), and to be more specific, it is
inversely proportional to (f) and directly proportional
to (H) and can be calculated by Equation (4).

a ¼ sin�1ðrobj:=HÞ ð4Þ

where robj. represents the radius of the object, and H
represents the object distance.

Then after (e) can be calculated as follows:

3 ¼ 90� � a� q ð5Þ

Now, after calculating the central angles, it is easy
to calculate the amount of coverage by applying the arc
length formula and as follows:

Fig. 1. SfM photogrammetry workflow [26].
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L¼ ð2eþ qÞ�probj:=180� ð6Þ

where (2eþq)� represents the central angle (in degrees),
and robj. is the object radius.

However, to show how the endlap value of the
adjacent overlapping images can be used to estimate
the base distance between adjacent camera stations
(B), the following formulas are adopted following the
same assumption illustrated in Figure (2). To estimate
(B), we need to calculate the amount of (q) angle as
shown in Equations (7) and (8).

q ¼ 2g� ðL*180=robj:Þ ð7Þ
L ¼ 2gprobj:*Endlap=180 ð8Þ

where g represents the co-angle of half of the angle
whose sides are tangential to the object (90 e a). L is
the coverage value, and robj. is the radius of the object.

Then by applying the sine law, B can be simply
estimated according to Equation (9):

B ¼ 2*H*sinðq=2Þ ð9Þ

Now, when the distance between adjacent stations
(B) is known as the angular value, which is denoted by
(q) in the above formulas, the number of exposure
stations can be easily estimated by applying Equation
(3). Moreover, all the above equations were translated
into an interactive interface file using a Microsoft
Excel sheet to facilitate the calculation process for the
case study applied in this research or any other case.

Fig. 2. Image-network design assumptions.

Fig. 3. The illustration of the parameters used for image network calculation.
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4.3. Image quality and coded targets design

Following the recommendations from SfM appli-
cations literature, it was necessary to deliver the
optimal image quality of the AOI from the optimal
available camera sensor to reconstruct an accurate 3D
model of the facial prosthetics. Therefore, in this
research, a simple test was carried out using three
different camera sensors (iPhone 11 Pro Max, Nikon
D7500, and Nikon D5200) to discover which of these
sensors can provide the highest quality and sharpest
images for post-processing. Images were taken for a
specific scene from three different positions and four
images with different height levels are captured for
each individual position. Agisoft Metashape software
was used for calculating the image quality through the
“Estimate Image Quality” tool. Table 1 shows the
recorded results. It was found that the best image
quality could be delivered from the iPhone 11 Pro Max
despite using the same camera settings for all sensors.
It is also recommended to capture the images in raw
format to keep the original quality of the camera sensor
as is. However, most SfM-MVS photogrammetric
software, such as Agisoft Metashape, doesn't support
all raw image formats. As a result, they must be con-
verted to one of the supported formats by keeping the
quality as good as possible through third-party soft-
ware such as Adobe Lightroom, Photoshop, or others.
Meanwhile, for geometric validation purposes and to
set the correct scale of the generated facial prosthetics,
reference points, known as coded targets, with known
coordinates must be placed on specific locations in the
scene before the photo session. These targets were
designed to be identified and detected automatically by
the software to overcome the errors resulting from

manual identification during image-processing. These
targets can improve the automatic matching process
during camera alignment and can also be used as
reference points for the coordinate system and scale
definition [30]. A reliable and popular method for
achieving the optimum target size and position and
therefore delivering accurate matching results among
multi-view images is to distribute coded targets on the
measured object. Therefore, circular coded targets
centered on a central circular target surrounded by a
coded band are commonly used. When the number of
pixels in the coded band is small or the projection
angle is high, decoding the target can be difficult [31].
In order to determine the appropriate size of the targets
that Metashape software can detect automatically, a
simple test was performed. A Nikon D5200 camera
with 35 focal length with 0.11 mm GSD was used for
capturing photos in this test. The distance between the
camera station and the plate used to pin the targets was
1 m, and different sizes of targets/center point diameter
(from 1 mm to 12 mm) were placed on the plate. Then,
three shots were taken for each selected target size, one
was vertical and two were tilted at an angle of 25� from
the right and left hand sides, as shown in Fig. 4. Ac-
cording to the results shown in Table 2, the 3.2 mm
diameter coded target was the smallest size that was
completely detected from all angles, which is equiva-
lent to 29 pixels. This equivalent value was calculated
by dividing the center point diameter on the GSD value
(3.2 mm/0.11 mm ¼ 29 pixels). Thus, the smallest
diameter that can be completely detected from all an-
gles when using the iPhone camera sensor is 4.75 mm
(29*0.165 ¼ 4.78 mm), and to ensure that all targets
will be detected, the 5 mm diameter target was chosen
to be used in the patient photo session.

Table 1

Image quality values delivered from different camera sensors.

Capturing Positions Images iPhone 11 Pro Max Nikon D7500 Nikon D5200

Position 1 1 0.912874 0.836932 0.660569

2 0.965978 0.893284 0.801430

3 1.009170 0.887010 0.792535

4 1.021020 0.964321 0.856980

Position 2 1 1.006140 0.620304 0.597350

2 1.001480 0.714953 0.624827

3 1.035790 0.622878 0.593727

4 1.070750 0.494557 0.591870

Position 3 1 1.043420 0.644331 0.581744

2 1.012310 0.650054 0.632098

3 1.013570 0.650080 0.576123

4 0.975726 0.610475 0.586496
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4.4. Images acquisition

The iPhone 11 Pro Max camera was used for image
acquisition in this research and its specifications are
shown in Table 3:

A miniature self-design photographic studio was
established inside the photogrammetric laboratory in
the Surveying engineering department at the College of
Engineering/University of Baghdad using simple and
available tools (4 flashlights/projector lights, a white-
board, and a chair) as shown in Fig. 5. Lighting con-
ditions have been taken into consideration during the
photo session as the light should be exposed consis-
tently on the study area. This allows for avoiding
shadows within the area during photo capturing and
data acquisition. Also, the camera flash was avoided
during image capturing because it may cause blurry

images and lead to more noisy point clouds data after
image processing. Therefore, it can be said that these
conditions enable the user to obtain good quality im-
ages without underexposing or overexposing to light.

Pictures were taken for the patient with different
height levels for the camera for each camera position,
and the capturing scenario was from bottom to top in
parallel lines similar to flight direction path lines.
Equation (1) was applied to calculate the maximum
depth in this case study, depending on the GSD value
of (0.1 mm), the pixel size value of (0.000991 mm),
and a focal length of (6 mm). Hence, the depth value
should be (0.61 m) following these selected parame-
ters. In order to involve all the targets in the back-
ground, the depth should be increased to up to 1 m.
Hence, GSD will be decreased to 0.165 mm, which is
an acceptable value in this study.

4.5. Image-based modeling

Following image acquisition, the 3D model extrac-
tion process of the damaged part of the face starts by
uploading the images to the SfM-MVS photogram-
metric software. Agisoft Metashape was used to pro-
cess the data and generate a reference model to assess
the quality of the digital model extracted from the
þIDonBlender add-on. Agisoft is a commercial
licensed photogrammetry software considered by the
international community as a gold-standard system.
The ground control points are used in this research to
build a scaled model and later validate the accuracy of
the þIDonBlender model. In þ IDonBlender, all the
steps involved in model building (feature detection,
matching process, calculating camera positions and
orientation, generating sparse and dense point clouds,
meshing, and texturing) are applied as black box

Fig. 4. Imaging scenario used to determine the appropriate size of the coded targets.

Table 2

The percent results of the targets detection using the Agisoft Meta-

shape software.

Centre point diameter (mm) Angle

90� (Normal) 25� (left) 25� (right)

1 0% 0% 0%

2 100% 0% 0%

3 100% 80% 80%

3.2 100% 100% 100%

3.4 100% 100% 100%

4 100% 100% 100%

5 100% 100% 100%

6 100% 100% 100%

7 100% 100% 100%

8 100% 100% 100%

9 100% 100% 100%

10 100% 100% 100%

12 100% 100% 100%
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procedures. The general workflow in þIDonBlender
can be described as follows, see Fig. 6:

1) Add photos: adding photos represents the first step
in the model building process. This could be ach-
ieved by selecting the photo path and clicking
“Accept”.

2) Select scanning system: þIDonBlender provides
various options to the end user. The
“OpenMVG þ OpenMVS” option is the default
used in the software to provide better texture
quality. This option also provides a faster workflow
than other available options.

3) D factor and smooth factor values: for face digi-
tizing, þIDonBlender recommends keeping these
values as the default at 6 and 16 for D factor and

smooth factor, respectively. It is important to note
that the D factor is the rate of mesh simplification.

4) Start photogrammetry: selecting this option will
start the photogrammetry processing where the
model will be generated in a black box directly.

5) Align & scale the model: when the model is
generated, it usually has arbitrary dimensions. So,
to rescale the model, we must measure a horizontal
distance such as the width of the nose, the outer
distance between the eyes, or the distance between
any reference points in the model.

6) Export model: þIDonBlender offers to export the
model with various extensions (i.e. *.stl, *.Obj,
*.Ply … etc.).

4.6. Model inspection

In this research, CloudCompare has been selected
for the inspection process between the IDonBlender
add-on model and the reference (Metashape) model.
CloudCompare is an open-source, flexible, and user-
friendly software used for 3D point cloud analysis and

Table 3

The specification of iPhone 11 Pro Max camera.

Camera resolution (MP) 12

Sensor size (mm) 2.99 * 3.99

Camera Pixel size (mm) 0.991

Image resolution (pixel) 4032 * 3024

Fig. 5. A miniature studio designed for photo session.
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3D dataset registration. The þ IDonBlender model is
inspected with two alignment model scenarios: (i)
Align the model in OrtogOnBlender based on a clinical
measured distance between two reference points; and
(ii) Align the model in CloudCompare based on the
selected reference points.

Once the two models are uploaded for inspection,
several steps should be followed:

1) Align the IDonBlender model to the reference
model by picking at least 4 equivalent points in
both models.

2) Register models through minimizing the
RMSE differences or increasing the number of
iterations.

3) Calculate the cloud-to-cloud or cloud-to-mesh
distance.

Fig. 6. A typical post-processing workflow in þIDonBlender photogrammetric tool.

Fig. 7. GCP locations and error estimates.
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5. Results and discussions

5.1. Model quality control

The two generated models have been checked based
on the coordinates of the reference points as explained:

5.1.1. Metashape model
When uploading photos into the Metashape soft-

ware, coded targets in source photos are detected
automatically through the Detect Markers command in
the tools menu. The corresponding markers were added
to the Reference pane and the coordinates of these
reference markers have been uploaded. To validate the
Metashape-based model, six reference points have
been selected as control points and four points as check
points (Fig. 7). Then the software calculated the RMSE
for these references and the total errors for control and
check points were 0.144 mm and 0.198 mm, respec-
tively (Table 4 & Table 5). After building the model
(alignment, building a dense cloud, building the mesh,
and texture), the steps have been accomplished, and the
model was generated. See Fig. 8.

5.1.2. þIDonBlender model
As mentioned in section 4.5, the model recon-

struction process in þIDonBlender has been carried
out in a black box procedure. This process includes all
the steps needed to create the model, such as: photo
alignment, building sparse points, building dense
points, generating the mesh, and creating the texture.

Fig. 9 illustrates the model obtained after image
processing.

5.2. Model inspection

5.2.1. Scaling the model-based on reference points
After creating the model using the þIDonBlender

tool methodology, ten reference points have been
selected for evaluation (6 control points and 4 check
points). Then the model has been scaled in Cloud-
Compare based on these reference points. Following
quality assurance analysis, the total error was calcu-
lated, with 0.30 mm and 0.47 mm for control and
check points, respectively. To inspect the model, it was
aligned with the reference model based on the refer-
ence control points, and the RMSE was 0.30 mm. The
deviation distance between the two models has been
computed through the cloud-to-mesh tool. For further
analysis, the Gaussian distribution has been applied for
cloud-to-mesh distance analysis and the standard de-
viation was found to be 0.97 mm (before applying the
best fitting algorithm) and 0.71 mm (after applying the
best fitting algorithm) (see Fig. 10). According to the
apparent þ IDonBlender model results, it can be
noticed that the nose, chin, lower lip, top of the upper
lip, and the eye socket have an error of approximately
3 mm. In contrast, the cheek area has an error of
approximately 2 mm. Moreover, the rest of the face has
an error of (-1e 0.4) mm (see Fig. 11, left). The best
fitting algorithm was applied between the two models
with RMSE of 0.47 mm in order to make the best

Table 5

RMSE of check reference points.

Label X error (mm) Y error (mm) Z error (mm) Total (mm) Image (pix)

Check 1 0.0706439 �0.0791900 0.1034170 0.1481780 0.832 (102)

Check 2 0.0142822 0.0140259 �0.1732450 0.1743980 0.655 (84)

Check 3 �0.0156024 �0.0162463 �0.1732140 0.1746720 0.947 (98)

Check 4 0.0344233 �0.0746689 �0.2596590 0.2723660 0.75 (70)

Total 0.0406907 0.0554688 0.1858320 0.1981570 0.813

Table 4

RMSE of control points.

Label X error (mm) Y error (mm) Z error (mm) Total (mm) Image (pix)

GCP1 �0.0878882 0.1062960 �0.1241030 0.1855390 0.801 (75)

GCP2 �0.0131461 �0.1355130 0.0961995 0.1667060 1.081 (102)

GCP3 0.0948248 0.0030300 0.0676764 0.1165380 0.964 (100)

GCP4 0.0191826 0.0031570 �0.0264411 0.0328188 1.13 (94)

GCP5 �0.0234876 0.0421476 �0.1557140 0.1630180 0.68 (72)

GCP6 0.0105144 �0.0191176 0.1423820 0.1440440 1.09 (98)

Total 0.0546490 0.0728279 0.1113960 0.1438730 0.990
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Fig. 8. 3D textured models of two case studies generated with Metashape.

Fig. 9. 3D textured models of two case studies generated with þIDonBlender.
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match for validation purposes. The results indicated
that the degree of error for the chin and nose areas was
reduced to 1 mm, while the error was minimized to
2 mm for the eye socket, and for the rest of the face the
error ranged between (�0.5e0.5) mm (see Fig. 11,
right).

Although the geometric positioning error in the
þIDonBlender model was small, at about 0.47 mm, it
was found that there was a deviation in the face area
during model construction. This can be clearly seen
through the visual inspection (before applying the best
fitting algorithm) and the results of the Gaussian dis-
tribution analysis where the standard deviation was
(0.97 mm) and the mean value was (�1.2 mm).
However, when applying the best fitting algorithm to
get the best matching with the reference model, we
noticed that the mean value was considerably reduced
to (0.087 mm) and the standard deviation was also
decreased to (0.710 mm).

5.2.2. Scaling the model based on clinical measured
distances

As mentioned earlier, the þIDonBlender method-
ology allows resizing the model to its real dimensions
by entering the clinical distance measurements be-
tween two reference points built within the model. In
this inspection process, the scale bar distance (10 cm)
was placed in the background behind the patient's head
and used as a clinically measured distance for re-
scaling the model. To evaluate the scaled model,
various reference distances were selected to be
compared with the reference model (see Fig. 12), and
the results are shown in Table 6.

According to the results, we found that the process
of resizing the model using the known distance gives
an acceptable error of (0.471 mm). This error may
occur during the model reconstruction process and due
to manual distance measurements. As for the second
case study, since the photo session took place without

Fig. 10. The Gaussian distribution of the aligned datasets. (Left) Before applying best fitting. (Right) After applying best fitting.

Fig. 11. Visual inspecting of the þIDonBlender model. (Left) Before applying the best fitting algorithm. (Right) After applying the best fitting

algorithm.
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placing reference points, it was impossible to build the
model using its real dimensions. Therefore, the real
distance must be measured between any two points in

the model to re-scale it later. As mentioned earlier, to
check the generated model, the two inspected and
reference models must first be matched using the
alignment process, then the best fit algorithm is
applied in order to reduce the RMSE value. In this
case, 4 points were selected to achieve the alignment
process as shown in (Fig. 13, left). As a result, the
model has been aligned and registered to the reference
model with RMSE of 0.429 mm and 0.327 mm,
respectively. Then the difference between the two
models was calculated using the cloud-to-mesh tool,
(see Fig. 13, right).

Fig. 12. The selected reference distances used for model evaluation scaling based on clinical measurements.

Table 6

Measured clinical distances and deviations.

Ref. distance Metashape (m) þIDonBlender (m) RMSE (m)

(1) Scale bar (5 cm) 0.050000 0.049487 0.000513

(2) Dist. (11e13) 0.185853 0.185358 0.000495

(3) Dist. (9�10) 0.078706 0.078245 0.000461

(4) Eye length 0.023800 0.023274 0.000526

(5) Nose width 0.038500 0.038142 0.000358

Total errors 0.000471

Fig. 13. Rescaling case study two. (Left) The distribution of the selected points for alignment. (Right) Visual inspection analysis.
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6. Conclusion

In advanced methods of maxillofacial rehabilitation,
the accuracy of the digital impression is based mainly
on the geometric accuracy of the extracted digital
model. Therefore, evaluating the accuracy of the model
must be taken into consideration to improve the effi-
ciency of the methodology used for generating the
prosthesis of the maxillofacial model. Therefore, this
study was performed to evaluate the accuracy of the
3D model generated through the þIDonBlender
methodology tool in rehabilitating facial deformations.
Where the þIDonBlender is an add-on tool pro-
grammed within the open source Blender software and
designed particularly for medical applications. The
contribution of this study is summarized to designing
the optimal data capture plan to deliver the best raw
images used in reconstructing the model. The second
contribution is evaluating the geometric accuracy of
the model extracted through estimating the total error
delivered in comparison to ground truth reference
measurements. Additionally, this methodology pre-
sents the CRP approach as a practical alternative for
rehabilitating facial deformations for low-budget
clinics. In this evaluation study, several scenarios were
used to analyze and examine the model produced using
visual and statistical analysis through applying a pro-
posed data capture plan using CRP technique. The total
errors in the measured coordinates and distances were
calculated and density analysis was applied to assess
the resolution of the generated model. Following the
results obtained, several conclusions can be delivered:

� þIDonBlender provides an acceptable geometric
error for 3D reconstruction of image-based
modeling, particularly for the rehabilitation pur-
poses of maxillofacial deformities. This was
addressed to be (0.470 mm) relative to the refer-
ence truth dataset.

� Resizing the generated model based on real
measured distances gives an acceptable error in
linear measurements that reaches (0.471 mm).

� Although, the “OpenMVG þ OpenMVS” geo-
metric model delivered by þ IDonBlender can
deliver positive results by achieving acceptable
geometric accuracy, there is still a deviation in the
correct position of the extracted model. The
Gaussian distribution analysis can be used to detect
this deviation.

� The best fitting algorithm enables the user to get
the best match between the two comparative 3D

models as the standard deviation was reduced from
(0.975 mm) to (0.710 mm) which led to the normal
distribution being close to zero. Also, the mean
value was reduced from (1.178 mm) to
(0.087 mm).

� Following density analysis application, the reso-
lution achieved from applying the presented
methodology and without applying the modifier
attribution tool, was low to some extent when
compared to the resolution that can be obtained
from the reference software.

Following these outcomes, it can be concluded that
the þIDonBlender methodology is more effective and
geometrically robust for medical applications. There-
fore, it is recommended to use the þIDonBlender
photogrammetric tool in medical applications such as
the rehabilitation of maxillofacial deformities, surgical
planning, and a wide range of clinical studies. However,
the weaknesses in this evaluation study lie in using a
single camera to capture the images and therefore some
wide field of view images have been delivered. There-
fore, it is recommended to use a multi-camera system to
avoid wide field of view images with a faster capturing
rate and higher resolution, and thus have a high data
acquisition consistency to obtain high quality models.
Furthermore, therewas a lack in the reference points that
were selected for evaluation purposes, as these had been
incorrectly targeted at approximately one depth value,
which may have affected the total estimated RMSE
value. However, it is recommended to address this issue
in future studies in order to evaluate the effect of variant
depth values on the geometric measurements. For
similar approaches, more case studies with complex
features are recommended to be considered for valida-
tion and accuracy assessment in future studies. It is
worth mentioning that additional studies will be carried
out and will focus on producing and prototyping a
genuine facial case study to determine the feasibility of
the presented approach and show its potential for
delivering satisfactory results.
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