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Abstract Abstract 
The current paper provides an efficient method for making active and effectual substrates used for 
detecting molecules by improving surface-enhanced Raman scattering (SERS). These substrates were 
fabricated using nanostructure-coated porous silicon. The nanostructures were prepared through the 
electrical exploding wire (EEW) technique. The silver nanowires (AgNWs) were coated with a 
polydopamine (PDA) layer to form an AgNWs@PDA colloidal solution. Then, the Ag wire was electrically 
exploded in the colloidal solution to form the (AgNWs@PDA@AgNPs) plasmonic nanostructures as a 
metal-insulator-metal. The effect of the plasmonic nanostructures’ morphologies on the absorptances 
spectra and SERS activities were studied utilising Rhodamine 6G (Rh6G) dye as examination molecules. 
X-ray diffraction (XRD) was used to investigate the structural properties of these nanostructures. Field-
emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were 
used to investigate the morphologies of these nanostructures. Atomic force microscopy (AFM) was used 
to study the surface topographies of SERS-effectual substrates. A double beam ՍV-Visible 
Spectrophotometer was used to measure Rh6G laser dye absorptance with a concentration of M) that 
mixed with the nanostructures at different concentrations. Sunshine Raman spectrometer with a (50 x) 
objective lens was used to analyse the Raman spectra of Rh6G Sunshine Raman spectrometer with a (50 
x) objective lens was used to analyse the Raman spectra of Rh6G dye using a porous silicon substrate 
(PSi) on which silver nanowires are deposited (PSi-AgNWs). Another porous silicon substrate (PSi) on 
which nanostructures are deposited that consisting of silver nanowires, coated with a polydopamine layer, 
and decorated with silver nanoparticles are deposited (PSi-AgNWs@PDA@AgNPs). The results showed 
that hot spots and roughness on the nanostructures' surfaces caused an increase in intensities of 
absorptances spectra and signals of SERS. After the effectual substrates were excited by a 
(λexc.=532nm) laser source, the enhancement factor (EF) of SERS signals of Rh6G (1 M) attained (26.3 ) 
and (28.7 ) of the characteristic peaks at wavenumber (1650 ) for PSi-AgNWs and PSi-
AgNWs@PⱰA@AgNPs effectual substrates respectively. This study showed that nanostructure-coated 
porous silicon substrates have a repeatable and high signal frequency, stability in storage, cost-low 
technique, and ease of use. They allow researchers to recognise and analyse a wide range of molecules, 
including biomolecules, with detection limits ranging between milli- and femtomolar. These effectual 
substrates have a bright future as a bioanalytical tool using SERS spectroscopy. 
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Abstract

The current paper provides an efficient method for making active and effectual substrates used for detecting
molecules by improving surface-enhanced Raman scattering (SERS). These substrates were fabricated using
nanostructure-coated porous silicon. The nanostructures were prepared through the electrical exploding wire (EEW)
technique. The silver nanowires (AgNWs) were coated with a polydopamine (PDA) layer to form an AgNWs@PDA
colloidal solution. Then, the Ag wire was electrically exploded in the colloidal solution to form the (AgNWs@P-
DA@AgNPs) plasmonic nanostructures as a metal-insulator-metal. The effect of the plasmonic nanostructures’
morphologies on the absorptances spectra and SERS activities were studied utilising Rhodamine 6G (Rh6G) dye as
examination molecules. X-ray diffraction (XRD) was used to investigate the structural properties of these nano-
structures. Field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM)
were used to investigate the morphologies of these nanostructures. Atomic force microscopy (AFM) was used to
study the surface topographies of SERS-effectual substrates. A double beam ՍV-Visible Spectrophotometer was
used to measure Rh6G laser dye absorptance with a concentration of 1 £ 10¡6 M) that mixed with the nano-
structures at different concentrations. Sunshine Raman spectrometer with a (50 x) objective lens was used to
analyse the Raman spectra of Rh6G Sunshine Raman spectrometer with a (50 x) objective lens was used to analyse
the Raman spectra of Rh6G dye using a porous silicon substrate (PSi) on which silver nanowires are deposited
(PSi-AgNWs). Another porous silicon substrate (PSi) on which nanostructures are deposited that consisting of silver
nanowires, coated with a polydopamine layer, and decorated with silver nanoparticles are deposited (PSi-
AgNWs@PDA@AgNPs). The results showed that hot spots and roughness on the nanostructures' surfaces caused an
increase in intensities of absorptances spectra and signals of SERS. After the effectual substrates were excited by a
(lexc. ¼ 532 nm) laser source, the enhancement factor (EF) of SERS signals of Rh6G (1 £ 10¡6 M) attained
(26.3 £ 105) and (28.7 £ 105) of the characteristic peaks at wavenumber (1650 cm¡1) for PSi-AgNWs and PSi-
AgNWs@PDA@AgNPs effectual substrates respectively. This study showed that nanostructure-coated porous silicon
substrates have a repeatable and high signal frequency, stability in storage, cost-low technique, and ease of use.
They allow researchers to recognise and analyse a wide range of molecules, including biomolecules, with detection
limits ranging between milli- and femtomolar. These effectual substrates have a bright future as a bioanalytical tool
using SERS spectroscopy.

Keywords: Surface-enhanced Raman scattering (SERS), Electric exploding wire (EEW), Porous silicon, Plasmonic
nanostructure, Detection limit

1. Introduction

S urface Plasmon polaritons (SPPs) are the oscil-
lations of electrons at metal-dielectric interfaces

when excited by electromagnetic (EM) radiation.

SPPs are usually formed at the surface of noble
metals. SPPs find widespread use in optical and
biological fields and data storage. The confinement
of SPPs in nano sits stands for the localised-surface
Plasmon resonance (LSPR) [1]. The interaction of
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analyte molecules with the SERS substrate, which is
usually a surface-roughened or nanostructured
metal, is critical to the technique's operation [2]. In
addition to greatly increasing Raman emission,
SERS interactions may differ from those in a bulk
Raman sample. SERS prove their flexibility through
the following properties: they (a) combine the
inherent properties of Raman identification abilities
due to the vibrational fingerprints of the molecules;
(b) involve a non-destructive analysis technique; (c)
require a smallest amount of prepared sample; and
(d) can carry out certain tests with their inherent
advantages [3]. In certain situations, it might also be
possible to detect a single molecule. Biosensors,
analytical chemistry, medical diagnostics and ther-
agnostic have all been proposed as applications for
SERS [4,5].
The massive Raman enhancement can usually be

explained by two well-known mechanisms, elec-
tromagnetic (EM) mechanism and chemical (CM)
mechanism. The EM mechanism estimates the de-
gree of the electric field magnified due to the LSPR
phenomenon associated with the plasmonic nano-
structure. The charge transfer mechanism between
non-chemisorbed and chemisorbed species and the
substrate mater is revealed by the CM mechanism
[3,6,7]. SERS substrates are often engineered to
maximise hotspot density by using their enhance-
ment performance to the fullest [8,9]. Effectual
substrates of SERS have largely been influenced by
plasmonic noble metals (e.g., Aս, Ag) and metal
nanostructures with rough surfaces. The metal
nanostructures supply the substrate with plasmonic
coupling via “hot spots” to improve the Raman
signal through an EM mechanism [5,10]. The most
widely used SERS substrates are silver (Ag) nano-
structures. Ag nanostructures of various morphol-
ogies, such as nanorods, nanowires, nanospheres
and nanosheets, have been chosen as effectual
substrates of SERS that allow for detecting little
concentration of molecules [11,12].
According to the EM mechanism, to improve the

Raman signal, it was necessary to manufacture
nanostructures that have a large set of hot spots in
addition to its surface roughness. These nano-
structures are used as effectual substrates in the
SERS technique. As a result, nanostructures having
a sufficient abundance of hot spots were designed
and manufactured to increase the SERS signal and
detect molecules (e.g., Rh6G dye molecules) at
exceptionally low concentrations [6,10]. The effect of
hot spots is well understood to be dependent on the
shape and size of nanoparticles as well as the dis-
tance between two adjacent nanoparticles. Theo-
retical computations have shown that the spacer of

adjacent nanoparticles on every surface can supply
a significant improvement. The presence of gaps up
to the nano-scale between two metals in the nano-
structures also helps achieve a noticeable upgrade
in the SERS signal [13].
Porous silicon (PSi) is a sponge-like network of

crystalline silicon pillars and nodules with nano-
metre-sized pillars and nodules. Material surface
properties serve as the most important aspect in
delicate chemical analytics sensing. The ability to
differentiate detection tools and their contents are
influenced by factors such as surface area, porosity,
topography, morphology, and surface functionality
[14]. In addition to attractive properties like being
environmentally friendly, convenient, functional,
and cost-effective, PSi has different physical prop-
erties depending on its shape, pore diameter,
porosity, and porous thickness. PSi is divided into
three types of groups based on the pore width: the
nano, meso and macro-PSi [5,14]. PSi is fabricated
by the anodic electrochemical etching technique of
monocrystalline Si in HF-based electrolytes. The
presence of HF molecules is necessary and required
for Si etching (coming from the electrolyte) and
holes (coming from the silicon wafer) in the reaction
interface. To produce enough holes and electrons in
the Si, its surface must therefore be exposed to ra-
diation in the anodising process [15].
Dopamine (DA) can be used as a multipurpose

rostrum due to its abundant amine and catechol
effectual groups on its surface as well as other dis-
tinguishing properties such as anchor strength,
chemical recognition, and self-polymerisation [12].
Immersing the material in the solution produces the
self-polymerisation of dopamine (PDA). PDA may
provide a convenient and active procedure for
modifying the surface and the development of an
extremely strong adherent layer. The PDA mole-
cules display strong complexing behaviours with
metallic ions. These behaviours can be lessened in
locations unique to metallic nanoparticles through
oxidisation of catechol into the equivalent quinine
groups via an alkaline aqueous mixture due to
abundant, influential groups on the surface such as
amine and catechol [16,17].
The EEW process proves to be one of the most

promising methods for producing large metal
nanoparticles as well as metal and multi-metallic
nanostructures [18,19]. As a result, coarse metal
nanostructures of proper size and coating are
deposited on a variety of surfaces to form effectual
substrates. This includes extremely hydrophobic
surfaces, providing a potential opportunity to
construct sharpened edges and nano-gaps on the
silver nanowires (AgNWs) surface as reusable SERS
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“hot spots.” The silver nanoparticles (AgNPs) were
adorned on the surface of the PDA layer using the
EEW process to construct (metal-insulator-metal)
nanostructures. These nanostructures allow the
electric fields generated by AgNPs' LSPR to overlap
[6,18].

2. Materials and method

The Rhodamine 6G (Rh6G) dye, whose molecular
formula is C28H31N2O3Cl and molecular weight
479.01 g/mol, was obtained from Merck Sigma-
Aldrich CO. Bearing a weight of 0.047901 g as a
powder, it was mixed with 1 mL deionised water to
obtain a solution of the Rh6G dye with an initial
concentration of 1 � 10�1 M. Then, this concentra-
tion was diluted to obtain different concentrations
ranging from 1 � 10�6 M to 1 � 10�14 M. An
aqueous colloidal of AgNWs, 500 mg dissolved in
25 mL water, with a length of 1 mm and average
diameter of 90 nm was obtained from XFNANO.
The concentration of aqueous colloidal was z0.2 M.
Silver wire at 99.9% purity with a diameter of
0.3 mm and silver plate dimensions of
3 cm � 2 cm � 3 mm were obtained from jewellers
in Baghdad, Iraq. Dopamine hydrochloride with
Tris-base (�99.9%) was obtained fromMerck KGaA.
ATOMIC ABSORPTANC SPECTROPHOTOM-
ETER SHIMADZU (AA-7000) was used to measure
concentration. X-ray diffraction (XRD) was used to
analyse the specifics of internal nanostructure fea-
tures. A few drops of AgNWs, AgNWs@PDA and
AgNWs@PDA@AgNPs nanostructures were dried
on a glass substrate. XRD data was taken of 2q
ranged from 10� to 80�. The XRD samples were
examined by an X-ray Diffractometer device using a
Radiation: CuKa1 l: 1.54056 Ǻ from Jonson Matthy
Company, Ltd. CAS. Silicon wafers with orientation
(100), n-type and thickness of 508e15 mm were used.
PSi is made using the electrochemical etching (ECE)
process. The morphological and structural proper-
ties of the PSi layer and the SERS-effectual substrate
were studied using the FE-SEM techniques. The
surface morphology of the PSi was examined using
the TT-2 AFM workshop. Using a SHIMADZU-1800
ՍV-Visible double beam spectrophotometer, the
absorptances spectra of the mixed Rh6G dye with
prepared nanostructures were analysed at room
temperature for all samples for different concen-
trations in the wavelength from 300 nm to 800 nm.
After dropping a few drops of Rh6G dye with
different concentrations on the effectual substrates
and letting them dry under normal conditions,
Raman spectra were examined for the various con-
centrations. Raman spectra of these samples were

examined using a Sunshine Raman spectrometer
system and after they were excited by a laser source
with a wavelength of 532 nm, where the objective
lens (50�). The laser power was 4.2 mW and the
integration time was 2s.

2.1. Preparation of (AgNWs@PDA@AgNPs)
nanostructures

1.25 mL of silver nanowire (i.e., AgNWs) colloidal
with 0.2 M was scattered in 60 mL of deionised water
with magnetic stirring for 30 minutes at room tem-
perature. Then, the solutionwas ultra-sonicated for 15
minutes to ensure full dispersion before adding 0.05 g
of dopamine hydrochloride powder. An aqueous
colloidal was then preserved in deionised water to be
used later. The PDA-coated AgNWs was ultrasoni-
cally scattered in 30 mL of deionised water. Silver
nanoparticles decorated the surface of AgNWs@PDA
by an EEW process to create the AgNWs@P-
DA@AgNPs nanostructures as shown in Fig. 1.

Fig. 1. Experimental set-up for fabricating the AgNWs@PDA@AgNPs
nanostructures [18].

Fig. 2. Electrochemical etching system to fabricate porous silicon (PSi) [14].
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Fig. 3. X-ray diffraction patterns of (a) AgNWs, (b) AgNWs@PDA and (c) AgNWs@PDA@AgNPs nanostructures.
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2.2. Fabrication of PSi substrates

After cutting the silicon samples into 2 � 2 cm2

sections, the silicon (Si) substrate was washed in
C2H5OH to remove dust and impurities. Then, it
was etched in 10% diluted HF acid for 10 minutes to
remove the SiO2 coating. The silicon samples were
placed in a plastic container filled with methanol to
ensure that the Si surface was not oxidised during
the reformation process.
PSi is made by an electrochemical etching tech-

nique. The experimental setup includes a DC power
supply, a digital ammeter to test the passing current,
a Teflon cell with high resistance to HF to prevent
chemical reactions and a rubber O-ring between the
silicon sample and the piece that holds the HF to
prevent leakage. Fig. 2 shows how two electrodes,
anode (Si) and cathode (gold mesh), are configured.
The current density was based on the applied
voltage, including 10 mA/cm2. The etching time and
HF concentration remain the same at 10 minutes
and 15% respectively. Both samples were rinsed in
pentane to prevent the PSi film from being easily
removed, and then ethanol was used to extract the
residual HF and pentane from the film.

3. Results and discussion

3.1. XRD patterns of AgNWs, AgNWs@PDA and
AgNWs@PDA@AgNPs nanostructures

Distinctive XRD patterns of AgNWs,
AgNWs@PDA, and AgNWs@PDA@AgNPs nano-
structures are shown in Fig. 3. All trends have four
peaks with minor differences in peak position be-
tween samples. These peaks were noticed at (2q de-
gree) of 38.117�, 44.277�, 64.426� and 77.472�

respectively and have been indexed to (hkl) values of
(111), (200), (220) and (311) respectively. Miller indices
values match up with face-centred cubic of Ag metal
that agree with JCPDS Card No. 4-0783. The pre-
pared AgNWs, AgNWs@PDA and AgNWs@P-
DA@AgNPs nanostructures via the EEW technique
showed no oxidation during and after the process,
showing that they maintained excellent crystalline
nature and good purity. The XRD pattern's peak
location is close to that of normal bulk silver.

3.2. FE-SEM and TEM image analyses for
nanostructures

The AgNWs generally have a smooth surface as
well as a straight and consistent shape as shown in
Fig. 4a. As can be seen in Fig. 4b, the PDA layer
adhered to the AgNWs surface successfully. TEM

tests revealed the full covering of the AgNWs by the
PDA layer to create theAgNWs@PDAnanostructure.
The AgNWs were employed as a core and the PDA
layer functionedas an amorphous shell. Fig. 4b shows
how PDA molecules covered the surface of AgNWs

Fig. 4. FE-SEM image of (a) AgNWs nanostructures and TEM images of
(b) AgNWs@PDA and (c) AgNWs@PDA@AgNPs nanostructures.

118 F.J. Moaen et al. / Karbala International Journal of Modern Science 8 (2022) 114e125



and self-polymerised them to form an assembled
functional PDA layer. As shown in Fig. 4c, randomly
distributed AgNPs decorated the surface of the
AgNWs@PDA nanostructure and tightly clung to the
surface to produce the AgNWs@PDA@AgNPs
nanostructures. The PDA layer is employed as a
spacer between the two metals, AgNWs and AgNPs,
by acting as nanogaps. The number of explosions
affects the density of AgNPs on the surface of
AgNWs@PDAnanostructures. The distance between

two nanostructures is several nanometres, which is
the optimal spacing for effective hot spots to formdue
to electromagnetic interaction that is dependent on
the PDA thickness [20,21].

3.3. Morphological properties of porous silicon
(PSi)

The morphology of PSi layers samples was
investigated using Atomic Force Microscopy (AFM).

Fig. 5. 2D and 3D images of AFM analysis for PSi.
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The AFM studies are focused on the morphological
properties at the nanometric scale of the PSi layers.
The image in Fig. 5 shows that PSi with (100) n-type
has a sponge-like structure after the etching time of
10 minutes. From the 3D image, the pore width and
porosity increased with increasing etching time
when HF concentration and current density remain
constant. This happens because of the extra chemi-
cal dissolution of a PSi layer in HF.
The experimental determines the morphological

aspects of the PSi surface, such as pore width, pore
shape and silicon nano spacing between adjacent
pores. Fig. 6 shows the AFM images of PSi-AgNWs

and PSi-AgNWs@PDA@AgNPs substrates. In loca-
tions where AgNWs@PDA@AgNPs nanostructures
improved, the density of the silver layer remained
uniformly distributed throughout the silver nano-
particles on the surface. Many particles were tightly
packed, allowing for “hot spots” to form and
resulting in an improvement of the SERS signal.
Since silicon pi features ordered pore channels
vertically grown in silicon wafers, it stands out as an
appealing material for the SERS substrate.

3.4. ՍV-visible absorptance spectra

The ՍVevisible absorptances spectra of AgNWs at
various concentrations (i.e., 4.5 � 10�4, 3 � 10�4,
2 � 10�4, 1 � 10�4and 0.5 � 10�4) M in the presence
and absence of Rh6G dye (1 � 10�6 M) is displayed
in Fig. 7. Fig. 7a shows the AgNWs have two peaks
of surface plasmon resonance (SPR). The first peak
appears at 351 nm due to AgNWs' longitudinal
Plasmon resonance absorptance. The second occurs
at 375 nm due to AgNWs' transverse plasmon
resonance absorptance [22]. With rising AgNWs
concentration, the intensity of these peaks increases.
The Rh6G dye molecules, on the other hand, have
an absorptance peak at 524 nm as shown in Fig. 7b.
The intensity of this peak increases as the AgNWs
concentration rises. In an example of this behaviour,
plasmonic metal nanostructures have demonstrated
the capability to improve optical signals. The
improved absorptance is based on the excitation of
localised surface plasmons, which results in
enhanced EM fields. As a result, molecules located
within this enhanced field placed on the nano-
structures will be stimulated more frequently due to
the enhanced EM field of the incident light on the
effectual substrate, resulting in improved absorp-
tance [23,24].
In the absorptance spectrum of AgNWs, two

distinct SPR peaks were observed at about 351 nm
and 373 nm as shown in Fig. 8. When all AgNWs
were coated with a PDA layer via self-polymerisa-
tion, the peaks almost vanished as displayed in the
absorptance spectrum of AgNWs@PDA in Fig. 8a.
The absorptance peak of AgNWs@PDA@AgNPs
was seen at 400 nm. The AgNPs decorated
AgNWs@PDA nanostructures with nano-spacer
between AgNWs and AgNPs as surface Plasmon
polariton (SPP) were used to create AgNWs@P-
DA@AgNPs nanostructures. The EM field signifi-
cantly improved due to the coupling of LSP-SPP and
LSP-LSP. When nanostructures were combined
with RH6G dye, their absorptance peaks widened.
The Rh6G dye molecules have an absorptance peak
at 524 nm as shown in Fig. 8b. The intensity of this

Fig. 6. 3D AFM images of the effectual substrates (a) PSi-AgNWs and
(b) PSi-AgNWs@PDA@AgNPs.
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peak rises when mixed with AgNWs and
AgNWs@PDA@AgNPs. Because the SPR of metal
nanostructures are highly sensitised to the dielectric
environment between two metals, the SPR
absorptance peaks of AgNWs@PDA@AgNPs nano-
structures were enhanced more than those of the
AgNW nanostructure [25].

3.5. Raman spectra of Rh6G dye

TheRh6Gdyewasusedasprobemolecules toprove
the ability of the deigned substrates PSi-AgNWs and
PSi-AgNWs@PDA@AgNPs to enhance SERS signals
and test their ultra-sensitivity. Fig. 9a for PSi-AgNWs
and Fig. 9b for PSi-AgNWs@PDA@AgNPs show the

Fig. 7. The ՍVevisible absorptance spectra of different AgNWs concentrations (a) in the absence of Rh6G dye (b) in the presence of Rh6G dye
(1 � 10�6 M).
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Rh6G molecules spectra with a concentration of
1 � 10�1 M pure deposited on the glass substrate. It
also illustrates theRh6Gmolecules spectra at different
concentrations (i.e., from 1 � 10�6 to 1 � 10�14 M)
deposited on the PSi-AgNWs and PSi-AgNWs@P-
DA@AgNPseffectual substrates.Nanostructureswere
deposited and desiccated onto slides of porous silicon
and then onto the Rh6G dye in a different

concentration above the nanostructure. All samples
have shown SERS activity and distinctive peaks after
excitation with a 532 nm wavelength laser source and
power of 4.5 mW. The sites of peaks at wavenumbers
(i.e., 611, 776, 1187, 1315, 1361, 1510, 1575 and
1651 cm�1) correspond respectively to the modes
(CeCeC ring in-plane vibration), (CeHout ofeplane
bend), (CeH in-plane bend), (NeH in-plane bend),

Fig. 8. The ՍVevisible absorptance spectra of AgNWs (0.5 � 10�6 M) and AgNWs@PDA@AgNPs nanostructures (a) without Rh6G dye (b) with
(1 � 10�6 M).
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(CeC stretching), (CeC stretching), (NeH in-plane
bend) and (CeC stretching). Raman shift in spectral
ranged from 400 cm�1 to 2000 cm�1 with a detection
limit of 1 � 10�14 M. It was discovered that the peak
intensity of Raman signals decreased as concentration
decreased, showcasing a linear relationship between
the peak intensity of Raman signals and Rh6G dye
concentration.
Fig. 10 shows SERS spectra of Rh6G molecules at

1 � 10�6 M for two deigned effectual substrates. The
PSi-AgNWs@PDA@AgNPs effectual substrates

were designed with an abundance of “hot spots,”
which are gaps or nano-spacers between two metals
(e.g., AgNWs and AgNPs) that synergistically sub-
scribe to the powerful SERS action. Furthermore, in
AgNWs@PDA@AgNPs nanostructures, such small
gaps between adjacent AgNPs and nano-spacer
between AgNWs and AgNPs helped achieve an
excellent SERS signal. The wavenumber peak of
1650 cm�1 was used to compute the enhancement
factors (EFs) of the SERS signal of Rh6G dye on the
PSi-AgNWs and PSi-AgNWs@PDA@AgNPs

Fig. 9. Raman spectra of Rh6G dye from (1 � 10�6 M) to (1 � 10�14 M) on the (a) PSi-AgNWs substrate and (b) PSi-AgNWs@PDA@AgNPs
substrate.
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substrates, and the following equation was utilized
to compute the SERS EFs [18].

EF¼ ISERS
Ibulk

� Nbulk

NSERS
ð1Þ

ISERS is the Raman strength of the molecule with
nanostructures, Ibulk is the Raman intensity of the
molecule without nanostructures, Nbulk is the
number of Rh6 G (1 � 10�6 M) molecules without
nanostructures, and NSERS is the number of Rh6G
(1 � 10�6 M) molecules with nanostructures. As a
result, the SERS EFs of Rh6G (1 � 10�6 M) reached
(26.3 � 10�6) and (28.7 � 10�5) at the wavenumber
peak 1650 cm�1 for the effectual substrates PSi-
AgNWs and PSi-AgNWs@PDA@AgNPs respec-
tively. The coupling between the localised surface
plasmon (LSP) of the AgNWs and the many hot
spots of the AgNWs@PDA@AgNPs nanostructures
created via the AgNPs decoration on the surfaces of
the AgNWs@PDA nanostructures produced a
strong stimulation of the SERS signal by improving
the EM field at hot spots.

4. Conclusion

Effectual substrates for SERS created using
nanostructures-coated porous silicon are a wide
topic of study. The analyte Rh6G was detected at a
minimum concentration of 10�14 M, a limit like
those of the best SERS-effectual substrates
mentioned in published literature. Given the ease
with which porous silicon can be made and covered
with plasmonic nanostructures, it is reasonable to
believe that SERS-effectual substrates with such
characteristics can play a significant role in signal
enhancement for SERS technique in analytical

chemistry, materials science, pharmaceutics, medi-
cine, and other fields. Two types of plasmonic
associated with the nanostructure that contained of
Ag nanowires coated with PDA layer and decorated
with Ag nanoparticles (AgNWs@PDA@AgNPs),
LSP-SPP and LSP-LSP, are formed by regulating the
synergistic effect between two plasmonic metals,
AgNWs and AgNPs, and the nano-layer separating
them along the longitudinal axis of AgNWs. The
AgNWs@PDA@AgNPs nanostructures have a
considerable number of hot spots, therefore
increasing the ultra-sensitivity of the SERS tech-
nique. By using this manufacturing technique, it is
possible to create a wide range of effectual sub-
strates and achieve a sensitive, reliable detection in
biological and chemical fields.
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