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Abstract

In this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was
then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution.
Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta
potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper
nanoparticles (G-Fe/Cu NPs) with the size ranging from 32 to 59 nm, and the surface area was 4.452 m2/g. The effect of
different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 con-
centration, G-Fe/Cu-NPs amount, pH, initial DB15 concentration, and temperature in the batch system. The batch results
showed 98% of 100 mg/L of DB15 was degraded with optimum H2O2 concentration, G-Fe/Cu-NPs dose, pH, and tem-
perature 3.52 mmol/L, 0.7 g/L, 3, and 50 �C respectively. For the continuous mode, the influences of initial DB15 con-
centration, feed flow rate, G-Fe/Cu-NPs depth were investigated using an optimized experimental Box-Behnken design,
while the conditions of pH and H2O2 concentration were based on the best value found in the batch experiments. The
model optimization was set the parameters at 2.134 ml/min flow rate, 26.16 mg/L initial dye concentration, and 1.42 cm
catalyst depth. All the parameters of the breakthrough curve were also studied in this study including break time,
saturation time, length of mass transfer zone, the volume of bed, and volume effluent.

Keywords: Fenton-like, Bimetallic nanoparticles, Direct blue 15 dye, Fixed-bed column, Breakthrough curve

1. Introduction

N owadays, water management is one of the
biggest challenges facing the world, especially

with the increasing population and developing in-
dustries [1]. Polluted water sources with various
contaminants like dyes have raised environmental
and health concerns. Generally, various textile
production activities are contributed to release of
one-fifth of the world's dyes production to the water

sources causing negative effects on human health
and the aquatic ecosystem [2,3].
Therefore, numerous technologies have been

developed to remove or degrade the dyes from
wastewater such as adsorption [4], electro-
coagulation [5], phytoremediation [6] advanced
oxidation processes (AOPs) [7], membrane separa-
tion [8], and coagulation [9,10]. Some of these tech-
nologies have their drawbacks, where the
membrane method is expensive, forms sludge, and
rapid membrane fouling. The disadvantages of
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coagulation technology can be summarized by high
concentrated sludge production and not being
effective for azo dye. Also, phytoremediation is not
efficient to be adopted due to a long time of water
and wastewater treatment. Moreover, resins that
used in the adsorption method are considered very
expensive leading to an increase in the operational
cost of this system [11,12]. Despite pH-dependent as
well as the side-product generation in the AOPs,
they are characterized by fully destroying the risky
and complex materials and making them very suit-
able for dyes removal [7,11,13]. However, the eco-
friendly method of AOPs is the heterogeneous
Fenton oxidation (also named Fenton-like) which is
working based on producing high reactive $OH
radicals through the reaction between catalysts like
Feþ3, Feþ2/Feþ3, or Cuþ2 and hydrogen peroxide.
These radicals can initiate a fast oxidation process of
organic contaminants, thereby degrading these
pollutants [14,15].
Among many catalysts that have been used in the

Fenton-like processes, iron nanoparticles are very
high active to remove these types of pollutants [16].
Additionally, iron-based is a promising technique
used as a Fenton-like catalyst by adding a second
catalyst such as Cu, Pt, Pd, Ni, Mn to the iron [17,18].
The mutual effect of two metals improves the cata-
lytic activity of nanoparticles over the use of just one
metal (monometallic); therefore, bimetallic nano-
particles have become of great interest to re-
searchers [19,20]. Bimetallic nanoparticles can be
synthesized using the green biological technique
which is considered an alternative technique to
chemical and physical synthesis. This technique
uses leaves extract of plants with economic feasi-
bility and reliability and no complexity of synthetic
[21,22].
In the last few years, the batch reactors of Fenton-

like reactions have been widely studied for the
water treatments field. However, this type of system
is not environmentally friendly due to the increase
in the discharge of pollutants by various factories.
Therefore, the attention turned to the systems that
can treat these pollutants continuously without
affecting the environment [1]. In the continuous
system, the interaction between catalyst and solute
is already carried out by numerous systems such as
fixed-bed and fluidized-bed, etc. However, a fixed
bed is a more beneficial and practical method to
treat different synthetic and real water pollutants. It
is a simple and cost-effective technique compared to
fluidized beds as well as treating higher amounts of
pollutants than the batch system [23]. The high
performance of fixed-bed is due to cyclic removal
which is related to the gradient in concentration

thereby forming a driving force for sorption, where
these forces enhance the adsorbent capacity by
efficient usage [24]. The removal process in contin-
uous flow mode using fixed-bed depends on
continuous mass transfer occurs between two pha-
ses (the mobile phase which represents the
contaminated solution and the solid phase of
nanoparticles in the column bed). The solute con-
centration in both phases is a function of contact
time and the height of the mass transfer zone
(MTZ).
Recently, statistical experiments using software

design were extensively applied instead of the
classical methods to minimize the number of ex-
periments required to optimize the process
response at a high level of confidence, thereby
saving costs and time [25]. Moreover, these statisti-
cal theories are also applied to identify a mathe-
matical model representing the process variables,
with data analysis, signification, and optimization.
Therefore, it was adopted by the Taguchi method,
full factorial design, and response surface method-
ology (RSM). Among these approaches, RSM is
stand out as the highly utilized method to optimize
parameters of the statistical experiments [26]. The
RSM is a rotatable design that successive in
revealing the effect of the interaction among the
independent variables and process response from
experimental data formed with 3D surface and
contour plots associated with the regression model.
Additionally, RSM branches into two major ways
which are Box-Behnken design (BBD) and central
composite design (CCD).
This study aims to prepare iron/copper nano-

particles by a green method using the extract from
the ficus plant. These nanoparticles can be applied
as a heterogeneous catalyst in the complete Fenton-
like experiments using batch and fixed-bed for
removing DB15 dye from wastewater. Finally, the
dye degradation processes in the fixed-bed were
optimized with the assistance of the statistical
analysis design of experiments (BBD).

2. Material and methods

2.1. Chemical and reagents

The purity of all chemicals utilized in our experi-
ments was very high (99.9%). Ficus leaves were
collected from the University of Baghdad, Iraq. The
DB15 was purchased from Central Drug House
(BDH) Company with all properties shown in Table
1. Ferrous sulfate heptahydrate (FeSO4.7H2O), the
hydrogen peroxide (50% w/w) and sodium sulfite
were purchased from BDH company. Copper
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sulfate pentahydrate (CuSO4$5H2O) was purchased
from Fluka AG company. Anhydrous ethanol was
purchased from Carlo Erba reagents company.
The change of pH was adjusted using 1.0

M H2SO4 and 1.0 M NaOH solutions. The wave-
length lmax (nm) was specified using a spectropho-
tometer (UV/VIS model 1800 SHIMADZU).

2.2. Catalyst preparation

The G-Fe/Cu-NPs was prepared following the
same procedures showed in the previous study [27]
with some modifications as follows:

Step 1. Fresh ficus leaves were washed several
times using tap water and then washed with
distilled water to eliminate any impurities or dust,
followed by drying in an oven at 60 �C. Additionally,
they were cut using mortar and pestle into small
pieces with sifting using a 2.5 mm sieve.

Step 2. The ficus leaves extract is prepared in 150 ml
of deionized water with 20 g of ficus leaf pieces
which were then boiled at 70 �C for 20 min and then
filtered using filter paper to remove suspended ficus
particles. Finally, the filtrate is refrigerated at 4 �C
until used as the reducing and capping agent.

Step 3. A solution of 1.494 g of FeSO4.7H2O and
0.7 g of CuSO4.5H2O salts were dissolved in 100 ml
of deionized water. After the salts had completely
dissolved, the filtration process using a filter paper
was followed to remove any impurities. To develop
the synthesis of G-Fe/Cu-NPs, 100 ml of extract
(Step 2) was added dropwise to the 100 ml of Fe (II) /
Cu (II) mixture until the color of the mixture
changed gradually from yellow, brown and finally to
black indicating the metals equivalent were reduced
to zero-valent and the formation of G-Fe/Cu-NPs
completed. The remaining ficus extract is added to

accelerate the reduction. In addition, the mixture is
stirred continuously for 15 min. The black precipi-
tate of G-Fe/Cu-NPs nanoparticles was separated by
vacuum filtration using filter paper and immedi-
ately washing process was involved using distilled
water several times followed by rinsing with abso-
lute ethanol. The G-Fe/Cu-NPs were then dried
overnight at ambient temperature and then ground
by mortar and pestle to a fine powder.

2.3. Design of fixed-bed column

A fixed bed is a column of glass designed with a
dimension of (33 cm) height and (2.2 cm) diameter
which might be operated with any required height
as illustrated in Fig. 1. A granular glass bead (with
size 1.5e3 mm) was filled in the (9 cm) distance of
the bottom and up of the column to uniform the
flow of solution, whereas glass wool (1 cm thickness)
was used before and after the packed bed to support
this layer and prevent any material to pass down or
up. The G-Fe/Cu-NPs is mixed with an amount of

Table 1. Physical and chemical properties of direct blue 15 (DB15) dye.

Properties of (DB15)

Molecular structure

Molecular formula C34H24N6Na4O16S4
Molecular weight (g/mole) 992.8
Color Dark blue powder
Solubility in water Soluble in water
lmax (nm) 594

Fig. 1. The column design of continuous Fenton-like process for DB15
removal.
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glass bead powder (with size <750 mm) to form a 10
cm length of the packed layer to be placed between
the supported glass wool layers. The presence of
powder glass beads with nanoparticles is very
important to increase the retention time of the
influent stream. The Intelligent Flow Pump was
used to push the solution up-ward in the column.
Lastly, four meshes were put in a different region
for supporting function.

2.4. Characterization of G-Fe/Cu-NPs

Some techniques are utilized to prove the chem-
ical classification, structure, size, and surface area of
nanoparticles. The morphology, topography, and
average size of these nanoparticles were character-
ized using a scanning electron microscopy (SEM)
model. The EDAX technique is a confirmatory
method used to ensure the identification and
chemical classification of each particle. In addition,
the XRD system is also utilized to investigate the
crystallinity of the materials. The major picks using
XRD system can accurately determine the crystal-
line nature of nanoparticles. Furthermore, FT-IR
spectroscopy is widely used to confirm the structure
of unidentified compounds, as well as to determine
the functional groups of numerous materials, espe-
cially for biomaterials. The BET technique de-
termines the specific surface area, the size radius of
average pore, average porosity radius, and pore
volume of nanoparticles. At last, zeta potential is
widely used to inspect the potential stability of the
colloid nanoparticles. The high positive or negative
zeta potential for colloids tends to be stable electri-
cally while low zeta potential for colloids is floccu-
lated or coagulated.

2.5. Analytical methods

Before starting the experiments, a calibration
curve of standard DB15 solution was done to find
the maximum wavelength of dye and the relation-
ship equation of the absorbance with concentration.
Thus, the maximum wavelength of DB15 was found
to be 594 nm as shown in Fig. 2, and the removal
efficiency (RE) of batch experiments was calculated
based on this formula:

RE%¼Co �Ct

Co
� 100 ð1Þ

where the Co is the initial DB15 concentrations and
Ct is the DB15 concentration at time t.
For the fixed-bed column, the breakthrough curve

is a function of the Ct/Co to the initial concentration

versus time (t), where Ct is the effluent
concentration.
The breakthrough time (tb) represents the lower

concentration value which is obtained from the
breakthrough curve at the point that reaches the
effluent concentration up to 0.001 Ct/Co [24].
Moreover, the area under the curve can be esti-
mated by numerical or graphical integration ways.
In theory, the point that the catalyst reaches satu-
ration or exhausted state means no dye removal
happens is known as saturation time (ts), in other
way, ts can be obtained when the effluent concen-
tration reaches up 0.95 Ct/Co. Further, the MTZ is
the region where the contaminant is being removed,
and its height (LMTZ) indicates dye removal started
to occur in the packed layer and can be estimated
according to equation (2) [28]:

LMTZ¼L
te � tb
te

ð2Þ

where L is the bed height, and te is the equilibrium
time or the time needed for the MTZ to be estab-
lished or moved completely out of the bed. Deter-
mine the total treated volume Veff (ml), the following
equation was used [29]:

Fig. 2. UVeVis analysis for various concentrations of DB15 solutions
(a) Absorption and (b) Calibration plot.
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Veff ¼Q� ts ð3Þ

where Q is the solution flow rate (ml/min), and ts is
the saturation time (min).
The total removal of dye quantity qtotal (mg) can

be estimated by the equation below [29]:

qtotal¼ QA
1000

¼ QCo

1000

Zts

to

Crdt ð4Þ

where A is the area under the curve, Cr is the
removal concentration (Co-Ct) in (mg/L), and ts is
the saturation time (min). Also, D. Charumathi and
N. Das 2012 reported that the total dye fed to fixed-
bed can be calculated by the equation:

qtotal¼Co �Q� te
1000

ð5Þ
The total quantity of dye fed to fixed-bed col-

umn mtotal (mg) can be determined by the following
equation [29]:

mtotal¼CoQts
1000

ð6Þ
The total removal efficiency (RE %) of the fixed-

bed experiments can be computed by the equation:

RE%¼ qtotal
mtotal

� 100 ð7Þ
Finally, the EBCT term refers to the empty bed

contact time that shows the relationship between
the solute flows in the column and the catalyst [30]
which can be expressed by the equations:

EBCT¼VC

Q
ð8Þ

VC¼ACZ ð9Þ
where VC is the volume of catalyst in the column
(m3) and AC is the column cross-sectional area (m2).

2.6. Oxidative degradation of DB15 by Fenton-like
in the batch experiments

In the batch mode, the ability of the Fenton-like
process in DB15 degradation was evaluated under
some operating conditions including H2O2 concen-
trations, G-Fe/Cu-NPs doses, pH, initial dye con-
centration, and temperature. The working solution
of 50 mg/L of DB15 was prepared, followed by
adjusting pH before adding catalyst. A known
amount of G-Fe/Cu-NPs was added to the working
solution and stirred for a minute to homogenize the
catalyst with solution, then a certain concentration

of H2O2 was added and stirred at 300 pm. During
each run, 10 ml samples were taken regularly and
mixed with prepared 200 ml of 1M Na2SO3 in the vial
to quench the reaction. The samples were analyzed
by UV/Vis after filtering the sample using a 0.22 mm
membrane filter [7].

2.7. Oxidative degradation of DB15 by Fenton-like
in the fixed-bed experiments

The continuous Fenton-like experiments were
conducted with the optimum condition of H2O2 and
pH that would be obtained from batch experiments.
While the other operating conditions are initial
DB15 concentrations in the range (25e125 mg/L), G-
Fe/Cu-NPs thickness ranging from (0.5e1.5 cm),
and the flow rate in the range (2e10 ml/min).
Worthy to note that the thickness of powder glass
beads is changed along with changing the thickness
of G-Fe/Cu-NPs to maintain (10 cm) as overall
thickness. Accordingly, working solution of DB15
was prepared followed by adjustment pH of the
solution to the target value before adding the H2O2.
Then the solution was pumped and regulated with a
peristaltic pump to maintain the dye solution
entering the column and passed through granular
beads, glass wool, packed layer, glass wool, granular
beads, and outlet discharge.
The flow of dye solution inside the column was

continued until the collected concentration (Ct) of
DB15 reached up to (P90%) of the initial concen-
tration then the experiments stopped with recording
the saturation time. The continuous experiments
were performed at atmospheric pressure and room
temperature (30e35 �C). The samples (10 ml) were
collected at regulated interval time through the out
effluent, filtered using 0.22 mmmicro-filter, and then
moved to the glass vial containing (200 mL) Na2SO3.
Fig. 3 shows an illustration image of the Fenton-like
experiments for the DB15 removal.

2.8. Design of continuous experiments

In the BBD, the optimization of variables is per-
formed by selecting three levels of each variable
(flow rate, initial dye concentration, and catalyst
height) and varied over a coded value of (�1, 0, þ1)
in a fitting model (quadratic, linear etc.). Therefore,
design-expert 13 software was employed to design,
optimize, and analyze the process parameters as
well as obtain an applicable model to represent dye
degradation by Fenton-like using a fixed-bed
column.
The second-order polynomial model based on the

analysis of variance ANOVA that is suggested by
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the design software for the three studied parameters
can be illustrated in equation (10).

y¼bo þ
X

biXi þ
X

biiX2
i þ…þ

XX
bijXiXj ð10Þ

where y is a predicted response (dye removal per-
centage), i is 1, 2, 3, j is also 1, 2, 3, bo is the constant
coefficient, bi and bii, are model coefficients, bij
interaction coefficient, and X is coded variable. At
last, the fitness of the polynomial model is examined
by the coefficient R2. In this study, the BBD is
including 15 runs that are listed in Table 2.

3. Results and discussion

3.1. Formation and characterization of G-Fe/Cu-NPs

The SEM images in Fig. 4 showed that synthesized
G-Fe/Cu-NPs were porous and shaped as spherical
with diameters ranging from 32 to 59 nm. These
nanoparticles structure can improve the dye
removal rate due to improving the catalytic activ-
ities. The size variation of NPs created is due to the
variation of the local concentration of the ficus
extract which is responsible to reduce the metal
ions.
The EDAX spectrum of nanoparticles presented in

Fig. 5 contains further information about the syn-
thesis of G-Fe/Cu-NPs. The findings of atomic dis-
tribution on the surface and chemical composition
was demonstrated by the intense peaks of Fe, Cu, C,
and O, 5.51 wt%, 3.33 wt%, 48.67 wt%, and 42.49 wt
%, respectively. The finding of adjoint elements
such as C and O signals resulted mainly from the

Fig. 3. The illustration image for system of continuous Fenton-like
process for DB15 removal.

Table 2. Box-Behnken design experiments variables in actual and coded values.

Run No. Actual variables Coded
variables

Flow rate
(ml/min)

Initial
concentration
(mg/L)

G-Fe/Cu-NPs
height (cm)

X1 X2 X3

1 10 125 1 1 1 0
2 10 25 1 1 �1 0
3 10 75 1.5 1 0 1
4 10 75 0.5 1 0 �1
5 6 75 1 0 0 0
6 6 75 1 0 0 0
7 6 75 1 0 0 0
8 6 25 0.5 0 �1 �1
9 6 25 1.5 0 �1 1
10 6 125 1.5 0 1 1
11 6 125 0.5 0 1 �1
12 2 125 1 �1 1 0
13 2 25 1 �1 �1 0
14 2 75 0.5 �1 0 �1
15 2 75 1.5 �1 0 1
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ficus extracts that contain organic compounds C and
O molecules which play a major role in the reduc-
tion and stabilizing process of G-Fe/Cu-NPs [22].
The XRD curve of synthesized nanoparticles is

revealed in Fig. 6 which does not include any sharp
peaks, indicating there is no crystal structure, even
with a wide range of diffraction peaks (from 20�-
25�). The above result proves that the G-Fe/Cu-NPs
prepared by the green method are amorphous [31].
Before the reaction, FT-IR for ficus leaves was

already applied in the band range 400e4000 cm�1 as
shown in Fig. 7-a. Then, the functional groups of

these nanoparticles were proved by conducting FT-
IR analysis for band range 400e4000 cm�1 to ensure
the functional group of these nanoparticles as
depicted in Fig. 7-b. The OeH stretching vibrations
illustrated in the band between 3220 and 3430 cm�1

belong to polyphenol compounds which play an
important role to reduce the Fe/Cu metals and help
to synthesize bimetallic nanoparticles [22]. The
amide group in the prepared nanoparticles can be
noticed at band 1614 cm�1 which indicates the
presence of flavonoids, polyphenols and proteins in
ficus leaf, these compounds attribute to reducing the

Fig. 4. SEM images of G-Fe/Cu-NPs.
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formation of G-Fe/Cu-NPs [32]. The C¼C sequences
at 1446 cm�1 are attributed to the aromatic ring,
while the bands at 1396 and 1244 cm�1 are related to
CeOH bending [33]. The band observed at 823 cm�1

is related to the (FeeOeFe) stretching, and the vi-
bration broadband ranged between 549 and 403
cm�1 could be assigned as Fe/Cu nanoparticles [34].
The peaks ranging from 1174 to 1070 cm�1 are

caused by the carbonyl groups (CeOeC) stretching,
these groups can prevent nanoparticles agglomera-
tion by producing capping agents [35]. The phenolic
compounds of ficus leaf extract adsorbed on the
prepared nanoparticles were confirmed by the
mentioned peaks. Furthermore, these phenolic
compounds provide more stability to the nano-
particles when they are adsorbed on the surface and
act as a capping agent [36]. As a result, The FT-IR
analysis proved the ability of the ficus leaf for doing
the stabilizing and reducing functions for G-Fe/Cu-
NPs.
Table 3 shows the results of G-Fe/Cu-NPs surface

area obtained by the BET technique. In this analysis,
the pore size of G-Fe/Cu-NPs was 40.4 nm which

can be classified as mesoporous according to the
classification of the IUPAC. Mesoporous structure
enhances the catalytic activities due to enhancing
the diffusion materials. These size pores provide
more stability by acting as a shielding agent to
prevent the harsh reaction conditions of the nano-
particles active sites [34].
The high value of zeta potential provides the sta-

bility to nanoparticles for resisting aggregation,
while the small potential leads to flocculation. As
shown in Fig. 8, a high negative value at (�51.47
mV) was obtained from zeta potential analysis
provides good stability of G-Fe/Cu-NPs, this sta-
bility derives from existing phenolic compounds in
the ficus leaf extract [37].

3.2. Optimizing of Fenton-like factors in the batch
mode

3.2.1. Effect of H2O2 concentration
Determining the optimal concentration of H2O2 is

an important step in the Fenton-like. Therefore,
several experiments for DB15 degradation were
conducted by varying the concentration of H2O2 in
the range (1.7e5.28 mmol/L) with fixing the other
factors of G-Fe/Cu-NPs, initial DB15 concentration,
pH, and temperature. The removal efficiencies of
DB15 were 30.9%, 47.1%, 72.8%, 65.8%, and 56.6%
for the H2O2 concentrations of 1.7, 2.64, 3.52, 4.4, and
5.28 mmol/L respectively for 120 min reaction time
as depicted in Fig. 9. The increase of H2O2 concen-
tration had a positive impact on the DB15 degra-
dation that attributed to the production of a higher
amount of very reactive $OH radicals which is
responsible to degrade dyes molecules. Neverthe-
less, the excess amount of hydrogen peroxide
worked as inversely effect on the degradation rate,
this phenomenon ascribed to $OH scavenging and
produce the lower reactive �O2H radicals as illus-
trated in the following mechanism [38]:

H2O2þ �OH/H2O þ �O2H ð11Þ
All in all, the concentration of 3.52 mmol/L was

selected as the best H2O2 concentration and would
be used for the subsequent experiments. A similar
result was observed by Ref. [16].

3.2.2. Effect of catalyst doses
The batch experiments of DB15 degradation by

the Fenton-like were carried out using 50 mg/L of
DB15 with various doses ranging (0.4e1.6 g/L) of G-
Fe/Cu-NPs and maintaining the other experimental
conditions fixed (Fig. 10). The removal rate of DB15

Fig. 6. XRD of prepared G-Fe/Cu-NPs sample.

Fig. 5. EDAX of prepared G-Fe/Cu-NPs sample.
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were 65.8%, 74.7%, 77.6%, 75%, and 72.4% for doses
0.4, 0.7, 1.0, 1.3, and 1.6 g/L respectively at 120 min.
The degradation rate of DB15 increased slightly

with a higher amount of G-Fe/Cu-NPs due to
providing a higher quantity of active sites on the
surface of the catalyst which in turn contribute to
producing plenty of $OH radicals. However, this
increase is limited to a specified range for the
agglomeration reason occurred with high catalyst
concentration which led to clogging the active sites
and thereby lowering the degradation rate [39].
Despite the higher degradation rate of the 1 and 1.3
g/L, the 0.7 g/L have been chosen because of it is a
cost-effective amount.

3.2.3. Effect of pH on the DB15 degradation
The pH impact on the degradation of DB15 was

investigated by changing the pH of the solution in
the range 2e7 while keeping the other factors con-
stant (Fig. 11). The DB15 removal efficiencies were
77.3, 97.6, 74.7, 40.9, and 36% at various pH 2, 3, 4, 5,
and 7 along with 120 min. It can be observed a

Fig. 7. FTIR spectrum of (a) dry ficus leaves (b) prepared G-Fe/Cu-NPs samples.

Table 3. BET parameters for G-Fe/Cu-NPs.

Parameter Value

BET (m2/g) 4.452
Pore size (nm) 40.4
Pore volume (cm3/g) 0.0108
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significant effect of pH on the DB15 degradation
where the rapid degradation rate started at the
beginning of experiments (within the first 15 min)
indicated the fast conversion of hydrogen peroxide
to $OH. Therefore, the degradation performance
decreased as the pH increased due to low amount of
reactive components such as Fe(OH)3 that has the
capability to deactivate the catalyst and thereby
lowering the number of $OH radicals [40]. In
contrast, the degradation performance decreased at
pH 2 because of the extra protons (Hþ) that scav-
enged �OH radicals according to the below reaction
[41].

�OH þHþ þ e�/H2O ð12Þ
Therefore, the most effective pH was approxi-

mately 3. The pH result was consistent with earlier
reported by Ref. [41].

Fig. 8. Zeta potential analysis for a sample of G-Fe/Cu-NPs.

Fig. 9. Effect of H2O2 concentration at the dose of G-Fe/Cu-NPs, initial
DB15 concentration, pH, and temperature were 0.4 g/L, 50 mg/L, 4, and
30 �C.

Fig. 10. Effect of G-Fe/Cu-NPs dosage at H2O2 concentration, initial
DB15 concentration, pH, and temperature were 3.52 mmol/L, 50 mg/L,
4, and 30 �C.

Fig. 11. Effect of pH on the DB15 degradation at G-Fe/Cu-NPs dosage,
H2O2 dose, initial concentration, and temperature, were 0.7 g/L, 3.52
mmol/L, 50 mg/L, and 30 �C.

Fig. 12. Effect of initial DB15 concentration at G-Fe/Cu-NPs dosage,
H2O2 concentration, pH, and temperature were 0.7 g/L, 3.52 mmol/L, 3,
and 30 �C.
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3.2.4. Effect of initial dye concentration on the
degradation performance
In the Fenton-like process, several concentrations

of DB15 (25, 50, 75, 100, and 125 mg/L) were studied
to illustrate the impact of initial DB15 concentration
on the degradation rate. The result shows that when
the initial concentration of DB15 was raised, the
removal efficiency dropped from 95.9%, 94.2%,
85.9%, 79.3% and 77.8% respectively within 15 mi-
nutes of reaction time (Fig. 12). The degradation
performance is limited by the number of very
reactive $OH radicals that exist in the medium,
where the higher concentration required more hy-
droxyl radicals. Further, the Fenton-like reaction
could generate by-products that tried to compete
with the dye molecules for occupying the catalytic
active sites resulting in decreased degradation rate
[39]. As a result, the concentration of 100 mg/L was
chosen as the more suitable DB15 concentration and
used with the following experiments. Similar results
are reported by Ref. [42].

3.2.5. Effect of temperature on the degradation
performance
The degradation of DB15 was evaluated by vary-

ing reaction temperature between (20e50 �C) while
other factors were fixed. The degradation rates were
85.5%, 89.3%, 97.7%, and 98.7% for the temperature
20, 30, 40, and 50 �C respectively within 120 min
(Fig. 13).
Rising temperature from 20 to 30 �C within the

first 15 min of reaction leads to an increase in the
degradation efficiency of DB15 from 82.8 to 96.6%.
The positive effect of the high temperature is
ascribed to the relatively high production of hy-
droxyl radicals as well as the enhancement of

collisions between the $OH and DB15 molecules
that accelerated the rate of reaction [14]. Meanwhile,
the excessively higher temperature may lead to the
decomposition of hydrogen peroxide and then
lowering the efficiency of degradation [7]. However,
the temperature of 50 �C was chosen as the best
operational temperature. This behavior was in good
agreement with a previous study reported by
Ref. [43].

3.3. Experimental design of DB15 degradation in
the fixed-bed column

The inert materials have been tested individually
and as a group (without catalyst” to check if there is
any effect or removal of the dye. The dye solution
with known initial concentration was pumped up
into the column, then the outlet samples were
collected and compared with feed concentration.
The results deduced that the inert materials had
neither effect nor removal of dye. Also, the effect of
H2O2 only was checked with the same previous step
by comparing the initial concentration with the out
concentration, and the result showed no effect on
dye removal. After that, the real fixed-bed experi-
ments were accomplished by varying the flow rate
from (2e10 ml/min), initial concentration of (25e125
mg/L), and catalyst thickness of (0.5e1.5 cm).
Notably, the thickness of powder glass beads is
changed along with the changing the thickness of
G-Fe/Cu-NPs to maintain (10 cm) as overall thick-
ness. Meanwhile, the other operation factors were
maintained at H2O2 of 3.52 mmol/L, and pH of 3
along with the experiments. The removal efficiency
was calculated using equation (7).

Fig. 13. Effect of temperature on the removal DB15 at G-Fe/Cu-NPs
dosage, H2O2 concentration, initial dye concentration, and pH were
0.7 g/L, 3.52 mmol/L, 100 mg/L, and 3.

Table 4. Experimental and predicted response in the Box-Behnken for
the DB15 degradation.

Run No. Experimental
result %

Predicted
response %

Deviation

1 22 21.88 0.12
2 39 39.38 0.38
3 31 32.63 1.63
4 32 32.33 0.33
5 56 57.13 1.13
6 22 23.25 1.25
7 32 32.33 0.33
8 32 33.5 1.5
9 33 32.33 0.67
10 42 40.5 1.5
11 44 44.13 0.13
12 45 43.75 1.25
13 31 30.63 0.37
14 29 27.88 1.12
15 36 34.38 1.62

144 I.M. Luaibi et al. / Karbala International Journal of Modern Science 8 (2022) 134e153



3.3.1. DB15 degradation experimental design
By the created BBD, the experimental data were

compared with the adjusted and predicted values
that were analyzed statistically by the software
(Table 4), hence, the obtained correlation coefficient
R2 was 0.985 that showing fit excellently of experi-
mental data with the suggested model. Further-
more, Fig. 14 showed the significance of the
suggested model by plotting the experimental vs
predicted values that showed identical fit. Besides,
the model equation for the removal of dye in the
fixed-bed column can be mathematically stated ac-
cording to equation (13):

y ¼76:479�6:875X1�0:463X2þ2:833X3

þ0:022X1X2þ0:875X1X3þ0:04X2X3

þ0:216X1
2þ0:0009X2

2�2:167X3
2

ð13Þ

where y is the response (removal rate %), X1 is the
flow rate (ml/min), X2 is the initial dye concentra-
tion, and X3 is the height of G-Fe/Cu-NPs.

3.3.2. Analysis of variance results
The analysis of variance (ANOVA) is a perfect

analysis for evaluating the quality of the fitted

Fig. 14. Actual versus Predicted values for the degradation DB15
designed experiments.

Table 5. Experimental and predicted response in the Box-Behnken for the DB15 degradation.

Factor Sum of Squares df F-value P-value Comments

X1-Flow rate 378.13 1 115.16 0.0001 Significant
X2-Initial dye concentration 480.50 1 146.35 <0.0001 Significant
X3-Catalyst height 91.13 1 27.75 0.0033 Significant
X1 X2 81.00 1 24.67 0.0042 Significant
X1 X3 12.25 1 3.73 0.1113
X2 X3 4.00 1 1.22 0.3200
X2
1

44.16 1 13.45 0.0145
X2
2

18.01 1 5.48 0.0662
X2
1

1.08 1 0.3299 0.5906
Lack of Fit 15.75 3 15.75 0.0603 Not significant
Pure Error 0.6667 2
Total 1124.9 14

Table 6. The optimizing model of DB15 degradation.

Parameter Optimum value

X1 e Flow rate (ml/min) 2.13
X2 e Initial DB15 concentration (mg/L) 26.16
X3 e Catalyst height (cm) 1.42
Actual response % (removal efficiency %) 56
Predicted response % (removal efficiency %) 56.35
Error % 0.35

Fig. 15. Effect of interaction between flow rate and initial DB15 con-
centration on removal response at pH ¼ 3, H2O2 ¼ 3.52 mmol/L,
temperature ¼ 30 �C, and pressure ¼ atmosphere pressure (a) contour
plot (b) 3D surface response.
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model. However, the polynomial model based on
the ANOVA is suggested by the design software.
The ANOVA quadratic model data is shown in
Table 5. This table shows the significant influences
of the studied variable on the removal by deter-
mining the probability of results (P-value) and F-
value, notably, the model is being significant when
the P-value is < 0.05 and F-value is large [44].

3.3.3. Process optimization
The accuracy of the model was verified by the

optimized studied factors of DB15 removal. The
result showed that the error between experimental
results and the predicted value was 0.35 as shown in
Table 6, thus, the model efficacy was confirmed.

3.3.3.1. Interaction effect of flow rate and initial dye
concentration. The plot in Fig. 15a for flow rate
versus initial concentration represents the contour
design of 2-dimensional concerning removal
response. On the other hand, the 3-dimensional
graph illustrated in Fig. 15b refers to the interaction
impact of initial concentration with catalyst height
on the DB15 degradation rate response. A signifi-
cant effect in the interaction between flow rate and
initial DB15 concentration can be seen from the two
plots. When the flow rate was lower than 2.5 ml/
min, the initial DB15 concentration had a strong
effect on the response, on the other hand, the flow
rate was the most significant with the high levels of
the initial concentration. However, the uptake and
removal efficiency for dye decreased with increasing
flow rate and the higher value is shown at a low flow
rate.
This phenomenon was possibly related to

reducing the resident time between DB15 solution
and catalyst at a higher flow rate, while it has more
time to oxidize onto catalyst and complete the
removal process with delay the exhaustion of the
column. However, the reason for the poorly removal
rate at high DB15 concentration may be attributed to
the shortage production of free radicals ($OH) that
work as destroying the dye molecules, indicating the
importance of this parameter to initiate free radical
$OH [45]. Finally, since both parameters have
played an important role in the fixed-bed column, it
should be noted that the effect of initial concentra-
tion has the most significant effect with the mini-
mum P-value and larger F-value analyzed in Table
5. As a result, the maximum removal of dye was
seen at the flow rate of 2 ml/min and an initial DB15
concentration of 25 mg/L.

3.3.3.2. Interaction effect of flow rate and G-Fe/Cu-NPs
height. Fig. (16a,b) show a 2-dimensional contour

plot of reaction response and the 3-dimensional
surface plot for flow rate and catalyst height inter-
action and their effect on the degradation rate
response of DB15.
The interaction between flow rate and catalyst

height can be observed at the flow rate below 6 ml/
min. Further, the plots demonstrate that the in-
crease in catalyst bed height led to slightly
increasing the removal rate, due to increasing the
surface area, thereby, the availability of longer
contact time between nanoparticles and DB15, also,
the suitable height of catalyst resulting in a positive
motivation for the formation of $OH radicals
through the transferring of electrons from G-
Fe/Cu-NPs to hydrogen peroxide [45]. Further-
more, it is interesting to observe that at the
catalyst height in the range of (1.3e1.5 cm) the
removal efficiency was generally similar indicating
the uselessness of adding more catalyst than
these values, the reason could be ascribed to
continuous leaching of G-Fe/Cu-NPs. In addition,
the P-value and F-value in Table 5 proved that the

Fig. 16. Effect of interaction between flow rate and catalyst height on the
removal response at H2O2 ¼ 3.52 mmol/L, pH¼ 3, temperature¼ 30 �C,
and pressure ¼ atmosphere pressure (a) contour plot (b) 3D surface
response.

146 I.M. Luaibi et al. / Karbala International Journal of Modern Science 8 (2022) 134e153



flow rate has greater significance than catalyst
height.

3.3.3.3. Interaction effect of initial concentration and G-
Fe/Cu-NPs height. The plot in Fig. 17a for initial
concentration versus catalyst height represents the
contour design of 2-dimensional concerning
removal response. On the other hand, the 3-
dimensional graph illustrated in Fig. 17b refers to
the interaction impact of initial concentration with
catalyst height on the DB15 degradation rate
response.

3.3.4. Fixed-bed parameters estimation
Various breakthrough factors were determined in

the fixed-bed column to verify the performance of
the used column. Table A (in the appendix) sum-
marizes the breakthrough experimental parameters
obtained from the runs of the continuous degrada-
tion of DB15 by the Fenton-like process catalyzed by

G-Fe/Cu-NPs. All the parameters tabulated in Table
A indicated that as the flow rate and initial DB15
concentration increased, the removal rate
decreased. Also, increasing of the catalyst height
and decreasing flow rate led to an increase in the
empty bedtime EBCT. Notably, the saturation time
(ts) increased at the lower flow rates due to satura-
tion of the active sites on the G-Fe/Cu-NPs rapidly.
Besides, the exhaust time (te) enhanced with
decreasing the flow rate due to increasing the con-
tact time between DB15 particles with the G-Fe/Cu-
NPs active sites. On the other hand, the break-
through time (tb) was also influenced by the
increasing flow rates when it decreased significantly
due to reducing the time for diffusing dye molecules
into G-Fe/Cu-NPs sites [46]. Therefore, the high
level of flow rate led to lowering the total removal
performance. The same result was found by
Ref. [30].
As a result, Table 7 introduces the comparing re-

sults of previous studies and the present study for
the removal of dyes by continuous experiments.

3.3.5. Kinetic of degradation DB15 by Fenton-like
reactions in the batch mode
The kinetic of Fenton-like reaction can be

described as a very complicated process that con-
tains numerous steps that are usually fulfilled
simultaneously [47]. In the Fenton-like process, the
three kinetics models including zero-order, first-
order, and second-order [48] were studied to esti-
mate the DB15 degradation data.
Therefore, the removal kinetics of DB15 by the

Fenton-like process was studied at the various
experimental conditions such as concentration in
the range of (25e125 mg/L), H2O2 concentration
(1.7e5.28 mmol/L), the dosage of G-Fe/Cu-NPs
(0.4e1.6 g/L), pH (2e7), and temperature (20e50 �C)
respectively. The most studied experiments of DB15
degradation demonstrated that a greater number of
hydroxyl radicals were generated at the first stage of
the reaction precisely in the time range (0e15 min),
after that, the reaction progress continued slowly.
Thus, the first step of the process was considered in
the kinetic investigation. In order to investigate the
above kinetics, Table 8 shows the kinetic equations
were used:
The value of ko can be calculated from the slope of

the Ct against t, and the determination of the
regression coefficient is listed in appendix A (Table
B). It can be seen that the values regression coeffi-
cient R2 for all studied parameters of this model was
not high enough, indicating that the degradation of
DB15 was poorly fitted with the zero-order model.
On the other hand, k1 value can be obtained from

Fig. 17. Effect of interaction between initial dye concentration and
catalyst height on the removal response at pH ¼ 3, H2O2 ¼ 3.52 mmol/
L, temperature ¼ 30 �C, and pressure ¼ atmosphere pressure (a) contour
plot (b) 3D surface response.
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the intercept and slope of the natural logarithm of Ct

versus t. Table B shows the parameters of the first-
order along with the corresponding correlation co-
efficient for all factors. It can be observed that the
first-order has a good regression factor R2 for all
studied factors. For the second-order kinetic model,
the value of k2 can be calculated from the slope and
intercept of the 1/Ct versus t graph. It can be seen
from Table B that the linear fitting value of the
regression coefficient R2 for second order is higher
than those for zero-order and first-order, which

indicates that the second-order kinetic model is the
fitted model for DB15 kinetic degradation by Fen-
ton-like process catalyzed by G-Fe/Cu-NPs. Further,
Fig. 18 shows the second-order kinetics for all
studied parameters.
As shown in Table B that increasing of initial DB15

concentration from (25e125 mg/L) led to a decrease
in the rate (0.152e0.004 M�1.min�1) which was
attributed to lowering the hydroxyl radicals within
increasing the DB15 concentration. Besides, as the
concentration of H2O2 increased from (1.7e3.52

Table 8. Kinetic equations.

Model Equation Parameters

Zero-order Ct ¼ Co e ko t ko: zero-order rate con-
stant (M. min�1).
t: time (min)

First-order ln Ct ¼ ln Co e k1 t k1: first-order rate constant
(min�1)

Second-order [1/Ct] e [1/Co] ¼ k2 t k2: second-order rate con-
stant (M�1. min�1)

Table 7. Results of a previous and present studies for the removal of dyes by continuous experiments.

No. Dye Optimum factors and major results References

1 methyl orange Dye conversion ¼ 99.4% [49]
Flow rate ¼ 4 ml/min
Catalyst amount ¼ 3.5 g
Co ¼ 50 mg/L
H2O2 ¼ 17.6 mM
Fixed-bed height ¼ 80 mm
Fixed-bed diameter ¼ 20 mm

2 Benzylformic acid Flow rate range ¼ 2.5e3.5 ml/min [30]
Bed height ¼ 10e20 cm
Co. ¼ 9.53e13.47 mg/L
Fixed-bed height ¼ 30 cm
Fixed-bed diameter ¼ 1.2 cm

3 Methylene blue Efficiency ¼ 70% [50]
Flow rate range ¼ 10 ml/min
Catalyst height ¼ 2 cm
Co ¼ 100 mg/L
H2O2 ¼ 0.1633 M
Fixed-bed height ¼ 15 cm
Fixed-bed diameter ¼ 2.5 cm

4 Raw effluent from a textile mill Efficiency ¼ 70% (Continuous), 100% (Batch) [51]
Flow rate ¼ 300 L/h
Fixed-bed height ¼ 20 cm
Fixed-bed diameter ¼ 4 cm
Dose ¼ 0.52 cm

5 methyl green dye Efficiency ¼ 52.94% [28]
Flow rate ¼ 0.8 ml/min
Fixed-bed height ¼ 35 cm
Fixed-bed diameter ¼ 0.7 cm
Bed height ¼ 6 cm
Co ¼ 20 mg/L

6 Direct blue 15 Efficiency ¼ 56.35% Continuous (98.7% Batch) Present study
Flow rate ¼ 2.13 ml/min
Catalyst height ¼ 1.26 cm, (0.7 g)
Co ¼ 26.16 mg/L, (100 mg/L)
H2O2 ¼ 3.52 mM
Fixed-bed height ¼ 33 cm
Fixed-bed diameter ¼ 2.2 cm
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mmol/L) the removal of DB15 increased and that
ascribed to increase the $OH. In contrast, the excess
amount of peroxide (from 3.52 to 5.28 mmol/L) led
to decrease in the rate constant for the reason of
$OH scavenging. Additionally, the high amount of
catalyst results in an increase in the degradation rate
due to an increase in the concentration of $OH.
Otherwise, high G-Fe/Cu-NPs concentrations had
resulted in a decrease of degradation rate, this was
attributed to scavenging the $OH by the high

amount of Feþ2 [38]. Further, the second-order ki-
netic rate decreased from (0.152e0.004 M�1. min�1)
as the pH increased from (2-7) due to the charges
attraction between G-Fe/Cu-NPs and the DB15
molecules at low pH resulting in an easy-conducted
removal reaction [7]. Furthermore, the k2 increased
by increasing the temperature where the reaction
between G-Fe/Cu-NPs and H2O2 increased with
higher temperature thereby the formation of $OH
increased [7].

Fig. 18. Second-order kinetic analysis for (a) initial DB15 concentration, (b) H2O2 concentration, (c) G-Fe/Cu-NPs doses, (d) pH, (e) temperature, and
(f) co-existing inorganic salts.

I.M. Luaibi et al. / Karbala International Journal of Modern Science 8 (2022) 134e153 149



4. Conclusions

This study introduces a promising approach to
synthesis bimetallic iron/copper nanoparticles with
high performance to remove dyes from wastewater
by Fenton-like processes. Iron/copper nanoparticles
were prepared by green synthesis using the extracts
of ficus leaves and employed to remove the direct
blue 15 dye. The G-Fe/Cu-NPs were characterized
using SEM, zeta potential, XRD, AFM, BET, EDAX,
and FT-IR. Therefore, the good stable, amorphous,
rounded and shaped like spherical of G-Fe/Cu-NPs
were found with the size range 32e59 nm, and the
surface area was 4.452 m2/g. Then, the G-Fe/Cu-NPs
was performed with a complete batch and contin-
uous processes including optimizing all required
parameters. As a result, the G-Fe/Cu-NPs shows a
positive effect in term of the use as a heterogeneous
catalyst to remove DB15 dye where the final
removal efficiency of DB15 at the optimum factors
was 98.7% obtained by batch experiments and
56.35% with the continuous mode. In the batch
study, the best value of the reaction parameters
were (initial DB15 concentration ¼ 100 mg/L, H2O2

concentration ¼ 3.52 mM, pH ¼ 3, catalyst
dose ¼ 0.7 g/L, and temperature ¼ 50 �C) along with
120 min contact time. Meanwhile, the continuous
parameters were studied using the Box-Behnken

design and found that the optimum values of flow
rate, initial dye concentration, and G-Fe/Cu-NPs
depth were 2.134 ml/min, 26.16 mg/L, and 1.42 cm
respectively. Moreover, the model equation for the
removal of dye in the fixed-bed column was
expressed by the equation:

y¼76:479�6:875X1�0:463X2þ2:833X3

þ0:022X1X2þ0:875X1X3þ0:04X2X3

þ0:216X1
2þ0:0009X2

2�2:167X3
2

Finally, the kinetic study exhibited that the
second-order model was well fitted for the experi-
mental data in the batch experiments.
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Appendix.

Table A. The breakthrough experimental parameters

Run no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Parameter
Flow rate (ml/min) 10 10 10 10 6 6 6 6 6 6 6 2 2 2 2
Initial concentration (mg/L) 125 25 75 75 75 75 75 25 25 125 125 125 25 75 75
Catalyst height (cm) 1 1 1.5 0.5 1 1 1 0.5 1.5 1.5 0.5 1 1 0.5 1.5
Breakthrough time tb (min) 5.02 5.1 5 5.1 8.5 8.9 11.5 8.8 8.7 9.3 9 25.5 25 26 30
Exhaust time te (min) 34 35 34 48 76 84 86 80 62 70 92 150 135 140 125
Saturation time ts (min) 9.8 12.5 11 1.5 24 27 28 31 27 22 20 47 76 59 56
Volume of effluent Veff (ml) 340 350 340 480 456 504 516 480 372 420 552 300 270 280 250
Maximum column capacity qtotal (mg) 9.86 2.68 8.25 7.88 7.48 12.15 12.6 4.04 3.11 16.5 11.85 9.53 3.08 6.69 6.94
Total quantity of dye fed into

column mtotal (mg)
34.2 7.49 25.5 36 23.7 37.8 30.6 10.4 7.15 52.5 54.49 30.4 5.47 15.9 15.5

Removal efficiency RE% 28.8 35.7 32.4 22 31.6 32.14 41.2 38.8 43.6 31.4 21.74 31.3 56.3 42.1 44.8
Volume of catalyst (cm3) 3.8 3.8 5.7 1.9 3.8 3.8 3.8 1.9 5.7 5.7 1.9 3.8 3.8 1.9 5.7
Height of mass transfer zone LMTZ (cm) 0.852 0.854 1.279 0.45 0.89 0.89 0.87 0.45 1.29 1.3 0.451 0.83 0.82 0.41 1.14
Empty bed contact time EBCT (min) 0.38 0.38 0.57 0.19 0.63 0.63 0.63 0.32 0.95 0.95 0.317 1.9 1.9 0.95 2.85
Capacity of bed at break time qb (mg/g) 2.863 0.619 1.219 2.96 0.99 1.9 2.32 1.06 0.41 2.31 4.949 2.93 0.58 2.74 1.52
Volume treated at break time Vb (ml) 50.2 51 50 51 51 53.4 69 52.8 52.2 55.8 54 51 50 52 60
Bed volume 13.21 13.42 8.773 26.9 13.4 14.05 18.7 27.8 9.16 9.79 28.43 13.4 13.2 27.4 10.5
The superficial velocity Uf (cm/min) 2.63 2.63 2.63 2.63 1.58 1.579 1.58 1.58 1.58 1.58 1.579 0.53 0.53 0.53 0.53
Residence time tr (min) 0.38 0.38 0.57 0.19 0.63 0.63 0.63 0.32 0.95 0.95 0.317 1.9 1.9 0.95 2.85
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