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Abstract

The current research employs an encapsulation of dibutyl phthalate (DBP) as a corrosion inhibitor in situ polymer-
ization using a sonochemical method to form nanocapsules. The prepared nanocapsules were characterization by using
Malvern particle size, Fourier transforms infrared spectroscopy (FTIR), Scanning electron microscope (SEM) and
Transmission electron microscope (TEM), and thermal and mechanical test to check particle size, morphology, and
stability of nanocapsules. Later prepared DBP nanocapsules were incorporated in standard epoxy coating to check its
corrosion inhibition resistance. The results show that nanocapsules are spherical, with an average particle size of 337 nm.
Scratch nanocapsules epoxy coating shows improves coating resistance after 1 day immersion, the values shown for 10%
nanocapsules-based coating 8.62 £ 1010 while for scratch standard coating is 2.41 £ 103. Overall thermal and mechanical
properties for nanocapsules show better resistance, and electrochemical characterization for scratch nanocapsules coating
shows better results than scratch epoxy coating.

Keywords: Dibutyl phthalate, In-situ polymerization, Ultrasound-assisted, Corrosion inhibition coating, Electrochemical
analysis

1. Introduction

P roblem-related corrosion occurs in every part of
the industry, mainly in the oil, pipe, and auto-

motive sectors, with repairing corrosion costs across
$2.5 trillion [1,2]. The cost of corrosion repairing in
India crossed 4e5% of total GDP, equivalent to $70
billion [2,3]. Organic coating develops aesthetic
appearance and protective properties to minimize
the problem caused by corrosion [3e8]. The
researcher concentrated on developing a corrosion
inhibitor blend polymer as a protective coating.
Furthermore, they developed a polymer or com-
posite which shows barrier properties against
environmental oxygen or moisture and self-repair-
ing properties [9e12]. However, such coatings have
limitations, so, currently, the microencapsulation

technique was used to create an innovative poly-
meric material for corrosion inhibition [12e14].
Microencapsulation can be accomplished with
various techniques, including interfacial polymeri-
zation, coacervation/phase separation, solvent
evaporation, suspension cross-linking, emulsion
polymerization, and others, such as the layer-by-
layer (LBL) method [10,11,15]. Self-healing poly-
meric materials using microcapsules/nanocapsules
are a prime example of such a technique [3,12,13,16].
These innovative polymeric coatings, such as
microvascular and molecular epoxy-based smart
coatings containing compartmentalized solid heal-
ing agents, were primarily aimed at the recovery of
the mechanical properties of the damaged polymer
for a short period [9,10]. Despite these flaws in the
current system, the simple design and ease of
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fabrication materials may make them suitable for
developing a new application, such as coatings and
elastomer self-healing material [3,9,13,16]. Accord-
ing to the available literature, smart coatings design
is desirable for long-term and efficient corrosion
protection. However, the majority of the research
was conducted in laboratories, often using expen-
sive or toxic chemicals, and was primarily con-
cerned with self-healing chemistry [9e11] and
DCPD, epoxy resin, edible oil, coreeshell healing
agent [17e20].
It was also reported that ceramic or oxide-based

nanocontainers were used in the solegel coating
because of their excellent strong bonding with the
host matrix [21e27]. In the case of marine applica-
tions, the coating thickness should be greater than
20 mm. A nanosize capsule was recommended for
the low film thickness coating to solve the problem.
Nanocapsules base coating improves wet adhesion,
corrosion resistance, and healing performance
[28e34]. For the preparation of nanocapsules, most
researchers now use the ultrasound approach
technique. The ultrasound phenomenon is charac-
terized by the formation and dissolution of vapor
cavities in aqueous media. The acoustic field is
created by ultrasonic waves passing through the
medium, resulting in a fine dispersion of the two
immiscible liquids. The fine dispersion of two pha-
ses creates too much-localized turbulence, shatter-
ing primary droplets into nanoscale size [35e38].
In this direction, we worked on the nanosize

capsules and their preparation for solvent-free self-
healing coating. The ultrasound-assisted encapsu-
lation techniques were used to incorporate the
epoxy coating for marine application. In some ways,
the approach to resolving corrosion issues was
synthesizing nanocapsules using ultrasound, cata-
lyst-free intelligent species (dibutyl phthalate (DBP)
as plasticizer) in the urea-formaldehyde shell. This
approach newer tried by research to date. DBP and
ethanol create the ideal conditions for intelligent
corrosion inhibition thermosetting matrix. When
the coating ruptures, the polymeric urea-formalde-
hyde shell, which already softens with DBP as a
plasticizer, releases the core DBP with ethanol.
These core materials soften the epoxy-amine by
wetting and swelling the bulk polymer. When the
ethanol in the coating evaporates, the crack coating
forms another layer of epoxy-amine polymerized
film. Because dibutyl phthalate has a higher mo-
lecular weight, it has less volatility and permeability
through the shell wall, resulting in capsules with
more excellent stability [39e43]. Electrochemically
active compounds cause corrosion inhibition in the

DBP, such as fatty acid, phenolic, and ketones
groups.
Further, it also contains oxygen with aromatic

compounds in a backbone structure with corrosion
inhibition properties. By using in-situ emulsion
polymerization, these aspects, dibutyl phthalate and
ethanol were encapsulated in a urea-formaldehyde
shell. Nanocapsules were prepared and added to a
coating formulation for electrochemical analysis
using Bode and Nyquist plots.

2. Material and methods

2.1. Materials

Formaldehyde, ammonia chloride, urea, polyvinyl
alcohol, and resorcinol were purchased from M/s
Alfa-Aesar, India. Industrial epoxy resin (Epoxy
equivalent weight 187 g/eq, 70% solid content),
hardener (60% solid content and Viscosity 2000 cP),
and reactive diluents (Epotec RD 108) were obtained
from M/s Pidilite Ltd (India), whereas; Sorbitan
monooleate (Span 80), Dibutyl phthalate (LR Grade)
was obtained from SigmaeAldrich. DM water was
used during all the experimentations.

2.2. Preparation methods of nanocapsules

2.2.1. Preparation of prepolymer urea-formaldehyde
solution
2.5 g of urea was liquefied in 5 g of 37% formalin.

Then pH of the solution was adjusted 8 by the
addition of triethanolamine. Then Dakshin Ultra-
sound (20 kHz with a power of 140 W) mixture
sonicated for 20 min at room temperature.
Furthermore, 20 ml water was added to the solution
to form a prepolymer urea-formaldehyde solution.

2.2.2. Nanocapsules fabrication
As reported in our previous work, Uday et al. [38],

a modified procedure for fabrication of nano-
capsules as follows: for preparation of surfactant
solution, we took span 80 dissolves in 20 ml of water
and then added in prepared 5% PVA solution
(30 ml). Further Prepolymer UF solution was added
to this surfactant solution and sonicated for 5 min.
After some time, a 5 ml of dibutyl phthalate solution
in 10 ml ethanol was gently added for encapsulation
in emulsion and sonicated 20 min until homoge-
neous stabilization occurs. Later sonication was
stopped, and the pH was accustomed to 3.5 with
acid addition. After pH adjustment, the emulsion
was stirred and sonicated for 40 min at 50 �C still the
reaction stage was completed. The nanocapsules
were filtered and cleaned when the emulsion had
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cooled to room temperature. These nanocapsules
were dried overnight at 45 �C and stored in the
airtight container for future usage.

2.3. Characterization of nanocapsules

A Field emission scanning electron microscope
(FESEM) and a transmission electron microscope
(TEM) were used to investigate the structural
morphology of nanocapsules. A particle size
analyzer was utilized to understand the size distri-
bution of nanocapsules. The Fourier transform An
infrared spectrophotometer with a wavelength
range of 4000-400 cm�1 was used to identify the
functional group contained in nanocapsules. A dif-
ferential scanning calorimeter was used to test the
thermal stability of nanocapsules throughout a
temperature range of 30e350 �C. Stress generation
or capsule rupture were used to test the stability of
nanocapsules concerning agitation time, speed, and
different viscosity epoxy resin solutions.

2.3.1. Surface preparation and coating formulation
and their corrosion performance on mild steel surfaces
To ensure a better bond among the coating and

substrate, the mild steel surface was dipped in soap
solution to remove any lubricant oil and dirt present
on the panel surface. This treated surface also con-
tributes to the final coating's aesthetic properties. To
create a corrosion-inhibiting coating, nanocapsules
were added to an epoxy solution along with wetting
and dispersant additives. The polymer to hardener
ratio was kept constant at 4:1. The amine hardener
was mixed into the nanocapsules epoxy homoge-
neous solution before applying it to the steel sur-
face. Nanocapsules in three concentrations, 2.5, 5,
and 10%, is added to the coating formulation. The
coating was applied to the mild steel surface using a
brush and allowed to dry for 3e4 days before the
analysis. The dry thickness was observed to be
average 120 ± 5 mm. Electrochemical measurements
of corrosion inhibition performance for Bode and
Nyquist plots were performed on scratch-coated
panels with and without nanocapsules. Coated
panels were immersed in 3.5% salt solution for 14
days for the Bode and Nyquist plot, and the
impendence was measured in the uniform time in-
terval (or 1 day and 14 days immersion) with the
frequency of 105e 10�2 Hz.

3. Results

The present study used sonicated in-situ emulsion
polymerization to create dibutyl phthalate (DBT)
nanocapsules with a polymeric shell of urea and

formaldehyde. A liquid core was enclosed within
this polymeric shell, generated under acidic cir-
cumstances. Polymerization was carried out with
urea and formaldehyde, with the reaction mass's
molecular weight increasing as polymerization
progressed. The urea-formaldehyde polymer had a
hydrophilic bulk at the end of the polymerization
reaction. This polymer is recovered from an
aqueous phase adsorbed on the hydrophobic phase,
forming a thick polymeric shell on the emulsified
core. Fig. 1 shows fabrication and the schematic DBP
nanocapsules for corrosion inhibition.

3.1. Morphology and size analysis of nanocapsules

We examine the capsule encapsulation stability,
size, and aggregation in an epoxy matrix and
morphology of shell material thickness using
FESEM and TEM images. Initially, dried gold
sputter nanocapsules samples were prepared on
glass slides for FESEM measurements at 5.0 kV. The
morphology of nanocapsules with a monodisperse
size distribution is depicted in Fig. 2. Nanocapsules
were discovered to be spherical, with thick poly-
meric shells and corrosion inhibitors encapsulated
(as demonstrated in TEM and FESEM image). As
shown in Fig. 2, the capsule has two layers: one for
the shell and one for the smooth inner layer where
dibutyl was protected as the core. Using image j
software for FESEM image, the average thickness of
the surface inner wall is 250e270 nm, while the
thickness of the outer surface is 80e100 nm. With
the optimized surfactant concentration, FESEM
investigated clumping problems caused by low
surfactant concentration, and less aggregation was
observed in the FESEM and TEM (average particle
size in range 330e350 nm) as shown in Fig. 2.
Capsules were processed using the optimized
capsule preparation process and were dispersible in
epoxy, as shown in Fig. 3. The visual image of stable
capsules revealed the same behavior as the stability
of nanocapsules in the dispersion phase. The
average capsule size was 337 nm, and the polymer
dispersity index was 0.47. Our previously published
article shows that increasing the sonication time can
reduce particle size compared to the conventional
agitation method [38].

3.2. FTIR analysis of nanocapsules

Figure 4 depicts an FTIR analysis of UF resin and
nanocapsules. It was discovered that the majority of
the amide group was identified at 2925 cm�1, C¼O
bond at 2353 cm�1, CeH bending at 1463 cm�1,
CeN stretching at 1275 cm�1, CeO stretching at
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Fig. 2. FESEM, TEM, and Particle size analysis of nanocapsules based on DBP (Dibutyl phthalate).

Fig. 1. Graphic demonstration of the technique for production of nanocapsules.
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1193 cm�1, and C¼C bending from 975 to 751 cm�1.
The characteristic peaks indicate that dibutyl
phthalate has been encapsulated in a polymeric
shell composed of urea-formaldehyde.

3.3. Thermal analysis of nanocapsules

Figure 5 shows the results of a DSC analysis to
determine the thermal stability of nanocapsules in
the range of 30e600 �C with a heating rate of 10 �C/
min. Fig. 5 shows two endothermic and one
exothermic peak for UF resin, as well as an

exothermic peak for nanocapsules. Water loss is
observed at 100 �C, sales, while the second peak is
observed at 150e300 �C, corresponding to polymeric
shell degradation. The endothermic peaks represent
the melting of the polymeric shell. Whereas for
nanocapsules, the elevation decreases between 200
and 300 �C, indicating that dibutyl phthalate melts
between 200 and 270 �C and loses its contents at
200 �C as reported by Jackson et al. [39] (Fig. 5). This
test demonstrates that the thermal stability of
dibutyl phthalate-based nanocapsules is superior to
that of the previously reported healing agent [38].

Fig. 3. SEM image of nanocapsules (DBP) dispersed in the epoxy-amine coating.

Fig. 4. FTIR spectra analysis for a) DBP, b) UF resin, and c) DBP Nanocapsules.
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The thermo-gravity analysis of nanocapsules and
urea-formaldehyde is shown in Fig. 6. It was
discovered that up to 100 �C, both cases have a
2.91% loss of water molecules. Later, as the tem-
perature rises to 200 �C, the nanocapsules have a
slight mass loss. At 300 �C, a large portion of the
urea-formaldehyde weight loss occurred, i.e., nearly
86.20% weight loss. At the same time, DBP

nanocapsules lose slightly less weight (around 21%)
at the same temperature. Weight loss is observed to
be less as the temperature rises to 450 �C when
compared to the UF shell. This occurred due to
dibutyl phthalate (DBP) adhering to the surface of
urea-formaldehyde, which softens the nano-
capsules. Finally, the residual mass of DBP nano-
capsules is higher when compared to the UF shell

Fig. 5. DSC analysis for DBP nanocapsules and UF resin.

Fig. 6. Thermogravimetric analysis (TGA) of nanocapsules and Urea-formaldehyde.
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material. This demonstrates that the DBP nano-
capsules have good thermal properties.

3.4. Mechanical stability of nanocapsules

Figure 7ae7(c) shows the mechanical stability of
nanocapsules as a function of agitation speed, time,
and epoxy solution viscosity. Agitation caused much
shear stress during nanocapsules dispersion in
coating preparation. As a result, nanocapsules must
have a high mechanical strength to withstand stress
to remain intact. During the dispersion and

application of paint, these nanocapsules should not
break. It is predicted that capsules get ruptured if
the covering film is damaged at that time, enabling
healing material to escape. Three critical parame-
ters, I determine mechanical stability) the viscosity
of the paint, ii) the agitator speed (rpm), and iii) the
agitation time. Unbroken nanocapsules are
observed at a speed of 200 rpm on the agitator. The
rupture of nanocapsules increases as the agitation
speed increases. It shows that when the agitation
speed is near 500 rpm, 70e75% of the nanocapsules
rupture. The mechanical stability of nanocapsules is

Fig. 7. Mechanical stability of nanocapsules concerning a) agitation speed, b) Time and c) Viscosity.
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Fig. 8. AeB: Bode plot for the EIS data for samples immersed in 3.5 wt % NaCl aqueous solution A) After 24 h B) After 14 days.

Table 1. EIS parameter data in terms of coating resistance and coating capacitance.

Name of system Period day of immersion Coating capacitance (Cc) Coating resistance (Rc)

Scratch Std epoxy amine coating 1 day 5 � 10�5 2.41 � 103

14 days 3.8 � 10�5 7.54 � 101

2.5% nanocapsules in Std epoxy coating 1 day 1.94 � 10�6 4.72 � 106

14 days 5.95 � 10�6 1.52 � 104

5% nanocapsules in Std epoxy coating 1 day 1.90 � 10�8 4.33 � 108

14 days 2.5 � 10�7 1.93 � 104

10% nanocapsules in Std epoxy coating 1 day 2.4 � 10�10 8.62 � 1010

14 days 1.7 � 10�10 2.1 � 105
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affected by continuous agitation. Fig. 7c shows
continue agitation has no effect on mechanical stress
on nanocapsules (100 min).
Furthermore, this continuous agitation for 4 h

results in only 15e20% ruptures of nanocapsules at
a speed of 200 rpm. However, when nanocapsules
were dispersed in paint formulation at the agitation

of around 200 rpm for 30 min, uniform distribution
was observed with no rupture of nanocapsules.
However, as the viscosity of the solution increased,
high shear stress had a substantial influence on the
solidity of the nanocapsules. It finds that at a solu-
tion viscosity of 250 s, only 6% of the nanocapsules
found ruptured. The images of the coating were

Fig. 9. Curve fitting Bode plot a) After 1st b) After 14th days.
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captured using optical microscopy. Compared to
previously reported literature, it demonstrates that
70e75% of capsules were ruptured [28].

3.5. Nanocapsules coating electrochemical
characterization

Corrosion on surface coating happens due to
moisture in the environment and oxygen, causing
film rupture. It may be possible to repair the rupture
film using a nanocapsule-based coating. To under-
stand the effect of nanocapsules on corrosion in-
hibitors, we performed an electrochemical analysis.
For EIS measurement, Scratch coated Panels
(120 mm dry thickness) were kept in a salt solution
for 1 and 14 days’ time intervals [44e47]. All EIS
measurements for scratch epoxy coating and
different DBP nanocapsules coating were executed
in triplicate. EIS results were formfitting to circuit
model using Ivium soft with chi-square value
decrease to 10�4 or less than to achieve. The chi-
square value for standard epoxy coating is
2.16 � 10�1. The typical six short frequency mea-
surements in the plateau area were used to create
the coating resistance layer acquired from the Bode
plot. This parameter responds to the existence of
ions captivated by the coating film from the nearby
environs, indicating the presence of a protective

coating. The layer has a higher impendence value
than the conducive substance since all polymeric
coatings are non-conductive. This coating also cre-
ates a barrier between the coating surface and the
electrolyte, which helps to prevent corrosion. A
high-performance layer with exceptional barrier
qualities serves as an almost perfect capacitor when
exposed to an electrolyte for the first time. At this
point, coating resistance is exceedingly high.
Figure 8A and 8B depict the Bode plot in terms of

impendence versus frequency. This figure shows
that initially, scratch epoxy after 1 day immersion
provided higher resistance log ǀZǀ ¼ 3.7 than 14 days
immersion log ǀZǀ ¼ 2.3 as coating get swelling due
to adsorption ions through the surface and start the
corrosion process. Furthermore, after 1 day and 14
days of immersion (Value for DBP nanocapsules),
Scratch DBP nanocapsules epoxy coating out-
performs scratch epoxy coating. This is due to
dibutyl phthalate, which acts as a self-healing agent,
plasticizes the capsules, and prevents any nearby
ions from adsorbing onto the surface. After 14 days
of immersion, the OCP value of scratch epoxy
decreased from �0.437 to �0.57, while the value of
DBP nanocapsules decreased from �0.160 to �0.285.
To ensure that the data in Table 1 is the same,
graphs in terms of coating resistance (Rc) and
coating capacitance were made. The initial coating

Fig. 10. Equivalent circuit fit impedance data for Bode plot a) Scratch nanocapsules and b) Scratch epoxy coating.
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resistance (Rc) value for nanocapsules coating is
4.72 � 106 cm2, but as immersion time increases, Rc

increases slightly to 7.54 � 101 cm2. However, in the
absence of nanocapsules scratch coating, the coating
resistance value after 14 days immersion is more
significant than after 1 day immersion for scratch
epoxy coating. The results show that the coating
resistance value gradually decreases while

maintaining a high level of corrosion inhibition
performance.
Again, the addition of such nanocapsules im-

proves coating resistance and provides a strong
barrier between moisture and the coating substrate.
After 1 day immersion, the values shown in Table 1
for nanocapsules-based coating with different con-
centrations (2.5, 5, and 10%) are 4.72 � 106,

Fig. 11. Nyquist plot for corrosion inhibition nanocomposite coating based DBP I) after 1 day immersion and II) after 14 day immersion.
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4.33 � 108, and 8.62 � 1010, respectively. After 14
days of immersion, these values were reduced to
1.52 � 104, 1.93 � 104, and 2.1 � 105 for 2.5, 5, and
10% nanocapsules. According to the current find-
ings, we have superior impedance for nanocapsules
than standard coating.
Two-phase maxima were observed in Fig. 8A-B

phase angle, the major one at lower frequencies cor-
responding to the protective layer and the other as a
shoulder at intermediate frequencies corresponding

to the electric double layer. The phase angle values
range from 120 to 60�, indicating that the coating acts
as a protective agent. This behavior suggests that the
coating has improved barrier properties and func-
tions as an insulator. Compared to nanocapsules-
based coating, the scratch epoxy amine coating has a
phase angle of 10�. The phase angle is between 130
and 60�. After 14 days of exposure in a corrosive
environment, the impedance values of nanocapsules-
based coating show the best corrosion inhibition in
the low-frequency range.
The Curve fitting for individual bode plot of

scratch epoxy coating and DBP nanocapsules
coating after 1 and 14 day immersion as shown in
fig. 9a and b, respectively (IviumSoft show individ-
ual curve fitting). Fig. 10 show equivalent circuit fit
impedance data for Bode plot a) Scratch nano-
capsules and b) Scratch epoxy coating.

Fig. 12. Suggest equivalent circuit diagram for coating along with equivalent circuit fitting.

Table 2. Fitting parameter of the suitable coating obtained from EIS
studies.

Par Fixed Value Error% Min Max Unit

Par 1 R1 1.160 Eþ04 1.44 1.0E�4 1.0 Eþ13 Ohm
Par 2 R2 4.839 Eþ10 02.23 1.0E�4 1.0 Eþ13 Ohm
Par 3 R3 4.089 Eþ02 0.100 1.0E�4 1.0 Eþ13 Ohm
Par 4 C1 5.786E�10 12.79 1.0E�13 1.0 Eþ1 F
Par 5 C2 5.836E�08 10.00 1.0E�13 1.0 Eþ1 F

Fig. 13. Immersion test for corrosion inhibition coating based nanocapsules.
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Figure 11 depicts the Nyquist plot results for
coating with and without nanocapsules after 1 day
and 14 day contact in 3.5% Salt solution (see Fig. 11).
As illustrated in Fig. 12, an appropriate electrical
equivalent circuit was chosen to calculate and
examine the impedance of coated substrates. The
charge transfer resistance (R2) is parallel to the
electrical double layer capacitance (CPEedl), which is
in series with the coating resistance in this example
(Rcoat). The Ccoat represents coating capacitance
(Cc). Because the experimental data and the model
have a high level of agreement. Nyquist plot sub-
sequently 24 h of acquaintance, DBP nanocapsules
coated surfaces displayed maximum impedance
values in the low-frequency region, representative
maximum corrosion inhibition for DBP nano-
capsules coated substrates than scratch epoxy
coating. As shown in the figure, scratch epoxy
coating shows metal oxide-interface and starting
corrosion mechanism process, whereas DBP nano-
capsules show double layer coating that resists the
corrosion process. However, the coating resistance
of DBP nanocapsules coating reduced after 14 days
of disclosure but still more resistance than scratch
epoxy coating (after 24 h exposure, as shown in
Fig. 11a). This possibly will have happened to owe to
cost of barrier property of coatings since the
reduction of coating pore resistance and increase of
Cc can be recognized to the diffusion of ions of salt
and water into the coating layer. This modification
shows corrosion of the coatings barrier in the 3.5%
salt solution immersion. The fitting result of Nyquist
as shown in Table 2.

3.6. Self-healing study for corrosion inhibition
process

The visual change is observed after immersing the
coated panel in a salt solution. Monitor this process;
keep coating panels in a salt solution for 20 days.
Fig. 13 depicts standard coating panels that have
been exposed to start the corrosion process, whereas
nanocapsules-based coating formulations have not
yet rusted. It was exposed that nanocapsules were
the primary dynamic mechanism to improve
corrosion inhibition. The key reason for nano-
capsules covering such corrosion inhibition perfor-
mance is the release mechanism of dibutyl
phthalate from nanocapsules. This dibutyl phthalate
produces the swelling polymeric shell by evapo-
rating alcohol from dibutyl phthalate, which forms
an external layer on the coating substrate and re-
pairs the damage site while keeping the same me-
chanical properties as the initial coating (see Fig. 14).

4. Conclusion

This experiment shows that dibutyl phthalate
(DBT) can be successfully encapsulated in a poly-
meric shell (PUF) in the form of nanocapsules using
ultrasound. The resulting nanocapsules have a
spherical shape and a thick exterior wall thickness
of Poly (UF) shell. The particle size distribution is
narrow, with an average mean size of 337 nm. Later,
prepared nanocapsules with concentrations (2.5, 5,
and 10%) encapsulated in epoxy-amine coating
formulation provide better corrosion inhibition

Fig. 14. FESEM image of scratch nanocapsules coating and healing nanocapsules coating.
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performance than without nanocapsules coating, as
demonstrated by the Bode and Nyquist plot. As 10%
nanocapsules provide better coating resistance than
5 and 2.5% nanocapsules, however, optimum 5%
nanocapsules still give the best electrochemical
analysis than standard epoxy coating. With a 5%
Concentration of nanocapsules-based polymeric
shell corrosion inhibition outperformed neat poly-
meric coatings.
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