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Abstract Abstract 
In this research work, a pulsed Nd-Y ْAG laser having a wavelength of 1064 nm and energy (400-700 mJ 
(has been utilized as a source in an induced breakdown spectroscopy (LIBS) experiment to determine the 
density of electron and the tem-perature of Ag-plasma. Two forms of silver (as a bulk and as a 
compressed nano powder) have been used as targets in the LIBSs setup. The aim of the present work is 
to study the impact of target properties and laser energy on the plasma fea-tures formed by the 
interaction between a pulsed laser and these two forms of silver. The structural properties have been 
characterized via X-ray Diffraction (XRD), Scanning Electron microscopy (SEM) and Energy Dispersed X-
Ray Spec-troscopy (EDX). For the two forms of silver, the electron density and the temperature increased 
with the laser energy rise from (400 mJ) to (700 mJ), and the Ag samples in the form of nano particles 
manifested enhanced LIBS signals. More-over, the LIBS technique can give complement information to 
other standard techniques for the material's diagnosis. 
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ORIGINAL ARTICLE

Structural and Spectroscopic Analysis for Silver Bulk
and Nanoparticles

Hajir M. Fadhil*, Khaleel I. Hassoon, Hyder A. Salih

a Department of Applied Science, University of Technology, Baghdad, Iraq

Abstract

In this researchwork,apulsedNd-Yaglaserhavingawavelengthof1064nmandenergy(400e700mJ(hasbeenutilizedasa
source inan inducedbreakdownspectroscopy (LIBS)experiment todetermine thedensityofelectronand the temperatureof
Ag-plasma. Two forms of silver (as a bulk and as a compressed nano powder) have been used as targets in the LIBSs setup.
The aimof thepresentwork is to study the impact of target properties and laser energy on theplasma features formedby the
interactionbetween apulsed laser and these two formsof silver. The structural properties havebeen characterized viaX-ray
Diffraction (XRD), Scanning Electron microscopy (SEM) and Energy Dispersed X-Ray Spectroscopy (EDX). For the two
formsof silver, theelectrondensityand the temperature increasedwith the laserenergy rise from(400mJ) to (700mJ), andthe
Ag samples in the form of nano particles manifested enhanced LIBS signals. Moreover, the LIBS technique can give com-
plement information to other standard techniques for the material's diagnosis.

Keywords: Ag plasma, Ag NPs plasma, X-ray diffraction, SEM, LIBS, EDS, Optical emission spectroscopy, Boltzmann
method, Stark broadening, Electron density, Electron temperature

1. Introduction

L IBS is a commonly used atomic emission
spectroscopic method to analyze the physical

and chemical properties of a variety of materials,
such as metals, plastics, minerals, biological tissues,
aerosols, liquids, and others [1,2]. Commonly, the
LIBS technique uses one or more high-powered
laser pulses to ablate a portion of the specimen
surface, resulting in the production of temporary
plasma [3]. The generated plasma consists of neutral
atoms, ions and irradiation [4]. Properties of laser-
created plasma are strongly influenced by a number
of fundamental variables, including laser power,
pulse duration, laser wavelength, and target mate-
rial [5]. Also, LIBS is an interesting method when
compared to many other methods of elemental
analysis because of its fast reaction, high sensitivity,
real-time, and noncontact properties [6]. In this
technique, the emitted radiation is linked to the
chemical composition of the sample and is

monitored using a suitable detecting device (wave-
length selector and detector) [3]. Also, the LIBS
technique provides a number of advantages for
sample analysis, including being fast, less
damaging, cost-effective, and environmentally
friendly, requiring little to no sample preparation,
and allowing to a simultaneous multi-element
detection [7]. It can be created as a durable and field
portable [8]. Recently, LIBS has been utilized in a
diversity set of applications, such as material anal-
ysis, ecological monitoring, forensic medicine, bio-
logical identification and even the description of
fossils and the art works [9,10]. Researchers have
attempted to develop LIBS technology, and they
have lately utilized nano materials, which have
become the focus of research because of their
unique features from the bulk materials [11,12]. A
solid-state Nd:YAG laser is typically employed for
LIBS experiments because it is dependable, small,
low-cost, and simple to use the source of laser pul-
ses [13].
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Analysis of a bulk or a nanostructure material by
LIBS provides important information that is com-
plementary to various spectroscopic and micro-
scopic methods, such as crystallite size, purity, and
morphology. In the LIBS as a spectroscopic tech-
nique, the information that provides can be corre-
lated with the other diagnosis techniques, such as
the X-ray, Scanning Electron Microscopy, and En-
ergy Dispersive X-ray. Unfortunately, despite the
importance of LIBS, it is not used as much as X-ray
diffraction (XRD) and SEM techniques.
In this article, LIBS technique is used along with

XRD, SEM and EDS to investigate the physical
properties of Ag as a bulk and as pressed
nanoparticles.
There are various analytic methods to describe the

laser-created plasma, including Thomson scattering,
microwave and laser interferometry, photothermal
beam deflection, Langmuir probe, laser induced
fluorescence, mass spectroscopy, and optical emis-
sion spectroscopy [14]. The density of electron, the
temperature of electron, the Debye length, and
plasma frequency were calculated using optical
emission spectroscopy (OES) [15].

2. Theoretical background

The Stark broadening of emission line can be
employedtodeterminethedensityofelectronfromthe
fullwidthathalfmaximum(FWHM)of thespectral line
emission.TheStarkwavelengthbroadeningisgivenby
[16]:
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where, A is a parameter for ion broadening, Ne is the
electron density, u is the parameter of an electron
impact or the Stark broadening value, B is a coeffi-
cient equivalent to (1.2) or (0.75) for ionic or neutral
lines, and ND is the no. of particles that make the
Debye sphere.
The ion broadening participation is so minor that

it can be ignored. Consequently, the relationship
between the broadening and electron density is
abbreviated as [16]:
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This formula is frequently used to calculate the
Ne of plasma generated from solid targets [17].
The electron temperature can be calculated from the

Boltzmann's plot which is given by [18]:
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where, 3ji is the emissivity (W.m�3) or the intensity
(I) of a spectral line, Aji is the probability of a
transition (s�1), Ej is the energy (eV), gj is the upper
level degeneracy, K is the Boltzmann's constant
(eV. K�1), T is the electron temperature, c is the
speed of light (ms�1), h is the Planck's constant
(J.s), Ne is the density of species (m�3). The values
are listed in Table 4, and Q(T) is the partition
function of species usually taken as the statistical
weight (gi) of the ground state from the Atomic
Spectral Database of the National Institute of
Standards and Technology [19], and the values are
listed in Table 3.
The Debye length for electrons in plasma is given

by [20]:
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A basic equation for the electron plasma fre-
quency (in hertz) is given by [21]:

fpe¼8980
ffiffiffiffiffi
ne

p ð5Þ

3. Experimental Part

Firstly, the silver nanoparticles (Ag NPs) having
40 nm size and 99.9% purity were pressed to a
diameter of 1.5 cm and a thickness of 0.3 cm. The
mass of silver powder (3 g) used as laser target
during the experiment. The pressing was conducted
using a hydraulic press under a pressure of 15 tons.
Fig. (1) illustrates the shape of the silver nano-
powder before and after pressing.
Secondly, the experimental setup of LIBS system in

air is displayed in Fig. (2). The silver target was
irradiated by Nd: YAG laser pulses (9 ns pulse
period, 6 Hz repetition frequency, 2.2 mm spot size,
and 1064 nm wavelength) with laser pulse energies:
400, 500, 600, and 700 mJ. An optical fiber with a
photodetector was adjusted at 45� at 10 cm distance
from the specimen in which the plasma was gener-
ated. The light emitted from the Ag plasma was
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analyzed using a spectrophotometer (Surwit, model
S3000-UV-NIR). The data collected from that setup
was utilized to calculate the electron temperature,
electron density, plasma frequency, and the length of
Debye length. The results were first discussed and
then compared with a standard database from the
National Institute of Standards and Technology [19].

The X-ray diffraction analysis was implemented
using Shimadzu XRD 600C with source Cu-ka:
l ¼ 1.5418 Å, Voltage: 40 kV, Current: 30 mA and
scan range: 20e80 deg. The morphology of the
surface was imaged by scanning electron micro-
scope (ZEISS) with a high resolution showing a scale
bar of 200 nm.

Fig. 1. Two images of the silver nano powder before and after pressing.

Fig. 2. Schematic diagram of the LIBS experimental setup.
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4. Results and discussions

4.1. X-ray diffraction

Both of the FWHM or b and the peak position can
be used to determine the average crystalline size
with the use of Scherrer's equation [22]:

D¼ 0:9 l
b cosq

ð6Þ

where, D is the average crystallite size, and q is the
Bragg angle (in degree) (see Table 1).
Figure (3a) evinces the XRD pattern of silver Ag

NPs. The peaks were seen at angles 38.2�, 44.3�,
64.5� and 77.9� which can be assigned to diffraction
from the planes (111), (200), (220) and (311),
respectively. The results are presented in Table (1).
In this table, the numbers were approximated to
three significant figures. The highest intensity is at
2q ¼ 38.2�, and the crystal average size is around
13.6 nm. These results have a good agreement with
references [23,24]. On the other hand, Figure (3b)
elucidates the XRD diffraction patterns of silver as
a bulk. The strongest four peaks are at 2q ¼ 38.2�,
44.3�, 64.5� and 77.9� and they are assigned to the
orientations (111), (200), (220) and (311), respec-
tively. The results are shown in Table 2. The
highest intensity is at the angle 2q ¼ 38.2�, and the
crystal average size of it is around 32.1 nm. These
results are in agreement with Christy [25] and
Meng [26].

4.2. Scanning electronic microscopy

SEM was employed to examine the particles sur-
face shape as well as the size. Figure (4a) displays
the scanning electronic microscopy image for Ag

NPs with a scale bar of 200 nm. The image views the
irregular particles shapes with some spherical-like
shapes. The image J program has been used to
calculate the average particle size of Ag NPs for the

Table 1. X-ray diffraction peaks of Ag NPs.

Peak No. 2q (deg.) Miller indices b(deg.) D (nm) d ¼ 1/D2 (cm-2)

1
2

38.2�

44.3�
(111)
(200)

0.618
0.8085

13.7
10.7

5.37Eþ11
8.82Eþ11

3 64.5� (220) 0.7516 12.6 6.34Eþ11
4 77.9� (311) 0.7592 13.5 5.50Eþ11

Table 2. X-ray diffraction peaks of Ag bulk.

Peak No. 2q (deg.) Miller indices b(deg.) D (nm) d ¼ 1/D2 (cm-2)

1 38.2� (111) 0.2626 32.1 9.73Eþ11
2 44.3� (200) 0.3308 26.0 1.48Eþ11
3 64.5� (220) 0.2774 33.9 8.69Eþ11
4 77.9� (311) 0.3642 28.0 1.28Eþ11

Fig. 3. (a) XRD of silver nanoparticles. (b) X-ray diffraction patterns of
silver bulk.
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spherical-like shapes which is about 62 nm.
Figure (4b) represents the SEM micrograph of pure
Ag bulk. This figure obviously portrays that the Ag

pellet consists of almost spherical grains. The
average grain size is about 41 nm. The results are
similar to reference [27].

Fig. 4. (a) Scanning electron micrographs of Ag NP (scale bar 200 nm). (b) Scanning electron micrographs of Ag bulk (scale bar 200 nm).
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4.3. Plasma emission analysis

4.3.1. Emission spectrum of plasma for silver
nanoparticles
Figure 5 reveals the emission spectrum of plasma

for Ag NPs at atmospheric pressure in air for
different pulse energies. In this figure, one can
observe many peaks of Ag (I) at the wavelengths of
282.44, 328.07, 338.29, 421.10, 520.91 and 546.55 nm.
The other peaks have been assigned to the ionic
emission lines of Ag (II) at the wavelengths of
271.19, 293.40, 462, 478.84 and 502.73 nm. Further-
more, the higher laser energy has the higher in-
tensity of emission. Also, the intensities of Ag (I)
emission line are much higher than those of Ag (II).
This is may be due to that the Ag (II) has higher
ionization energy. This result agrees with the find-
ings of reference [28].

4.3.2. Emission spectrum of silver plasma
The emission spectrum of the Ag plasma of

different laser energies at the atmospheric air
pressure is shown in Figure (6). In this figure, there
are many peaks of Ag (I) at the wavelengths of
328.07, 338.29, 421.10, 520.91 and 546.55 nm shown in
the spectrum. The ionic emission lines of Ag (II) also
appeared at the wavelengths of 271.19, 293.40, 462,

478.84 and 502.73 nm. All the intensities of peaks
increase with the increasing of laser energy.
Furthermore, based on the results that indicated in
Figure (5), the total intensities of Ag (I) emission line
are much higher than those of Ag (II). These results
are in agreement with Abdul-Hassan [29].
The results demonstrate that the intensity of LIBS

is higher for the nanostructured targets. This is due
to that the surface to volume ratio for the Ag
nanostructures is higher than that for the bulk
structure. Also, the roughness of Ag NPs is higher
and this leads to lower reflectivity and hence higher
absorption.
Table 3 lists the spectroscopic parameters from

(NIST database).
Table 4 lists the results of the calculations of the

temperature of electron (Te), FWHM, density of
electron (ne), frequency of plasma (fp), and length of
Debye (lD) for Ag bulk and Ag NPs targets at
different laser energies by the Boltzmann's method
and Stark broadening that can be calculated using
the intensity ratio of the spectral lines of the atom or
ion of the same ionization stage. All of the computed
plasma parameters (lD and fp) satisfied the re-
quirements of plasma. Because fp is proportional to
ne, this depicts that the fp increases with the laser
energy.

Fig. 5. Emission spectra of laser induced Ag NPs target with different laser energies.
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Fig. 6. Emission spectra of laser induced Ag target with different laser energies.

Table 3. Spectroscopic parameters of Ag I and Ag II that taken from reference [19].

ion l (nm) gi gj Aji-gj (s-
1) Ei (ev) Ej (ev) FWHM

Ag
I

328.07 2 4 5.60Eþ08 0 3.778 1.400
338.30 2 2 2.60Eþ08 0 3.664 1.550
520.91 2 4 3.0DEþ08 3.664 6.043 1.600
546.55 4 6 5.2DEþ08 3.778 6.046 1.650
547.15 4 4 5.60Eþ07 3.778 6.043 1.700

Ag
II

271.19 9 7 1.40Eþ09 10.374 14.944 1.800
293.40 7 7 5.00Eþ08 10.711 14.944 1.900
462.00 7 5 1.00Eþ06 11.051 13.734 2.000
478.84 3 5 4.80Eþ06 11.146 13.734 2.050
502.73 5 5 1.70Eþ06 11.268 13.734 2.100

Table 4. Plasma parameters for Ag NPs and Ag bulk with different laser energies.

E (mJ) Te (ev) ne*10
16 (cm�3) fp *1012 (Hz) lD *10�6 (cm)

Ag NPs
400 0.299 39.645 5.654 0.645
500 0.331 46.049 6.094 0.630
600 0.361 48.251 6.238 0.642
700 0.387 50.486 6.381 0.650

Ag bulk
400 0.150 5.738 2.151 1.200
500 0.154 6.213 2.238 1.170
600 0.158 6.700 2.324 1.141
700 0.160 6.948 2.367 1.126
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4.3.3. Influence of Ag metal on the electron
temperature
The electron temperature (Te) for Ag and Ag NPs

plasmas that generated by laser at the atmospheric
pressure can be obtained from the slope of equation
(3). The atomic lines of Ag (I) and Ag NPs (I) ele-
ments have been used to calculate the electron
temperature at various laser energies (400, 500, 600
and 700 mJ). By using NIST data [19] and equation
(3), the electron temperatures have been calculated
which are presented in Table (4) and shown in
Figure (7). This figure manifests many features,
where the temperature of the electron of both
plasmas increases with the energy of laser increase.
These results are in agreement with references
[30e32]. The value of the electron temperature of Ag
NPs plasma is greater than that of the Ag bulk
plasma under the same conditions. The reason
behind that is the rise in the penetration depth of
the nano materials laser energy as well as the big
surface area of such materials, which permit to
further energy transfer inside the nano material in
addition to the elevated temperature of the plasma
created from it [10].

4.3.4. Influence of Ag metal on the electron density
According to equation (2) and NIST data [18], the

impact of laser energy on the electron density of Ag
and Ag NP plasmas is evinced in Figure (8). It can be
seen in this figure, the electron density of both
plasmas increases at different rates depending on
the laser energy increasing [33]. More exciting spe-
cies, such as ions and free electrons, are generated
as the laser radiance increases. The electron density
of the Ag NPs target is larger than that of the
Ag bulk target at the same laser energy due to
the quantum mechanical behavior of the nano
materials.

4.3.5. Effect of Ag metal on the plasma frequency
The variation of electron frequency with the laser

energy of Ag and Ag NP plasmas is portrayed in
Figure (9) using equation (5). In this figure, the data
points exhibit the increasing of the plasma fre-
quency with the increasing of laser energy for the
both plasmas. This behavior resulted in by the in-
crease of the electron concentration with an increase
in the energy of laser, and this caused a rise in the
plasma frequency. The result showed that the value
of plasma frequency in the Ag NP plasma is greater
than that in the Ag plasma.

4.4. Energy Dispersed X-Ray Spectroscopy (EDX)

Figure (10a) manifests the Ag NP analysis by EDX,
and Figure (10 b) shows the Ag bulk analysis by
EDX. The relative peak heights of the observed Ag
particles have been clearly seen at 3 keV due to the
surface plasma resonance. For the spectral signals

Fig. 7. The variation of electron temperature with laser energy in Ag
bulk and Ag NP plasmas at atmospheric pressure.

Fig. 8. The variation of electron density with laser energy for Ag and Ag
NP plasmas.

Fig. 9. The variation of plasma frequency with laser energy of Ag and
Ag NP plasmas.
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for carbon, cadmium and oxygen, the peak for C has
been noted (at 0.3 keV), Cd (at 3.1 keV) and O2 (at
0.5 keV). This indicates that these elements have
been absorbed on the surface of the samples. The
peak of O2 has been elucidated at (0.5 keV), which
might be ascribed to the existence of the surface
silver oxide. These results are in agreement with
Ahluwalia et al. [34] and Li et al. [35]. The difference
between the nanomaterial and bulk has been

noticed only in terms of the intensity, where the
intensity of the nanomaterial is greater than the
bulk.
Through the results, it was found that in the LIBS

technique, the number of peaks obtained from LIBS
is more than the number of peaks resulted from
EDS. Also, LIBS has a higher sensitivity than EDS to
know the components of materials and study their
properties.

Fig. 10. (a) EDS of Ag NP. (b) EDS of Ag bulk.
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5. Conclusions

Two forms of silver samples were used as targets
in laser breakdown induced spectroscopy (LIBS). In
conclusion, for the purpose of LIBS diagnosis, it's
recommended to use samples in form of nano-
particles. The LIBS technique can give complement
information to the other standard techniques for the
material diagnosis.

References

[1] S. Musazzi, U. Perini, Laser-induced breakdown spectros-
copy: theory and applications, in: S. Musazzi, U. Perini (Eds.),
Springer series in optical sciences, Springer, Berlin, Heidel-
berg, 2014, pp. 59e89, https://doi.org/10.1007/978-3-642-
45085-3_3.

[2] N.M. Saadoon, N.M. Hadi, S.H. Sabeeh, Diagnosis of copper
plasma by laser induced breakdown spectroscopy, IOP Conf
Ser Mater Sci Eng 757 (2020) 1e8, https://doi.org/10.1088/
1757-899x/757/1/012023.

[3] J. Feng, Z. Wang, Z. Li, W. Ni, Study to reduce laser-induced
breakdown spectroscopy measurement uncertainty using
plasma characteristic parameters, Spectrochim Acta Part B:
At Spectrosc 65 (2010) 549e556, https://doi.org/10.1016/
j.sab.2010.05.004.

[4] A.M. El Sherbini, A.A.S. Al Aamer, Measurement of plasma
parameters in laser-induced erbreakdown spectroscopy
using Si-lines, World J Nano Sci Eng 2 (2012) 206e212,
https://doi.org/10.4236/wjnse.2012.24028.

[5] S.H. Sabeeh, K.A. Ali, Conversion efficiency of laser-pro-
duced Sn plasma, in: The pro. 4th Int. Sci. Conf. of Sala-
haddin Univ., Erbil. 2, 2011, pp. 801e803.

[6] Z.Z. Wang, Y. Deguchi, M. Kuwahara, J.J. Yan, J.P. Liu,
Enhancement of laser-induced breakdown spectroscopy
(LIBS) detection limit using a low-pressure and short-pulse
laser-induced plasma process, Appl Spectrosc 67 (2013)
1242e1251, https://doi.org/10.1366/13-07131.

[7] X. Xu, C. Du, F. Ma, Y. Shen, J. Zhou, Fast and simultaneous
determination of soil properties using laser-induced break-
down spectroscopy (Libs): a case study of typical farmland
soils in China, Soil Syst 3 (2019) 1e18, https://doi.org/
10.3390/soilsystems3040066.

[8] F.C. De Lucia Jr., R.S. Harmon, K.L. McNesby, R.J. Winkel Jr.,
A.W. Miziolek, Laser-induced breakdown spectroscopy
analysis of energetic materials, Appl Opt 42 (2003)
6148e6152, https://doi.org/10.1364/AO.42.006148.

[9] T.A. Labutin, A.M. Popov, V.N. Lednev, N.B. Zorov, Corre-
lation between properties of a solid sample and laser-
induced plasma parameters, Spectrochim Acta - Part B: At
Spectrosc 64 (2009) 938e949, https://doi.org/10.1016/
j.sab.2009.07.033.

[10] A.J. Effenberger Jr., J.R. Scott, Effect of atmospheric condi-
tions on LIBS spectra, Sensors 10 (2010) 4907e4925, https://
doi.org/10.3390/s100504907.

[11] Y.A. Ali, R.A. Khamis, Spectroscopic study of copper plasma
produced by Nd: YAG laser from the nano and bulk copper
targets, J Phys Conf Ser 1818 (2021) 1e9, https://doi.org/
10.1088/1742-6596/1818/1/012008.

[12] A. k AL-Ogaili, A.K. Ali, T.H. Ali, Preparation of silver
nanoparticles and study the optical and antibacterial prop-
erties, Eng Tech J 33 (2015) 478e487.

[13] V. Lednev, S.M. Pershin, A.F. Bunkin, Laser beam profile
influence on LIBS analytical capabilities: single vs. multi-
mode beam, J Anal At Spectrom 25 (2010) 1745e1757, https://
doi.org/10.1039/C0JA00017E.

[14] S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi,
A.C. Gaeris, Internal structure and expansion dynamics of
laser ablation plumes into ambient gases, J Appl Phys 93
(2003) 2380e2388, https://doi.org/10.1063/1.1544070.

[15] M.G. Jasim, Q.A. Abbas, Influence of working pressure and
lasing energy of Al plasma in laser-induced breakdown
spectroscopy, Iraqi J Phys 17 (2019) 59e66, https://doi.org/
10.30723/IJP.V17I40.406.

[16] S. Duixiong, S. Maogen, D. Chenzhong, W. Guanhong,
C. Xiangnian, A comparative study of the laser induce
breakdown spectroscopy in single- and double-pulse laser
geometry, Plasma Sci Technol 16 (2013) 26e36, https://
doi.org/10.1088/1009-0630/16/4/13.

[17] W.A. Farooq, W. Tawfik, F.N. Al-Mutairi, Z.A. Alahmed,
Qualitative analysis and plasma characteristics of soil from a
desert area using LIBS technique, J Opt Soc Korea 17 (2013)
548e558, https://doi.org/10.3807/JOSK.2013.17.6.548.

[18] J.A. Aguilera, C. Arag�on, Characterization of a laser-induced
plasma by spatially resolved spectroscopy of neutral atom
and ion emissions: comparison of local and spatially inte-
grated measurements, Spectrochim Acta - Part B At Spec-
trosc 59 (2004) 1861e1876, https://doi.org/10.1016/
J.SAB.2004.08.003.

[19] NIST Atomic Spectra Database. https://doi.org/10.18434/T4
W30F/pml/atomic-spectra-database/ (accessed 3 13,2022).

[20] P. Gibbon, Introduction to plasma physics, CAS-CERN Accel
Sch Plasma Wake Accel 1 (2020) 1e19, https://doi.org/
10.5170/CERN-2016-001.51.

[21] D.A. Gurnett, A. Bhattacharjee, Introduction to plasma
physics: with space and laboratory applications, Cambridge
univ. press, Harlow, NY, 2005, https://doi.org/10.5860/
choice.43-0375.

[22] S.J. Hashim, K.I. Hassoon, O.N. Salman, Structural proper-
ties of Fe doped TiO2 nanorods prepared by low cost hy-
drothermal method, Eng Technol J 38 (2020) 177e183,
https://doi.org/10.30684/ETJ.V38I3B.1800.

[23] A.S. Hassanien, U.T. Khatoon, Synthesis and characteriza-
tion of stable silver nanoparticles, Ag-NPs: discussion on the
applications of Ag-NPs as antimicrobial agents, Phys B
Condens Matter 554 (2019) 21e30, https://doi.org/10.1016/
J.PHYSB.2018.11.004.

[24] A.A. Mostafa, S.R.M. Sayed, E.N. Solkamy, M. Khan,
M.R. Shaik, A. Al-Warthan, et al., Evaluation of biological ac-
tivities of chemically synthesized silver nanoparticles,
JNanomater16 (2015)1e7, https://doi.org/10.1155/2015/789178.

[25] A.J. Christy, M. Umadevi, Synthesis and characterization of
monodispersed silver nanoparticles, Adv Nat Sci Nanosci
Nanotechnol 3 (2012) 1e4, https://doi.org/10.1088/2043-6262/
3/3/035013.

[26] Y. Meng, A sustainable approach to fabricating ag nano-
particles/PVA hybrid nanofiber and its catalytic activity,
Nanomaterials 5 (2015) 1124e1135, https://doi.org/10.3390/
nano5021124.

[27] M. Vanaja, G. Annadurai, Coleus aromaticus leaf extract
mediated synthesis of silver nanoparticles and its bacteri-
cidal activity, Appl Nanosci 3 (2013) 217e223, https://doi.org/
10.1007/s13204-012-0121-9.

[28] G.A. Kahrilas, L.M. Wally, S.J. Fredrick, M. Hiskey,
A.L. Prieto, J.E. Owens, Microwave-assisted green synthesis
of silver nanoparticles using orange peel extract, ACS Sus-
tain Chem Eng 2 (2014) 367e376, https://doi.org/10.1021/
SC4003664.

[29] I.A. Abdul-hassan, A.K. Abbas, I.M. Ibrahim, Plasma char-
acteristics of Ag and Cu metals produced by pulse laser
ablation of Nd : YAG laser in air, J Recent Res Appl Stud 5
(2018) 1e6.

[30] I. Rehan, K. Rehan, S. Sultana, M. Oun ul Haq, M.Z.K. Niazi,
R. Muhammad, Spatial characterization of red and white
skin potatoes using nano-second laser induced breakdown

186 H.M. Fadhil et al. / Karbala International Journal of Modern Science 8 (2022) 177e187

https://doi.org/10.1007/978-3-642-45085-3_3
https://doi.org/10.1007/978-3-642-45085-3_3
https://doi.org/10.1088/1757-899x/757/1/012023
https://doi.org/10.1088/1757-899x/757/1/012023
https://doi.org/10.1016/j.sab.2010.05.004
https://doi.org/10.1016/j.sab.2010.05.004
https://doi.org/10.4236/wjnse.2012.24028
https://doi.org/10.1366/13-07131
https://doi.org/10.3390/soilsystems3040066
https://doi.org/10.3390/soilsystems3040066
https://doi.org/10.1364/AO.42.006148
https://doi.org/10.1016/j.sab.2009.07.033
https://doi.org/10.1016/j.sab.2009.07.033
https://doi.org/10.3390/s100504907
https://doi.org/10.3390/s100504907
https://doi.org/10.1088/1742-6596/1818/1/012008
https://doi.org/10.1088/1742-6596/1818/1/012008
https://doi.org/10.1039/C0JA00017E
https://doi.org/10.1039/C0JA00017E
https://doi.org/10.1063/1.1544070
https://doi.org/10.30723/IJP.V17I40.406
https://doi.org/10.30723/IJP.V17I40.406
https://doi.org/10.1088/1009-0630/16/4/13
https://doi.org/10.1088/1009-0630/16/4/13
https://doi.org/10.3807/JOSK.2013.17.6.548
https://doi.org/10.1016/J.SAB.2004.08.003
https://doi.org/10.1016/J.SAB.2004.08.003
https://doi.org/10.18434/T4W30F/pml/atomic-spectra-database/
https://doi.org/10.18434/T4W30F/pml/atomic-spectra-database/
https://doi.org/10.5170/CERN-2016-001.51
https://doi.org/10.5170/CERN-2016-001.51
https://doi.org/10.5860/choice.43-0375
https://doi.org/10.5860/choice.43-0375
https://doi.org/10.30684/ETJ.V38I3B.1800
https://doi.org/10.1016/J.PHYSB.2018.11.004
https://doi.org/10.1016/J.PHYSB.2018.11.004
https://doi.org/10.1155/2015/789178
https://doi.org/10.1088/2043-6262/3/3/035013
https://doi.org/10.1088/2043-6262/3/3/035013
https://doi.org/10.3390/nano5021124
https://doi.org/10.3390/nano5021124
https://doi.org/10.1007/s13204-012-0121-9
https://doi.org/10.1007/s13204-012-0121-9
https://doi.org/10.1021/SC4003664
https://doi.org/10.1021/SC4003664


in air, Eur Phys J Appl Phys 73 (2016) 1e8, https://doi.org/
10.1051/epjap/2015150453.

[31] I. Rehan, M. Zubair Khan, I. Ali, K. Rehan, S. Sultana,
S. Shah, Spectroscopic analysis of high protein nigella seeds
(Kalonji) using laser-induced breakdown spectroscopy and
inductively coupled plasma/optical emission spectroscopy,
Appl Phys B 124 (2018) 1e8, https://doi.org/10.1007/s00340-
018-6915-z.

[32] A.M. Popov, S.M. Zaytsev, I.V. Seliverstova, A.S. Zakuskin,
T.A. Labutin, Matrix effects on laser-induced plasma pa-
rameters for soils and ores, Spectrochim Acta - Part B: At
Spectrosc 148 (2018) 205e210, https://doi.org/10.1016/
j.sab.2018.07.005.

[33] H.A. Salih, N. Yassoob A, S.N. Mazhir, Relativistic self-
focusing of intense laser beam in magnetized plasma, Eng
Tech J 32 (2014) 849e861.

[34] V. Ahluwalia, J. Kumar, R. Sisodia, N.A. Shakil, S. Walia,
Green synthesis of silver nanoparticles by Trichoderma
harzianum and their bio-efficacy evaluation against Staph-
ylococcus aureus and Klebsiella pneumonia, Ind Crop Prod
55 (2014) 202e206, https://doi.org/10.1016/j.indcrop.2014.
01.026.

[35] X. Li, H. Li, Y. Chen, X. Zeng, Silver conductor
fabrication by laser direct writing on Al2O3 substrate, Appl
Phys A 79 (2004) 1861e1864, https://doi.org/10.1007/s00339-
004-2914-5.

H.M. Fadhil et al. / Karbala International Journal of Modern Science 8 (2022) 177e187 187

https://doi.org/10.1051/epjap/2015150453
https://doi.org/10.1051/epjap/2015150453
https://doi.org/10.1007/s00340-018-6915-z
https://doi.org/10.1007/s00340-018-6915-z
https://doi.org/10.1016/j.sab.2018.07.005
https://doi.org/10.1016/j.sab.2018.07.005
https://doi.org/10.1016/j.indcrop.2014.01.026
https://doi.org/10.1016/j.indcrop.2014.01.026
https://doi.org/10.1007/s00339-004-2914-5
https://doi.org/10.1007/s00339-004-2914-5

	Structural and Spectroscopic Analysis for Silver Bulk and Nanoparticles
	Recommended Citation

	Structural and Spectroscopic Analysis for Silver Bulk and Nanoparticles
	Abstract
	Keywords
	Creative Commons License

	Structural and Spectroscopic Analysis for Silver Bulk and Nanoparticles
	1. Introduction
	2. Theoretical background
	3. Experimental Part
	4. Results and discussions
	4.1. X-ray diffraction
	4.2. Scanning electronic microscopy
	4.3. Plasma emission analysis
	4.3.1. Emission spectrum of plasma for silver nanoparticles
	4.3.2. Emission spectrum of silver plasma
	4.3.3. Influence of Ag metal on the electron temperature
	4.3.4. Influence of Ag metal on the electron density
	4.3.5. Effect of Ag metal on the plasma frequency

	4.4. Energy Dispersed X-Ray Spectroscopy (EDX)

	5. Conclusions
	References


