
Volume 8 Issue 2 Article 14 

Engineering of a Multi-Epitope Subunit Vaccine Against SASRS-CoV-2 Engineering of a Multi-Epitope Subunit Vaccine Against SASRS-CoV-2 
Through the Viroinformatic Approach Through the Viroinformatic Approach 

Aamir Shehzada 
Virology and Immunology, Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 
Indonesia. 

Christijogo Sumartono 
Anaesthesiology and Reanimation Department, Dr. Soetomo General Hospital and Faculty of Medicine, Universitas 
Airlangga, Surabaya, Indonesia 

Jusak Nugraha 
Clinical Pathology Department, Dr. Soetomo General Hospital and Faculty of Medicine, Universitas Airlangga, 
Surabaya, Indonesia. 

Helen Susilowatid 
Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, 
Surabaya 

Andi Yasmin Wijayab 
Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, 
Surabaya, Indonesia 

See next page for additional authors 

Follow this and additional works at: https://kijoms.uokerbala.edu.iq/home 

 Part of the Biology Commons, Chemistry Commons, Computer Sciences Commons, and the Physics Commons 

Recommended Citation Recommended Citation 
Shehzada, Aamir; Sumartono, Christijogo; Nugraha, Jusak; Susilowatid, Helen; Wijayab, Andi Yasmin; Ahmad, Hafiz 
Ishfaq; Tyasningsih, Wiwiek; and Rantam, Fedik Abdul (2022) "Engineering of a Multi-Epitope Subunit Vaccine Against 
SASRS-CoV-2 Through the Viroinformatic Approach," Karbala International Journal of Modern Science: Vol. 8 : Iss. 2 , 
Article 14. 
Available at: https://doi.org/10.33640/2405-609X.3221 

This Research Paper is brought to you for free and open access 
by Karbala International Journal of Modern Science. It has been 
accepted for inclusion in Karbala International Journal of 
Modern Science by an authorized editor of Karbala International 
Journal of Modern Science. For more information, please 
contact abdulateef1962@gmail.com. 

https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home/vol8
https://kijoms.uokerbala.edu.iq/home/vol8/iss2
https://kijoms.uokerbala.edu.iq/home/vol8/iss2/14
https://kijoms.uokerbala.edu.iq/home?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol8%2Fiss2%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol8%2Fiss2%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol8%2Fiss2%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol8%2Fiss2%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol8%2Fiss2%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.33640/2405-609X.3221
mailto:abdulateef1962@gmail.com
https://uokerbala.edu.iq/en/
https://uokerbala.edu.iq/en/


Engineering of a Multi-Epitope Subunit Vaccine Against SASRS-CoV-2 Through Engineering of a Multi-Epitope Subunit Vaccine Against SASRS-CoV-2 Through 
the Viroinformatic Approach the Viroinformatic Approach 

Abstract Abstract 
The COVID-19 outbreak has infected millions of people worldwide, but no vaccine has been discovered to 
combat it efficiently. This research aims to design a multi-epitope vaccine using highly efficient B- and T-
cell epitopes from the SARS-CoV-2 Surabaya isolate through a viroinformatic approach. First, the putative 
epitopes were linked together to develop tertiary structures and then docked with toll-like receptor 4 
(TLR-4) that demonstrated a robust interaction with a low eigenvalue of 4.816138 e-06. Furthermore, the 
structure's high immunogenic response was observed and successfully cloned into the expression vector 
pET28a (+). This implies that the designed vaccine can prove effective in combating SARS-CoV-2. 

Keywords Keywords 
Bioinformatics; SARS-CoV-2; public health; MHC-I and MHC-II; multi-epitope vaccine 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 
License. 

Authors Authors 
Aamir Shehzada, Christijogo Sumartono, Jusak Nugraha, Helen Susilowatid, Andi Yasmin Wijayab, Hafiz 
Ishfaq Ahmad, Wiwiek Tyasningsih, and Fedik Abdul Rantam 

This research paper is available in Karbala International Journal of Modern Science: https://kijoms.uokerbala.edu.iq/
home/vol8/iss2/14 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://kijoms.uokerbala.edu.iq/home/vol8/iss2/14
https://kijoms.uokerbala.edu.iq/home/vol8/iss2/14


RESEARCH PAPER

Engineering of a Multi-Epitope Subunit Vaccine
Against SASRS-CoV-2 Through the Viroinformatic
Approach

Aamir Shehzad a, Christijogo Sumartono b, Jusak Nugraha c, Helen Susilowati d,
Andi Yasmin Wijaya d, Hafiz Ishfaq Ahmad e, Wiwiek Tyasningsih f,
Fedik Abdul Rantam a,d,*

a Virology and Immunology, Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
b Anaesthesiology and Reanimation Department, Dr. Soetomo General Hospital and Faculty of Medicine, Universitas Airlangga,
Surabaya, Indonesia
c Clinical Pathology Department, Dr. Soetomo General Hospital and Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
d Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
e Department of Animal Breeding and Genetics, The University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Punjab,
Pakistan
f Bacteriology and Mycology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya,
Indonesia

Abstract

The COVID-19 outbreak has infected millions of people worldwide, but no vaccine has been discovered to combat it
efficiently. This research aims to design a multi-epitope vaccine using highly efficient B- and T-cell epitopes from the
SARS-CoV-2 Surabaya isolate through a viroinformatic approach. First, the putative epitopes were linked together to
develop tertiary structures and then docked with toll-like receptor 4 (TLR-4) that demonstrated a robust interaction with
a low eigenvalue of 4.816138 e¡06. Furthermore, the structure's high immunogenic response was observed and suc-
cessfully cloned into the expression vector pET28a (þ). This implies that the designed vaccine can prove effective in
combating SARS-CoV-2.
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1. Introduction

A t the end of December 2019, a few people
from Wuhan, China, were reported to have

pneumonia symptoms. Upon examination, the
SARS-CoV-2 virus was revealed as the causative
agent of the infection [1,2]. The novel coronavirus
disease (COVID-19) pandemic was designated a
public health emergency by the World Health Or-
ganization (WHO) in January 2020. It has been
estimated that since 30 December 2019, over 218.94
million people have been infected with COVID-19.

Moreover, about 4.53 million people have died [3].
SARS-CoV-2 has a novel characteristic of spreading
rapidly since many of its patients remain asymp-
tomatic [4,5], and diagnostic methods take time [6,7].
The genome of SARS-CoV-2, like those of other
coronaviruses, encodes for a variety of structural
proteins. In the genome, the membrane “M,” the
nucleocapsid “N,” the spike “S,” and the envelope
“E" proteins are found as structural proteins.
Additionally, non-structural proteins such as
ORF1ab, ORF6, ORF3a, ORF8, ORF7a, and ORF10
are also evident [8]. The aminoacids-based genomic
similarity was 76% among both SARS-CoV and
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SARS-CoV-2 [9,10]. Owing to the high degree of
sequence similarity, we can use primary data of
SARS-CoV on protective immune responses for
developing a SARS-CoV-2 vaccine [11e14]. Cellular
and humoral responses are critical host defenses
against SARS-CoV. Experimentally, antibodies
developed against the “S" and “N" proteins were
reported to protect mice from the pathogenicity of
SARS-CoV infection. Moreover, identical antibodies
were discovered in SARS-CoV-2 and SARS-CoV-
affected people [15e20]. On the other hand, anti-
body responses to the S protein were undetectable
six years after recovery [21]. Furthermore, stronger
antibody titers against the virus infection have been
identified in more severe clinical cases of viral
infection, implying that a strong antibody response
alone may not be enough to suppress SARS-CoV
and SARS-CoV-2 infections [22e25]. Due to the high
demand for safe and effective therapies against
SARS-CoV-2 [26e28]. Undoubtedly, any vaccine-
based measures could be highly beneficial in the
event of outbreaks or seasonal re-emergence,
largely dependent on long-term protective evolu-
tion. Given their genetic similarities, recent success
in developing vaccines against “SARS-CoV-100 and
“MERS-CoV” might be a significant feature in
designing a vaccine against SARS-CoV-2 [29e33]. In
an outbreak crisis, traditional vaccination tech-
niques based on laboratory trials could not address
the immediate needs; therefore, several therapeutic
substances are being evaluated [34e37]. A bioin-
formatics study is a powerful tool for sorting, orga-
nizing, and processing enormous amounts of data
from several research studies to build a broad
immunology platform in a short period. Due to the
availability of the virus genome and protein se-
quences, in silico analysis might be incorporated to
anticipate the reported epitopes and virus features,
considerably speeding up vaccine development
[38e42]. The current study aimed to predict B- and
T-cell epitopes from the SARS-CoV-2 M, N, and S
proteins and design a multi-epitope immunogenic
SARS-CoV's-2 subunit vaccine candidate using
bioinformatic techniques Fig. 1.

2. Material and methods

2.1. Ethical issues

Ethical approval for the current study was ob-
tained from the Institutional Review Board of the Dr
Soetomo General Hospital, Surabaya under IRB
No.IRB00008635. The Ethical Clearance from the
same body was additionally obtained under No.
0099/LOE/301.4.2/VIII/2020.

2.2. Retrieval of the whole genome sequence and
translation into amino acids

The SARS-CoV-2 Surabaya isolate of the Research
Center for Vaccine Technology and Development,
Institute of Tropical Diseases (RCVTD-ITD), under
Accession No 1366505, was retrieved from the data-
base of GISAID EpiCoV: (“https://www.gisaid.org/")
for the formulation of a putative SARS-CoV-2 vac-
cine. The Amino acid (protein) sequence was
deduced from the retrieved whole genome sequence
(RNA) sequences, using the ExPaSy tool: (http://
expasy.org/tools/dna.html). Protein segments
were identified using the NCBI's (National Center
for Biotechnology Information) Protein BLAST
[43,44].

2.3. B-cell and T-cell epitopes

B-cell epitopes are particular antigen region that
interacts strongly with B lymphocytes. As a result,
B-cells developed antigen-specific antibodies and
memory cells. The N, M, and S protein segments
were fed to the “Immune Epitope Database” (IEDB)
webserver (https://tools.iedb.org/bcell/) for predic-
tion of the linear B-cell epitopes using the default
criteria [45,46].
MHC, e.g., (Major histocompatibility complex)

molecules are expressed on the cell surface and
deliver peptides to T cells, making them essential in
forming T-cell immune responses. MHC molecules
are divided into two types: MHC Class-I and MHC
Class-II. Furthermore, the N, M, and S protein seg-
ments were loaded into the IEDB's MHC-Class-I and
MHC-Class-II binding prediction-free online server:
(http://tools.iedb.org/mhc/n) for T-cell epitope pre-
diction. We employed multiple approaches acces-
sible on the server for T-cell prediction, including the
MHC-NP net CTLpan1.1 web server [47,48] and the
Rank PEP web server. However, we utilized the
IEBD-recommended 09.2020 (NetMHCpan EL 4.1)
results. The T-cell epitope length for humans was
specified as 9-mer and 15-mer for MHC Class-I and
MHC Class-II, respectively. HLA (Human Leukocyte
Antigen) molecules on the cell surface give peptides
that govern the interactions between T-cells and
antigen-presenting cells, essential for adaptive im-
munity. Because there is a varied array of antigens
has been discovered a high rate of recognition by the
various HLA-molecules in the population, as previ-
ously described [49]. HLA-A*01, A* 26, A*03, A*11,
A* 02, A* 24, A*32, and HLA-B*35, 27, 51 were uti-
lized in this study for MHC-I. In contrast, HLA-
DRB1*03, 07, 15, 13, 04, 11 were used for MHC-II.
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Peptides with a percentile rank of less or equal to one
(�1) were designated as sequence epitopes [50].

2.4. Prediction of non-toxicity, non-allergenicity,
and antigenicity of B-cell and T-cell epitopes

The predicted epitopes' antigenicity was tested
through the online web server VaxiJen-v2.0 (https://
www.ddgpharmfac.net/vaxijen/VaxiJen/VaxiJen.
html), by applying the default-threshold [51]. This
web server was designed to categorize antigen
exclusively based on physicochemical characteris-
tics of protein rather than sequence alignment. Al-
lergy is a condition of hypersensitivity to generally
harmless items like medicines. Allergens are minute
antigens that elicit an IgE antibodies response in
most people. Subsequently, in the current study, we
fed our predicted epitopes into the AllerTOP-v.2.0,
web: (https://www.ddg-pharmfac.net/AllerTOP/):
keeping settings on default [52,53]. It is an align-
ment-free online web that predicts allergy-free
epitopes based on the physicochemical features of
proteins. Moreover, to assess the toxicity risk of
predicted epitopes, these epitopes were pasted into
the “ToxinPred” web-tool: (https://webs.iiitd.edu.in/
raghava/toxinpred/multi submit.php-) [53,54]. In
the construction of vaccines, conserved epitopes
give more comprehensive protection against multi-
strains than epitopes chosen from a diverse range of
genomic regions. Therefore, the conservancy of B-
cell epitopes was analyzed using the Conservancy-
Analysis tool in the IEBD sever [55].

2.5. Analyses of population coverage and epitope
conservation

Population coverage is an essential factor in vaccine
development. It is more affected by distinct HLA-
types present in different frequencies at different
ethnicities than the MHC-polymorphism. The uni-
versal coverageof interactingepitopesofMHCClass-I
and MHC Class-II alleles was carried out using the
IEBD Population-Coverage server: (http://tools.iedb.
org/population/-). Because of divergence in MHC-
HLA allele distribution around the globe, the popu-
lation-coverage of Homo-sapiens MHC Class-I and
MHC Class-II interacting molecules was conducted.
Moreover, the conservancy of the predicted epitopes
was also tested using the IEDBConservancy-Analysis
tool [56].

2.6. Construction of multi-epitope subunit vaccine

A multi-epitope subunit vaccine was developed
utilizing T-cell (MHC-I & MHC-II) and B-cell

epitopes. For the development of the vaccine, the
50S ribosomal protein L7/L12 was employed as an
adjuvant. In addition, EAAAK linkers were also
utilized to connect the adjuvant with the B-cell
epitope. In contrast, GPGPG (Gly-Pro-Gly-Pro-Gly)
and AAY (Ala-Ala-Tyr) linkers connected the B-cell
with the MHC Class-I and MHC Class-1 with MHC
Class-II epitopes, respectively. Moreover, there
were overlapping sections in the B-cell; therefore,
MHC Class-I and MHC Class-II were merged to
eliminate overlap [56].

2.7. Physio-chemical analysis of multi-epitope
subunit construct

To evaluate the physicochemical characteristics
of our engineered subunit vaccine, we used the
ExPASY ProtParam program: (https://web.expasy.
org/protparam/). The service displayed theoret-
ical-pI, amino acid composition, aliphatic-index,
instability-index, grand average of hydropathicity
(GRAVY), and molecular weight of the subunit
construct [57,58]. Furthermore, the solubility rate of
the subunit construct was determined using the
SOLpro web: (http://scratch.proteomics.ics.uci.
edu./) [56].

2.8. Structure analysis, refinement, and validation

The subunit construct's secondary structure was
analyzed using the online Raptor X tool: (http://
raptorx.uchicago.edu/Structure Prediction/predict/)
[59]. The discovery of the essential role of the protein
components that constitute cellular proteomes is a
fundamental issue in modern biological sciences.
Therefore, developing a credible three-dimensional
(3D) atomic structure (model) of proteins is critical in
the current scenario. Thus the multi-epitope sub-
unit's tertiary structure was generated using the
PHYRE2 protein fold recognition server [60]. The
tertiary structure was refined using the GalaxyR-
efine: (http://galaxy.seoklab.org/cgi-bin/submit.cgi?
type¼REFINE), and the RAMPAGE: (http://mordred.
bioc.cam.ac.uk/rapper/rampage.php) web-server
was used to validate the refined 3D design [56].

2.9. Molecular docking and molecular dynamics
simulation (MDS)

The Cluspro.2.0 web server: (https://cluspro.org/
home.php) was used for proteineprotein docking in
order todetermine the interactionbetween the refined
subunit construct and the toll-like receptor 4's (TLR-
4's) ligand-bindingdomains (LBDs) [61]. Furthermore,
the surfactant protein A (1R13; carbohydrate
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recognition and neck domains) was used as a control
(C4) during the docking procedure with the TLR-4
receptor [62]. Furthermore, the docking results of
vaccine þ TLR-4 complex were evaluated for
proteineprotein interaction in the PDBsum website
(http://www.ebi.ac.uk/thornton-srv/databases/cgi-
bin/pdbsum/GetPage.pl?pdbcode¼index.html) [63].
The iMODSweb server (http://imods.chaconlab.org/)
was used to perform MDSs for critical component
constructs analysis by altering the formed complex's
force field concerning various time intervals [64].

2.10. Codon optimization and in silico method for
peptide expression

Weused the following online weblink to predict the
host system for our designed vaccine: http://expsys.
weizmann.ac.il/expsysb/suggestES. The Java Codon
Adaptation Tool (JCat) was used for codon optimiza-
tion, expression creation, and reverse translation [65].
The optimization process was utilized to create a
vaccine using Escherichia coli as the host organism
(strain K12). Rho-independent transcription, ribo-
somal binding sites, and restriction enzymatic cleav-
age siteswere chosen as additional options [66]. The in
silico cloning was done with the E.coli pET-28 (þ)
expression vector. The nucleotide sequence was ob-
tained from the Addgene vector database [67]. Snap-
Gene v3.2.1 (GSL Biotech LLC, California, U.S.A.) was
used to clone poly-epitope subunit vaccines [66e68].

2.11. Immune stimulation of the engineered
construct

The host's immune response to the vaccine was
propagated through the online C-ImmSim web
server. This web server predicts the humoral and
cellular responses to a particular antigen. According
to the vaccine's preventative strategy, we planned
three consecutive doses on days 1, 28, and 56 [62].
The simulation steps were fixed at 1050, and the
simulation volume was set to default [69].

3. Results

3.1. Retrieval of whole-genome sequence and
translation into amino acids

In the current study, the SARS-CoV-2 Surabaya
isolate of the RCVTD-ITD, with accession No.
1366505, was retrieved from the GISAID EpiCoV
database: (https://www.gisaid.org/) on 27 July 2021
for the construction of multi-epitope subunit vac-
cine. The whole-genome sequence was translated
into protein using the ExPASY tool (https://web.

expasy.org/translate/). Segments from three types
of proteinsdS, M, and Ndwere selected from the
translated amino acid sequence. Confirmatory
identification was performed through the NCBI's
Protein BLAST tool. The chosen segments of pro-
teins S, M, and N comprised 577 amino acids (start
position ¼ 7847), 235 amino acids (start
position ¼ 9572), and 222 amino acids (form
position ¼ 8805), respectively.

3.2. Prediction and selection of B-cell epitopes

A total of 34 B-cell epitopes with a threshold score
of 0.5 were predicted on N (epitopes ¼ 8), M
(epitopes ¼ 6), and S (epitopes ¼ 20) protein
sequence. In this study, the predicted linear epitopes
in BepiPred depicted the scoresdaverage: 0.454,
0.435, and 0.532; minimum: 0.185, 0.245, and 0.228;
maximum: 0.631, 0.668, and 0.709 on S, M, and N
proteins, respectively. The epitopes were fed to the
antigenicity prediction webserver: VaxiJen v2.0 using
a default value of the threshold and 7 B-cell antigenic
epitopes. The antigenic score for these potential B-
cell candidates ranged from 0.4001 to 0.5859. These
predicted antigenic linear B-cell epitopes were
analyzed based on non-allergenicity and non-
toxicity. Five B-cell epitopes were potential candi-
dates for subunit vaccine formulation (Table 1). The
conservancy analysis of the finally antigenic, non-
toxic, and non-allergenic B-cell epitopes was per-
formed using the IEBD Conservancy Analysis tool;
the epitopes were highly conserved with 100%
coverage and identity conservation.

3.3. T-cell epitope prediction

3.3.1. MHC Class-I and MHC ClasseII binding
prediction profile
This study applied T-cells of 9 (nine) mer and 15

(fifteen) mer lengths for MHC Class-I and MHC
Class-II, respectively. The IEBD tool was used for
MHC-I and MHC-II binding prediction of N, M, and
S proteins. This study applied T-cells of 9 (nine) mer
and 15 (fifteen) mer lengths for MHC Class-I and
MHC Class-II, respectively. Consequently, a total of
10,277 epitopes were found in MHC-I: S
(epitopes ¼ 5752), M (epitopes ¼ 2184), and N
(epitopes ¼ 2341). Moreover, a total of 4356 epitopes
were found in MHC-II: S (epitopes ¼ 2454), M
(epitopes ¼ 912), and N (epitopes ¼ 990). We chose
epitopes with high MCH-I and MCHeII binding
affinity and a percentile rank of �1. Finally, seven
highly affinitive, antigenic, non-allergenic, and non-
toxic MHC-I epitopes (Table 2) and 10 MHC-II
epitopes with the same properties (Table 3) were
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selected as potential candidates for the vaccine. The
antigenic score was predicted as 0.4821 and 0.4812
(minimum), and 0.8820 and 1.1691 (maximum) in
MHC-I and MHC-II, respectively, for those selected
as potential epitopes for vaccine construct.

3.4. Analyses of population coverage and epitope
conservation

The IEBD Population Coverage tool was used to
determine the global coverage of interacting epi-
topes of MHC-I and MHC-II alleles. There is a
divergence in MHC-HLA allele distribution around
the globe. Therefore, the population coverage of H.
sapiens MHC-I and MHC-II interacting molecules
was conducted. The following distribution was ob-
tained: 92.06% for Europe, 90.71% for Oceania,
88.28% for North America, 84.66% for East Asia, and
83.77% for Southeast Asia (Table 4). Moreover,
country-wise coverage was found to be 91.98% for
the Philippines, 90.51% for England, 88.54% for
Saudi Arabia, 85.85% for Taiwan, 84.78% for France,

82.17% for South Korea, and 80.01% for Japan.
Moreover, the predicted epitopes' conservancy was
assessed through the IEDB Conservancy Analysis
tool. It was found that all the epitopes were 100%
conserved.

3.5. Construction of multi-epitope subunit vaccine

A multi-epitope subunit vaccination was devel-
oped using MHC-I, MHC-II, and B-cell epitopes.
Furthermore, the 50S ribosomal protein L7/L12 was
used as an adjuvant in the vaccine's development.
EAAAK linkers were used to link the L7/L12 (adju-
vant) to the B-cell epitope. In contrast, GPGPG and
AAY linkers were used to link the B-cell to the
MHC-I and MHC-II epitopes, respectively. More-
over, there were overlapping sections in B-cell;
therefore, MHC-1 and MHCII also were merged to
eliminate overlap. In this multi-epitope construct, a
total of 7, 10, and 5 MHC-1, MHC-II, and linear B-
cell epitopes, respectively, were used. The con-
structed multi-epitope subunit sequence had a

Table 1. B-cell epitopes prediction in Surabaya isolate.

Protein name Peptide antigenic Non allergic Non toxic

Nucleocapsid LKEQHCQKASTQKGAEAAVKPLLVP Yes Yes yes
LLLLEWLAMAVTKKSAAEASKKPRQKRTATKA Yes Yes yes
IDAYKTFPPTEPKKDKKKKADETQALPQRQ
KKQQTVTLLPAADLDDFSK QLQ QSMSSADS

Yes Yes yes

Spike AENSVAYSN Yes Yes yes
LPDPSKPSKRSF Yes Yes yes

Table 2. Showing the highly effenitive MCH-I epitopes of Surabaya isolate.

Protein name Peptide Antigenicity Non- allergic Non-Toxic

Membrane MACLVGLMW yes yes yes
ATSRTLSYY yes yes yes
SYFIASFRL yes yes yes

Spike IPTNFTISV yes yes yes
Nucleocapsid KTFPPTEPK yes yes yes

AQFAPSASA yes yes yes
LLLEWLAMA yes yes yes

Table 3. Showing the highly effenitive MCH-II epitopes of Surabaya isolate.

Protein name Peptide Antigenicity Non- allergic Non-Toxic

Membrane ANRNRFLYIIKLIFL yes yes yes
RNRFLYIIKLIFLWL yes yes yes

Spike AIPTNFTISVTTEIL yes yes yes
IAIPTNFTISVTTEI yes yes yes
PTNFTISVTTEILPV yes yes yes
IPTNFTISVTTEILP yes yes yes
TNFTISVTTEILPVS yes yes yes
CSNLLLQYGSFCTQL yes yes yes
SNLLLQYGSFCTQLN yes yes yes
NLLLQYGSFCTQLNR yes yes yes
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molecular weight of 59974.20 Da based on 563 amino
acids.

3.6. Antigenicity, toxicity, and allergenicity
analysis of the subunit vaccine construct

The constructed subunit vaccine sequence was
subjected to the VaxiJen v 2.0 webserver to evaluate
the antigenicity,whichwasantigenicwithandwithout
adjuvant. Then, the sequence was tested in Aller TOP
v.2.0 server, and it was found that the construct was
non-allergenic with and without adjuvant. The non-
toxicity of the multi-epitope construct without adju-
vant and of the adjuvant itself was tested. The score of
0.5059 was predicted with adjuvant, while the score
without adjuvant was 0.5433.

3.7. Physio-chemical and solubility characteristics
of multi-epitope subunit construct

The physical and chemical properties of the multi-
epitope construct were analyzed through the
ExPASY ProtParam web server. The current multi-
epitope subunit construct's molecular weight was
59.97420 kDa. The theoretical pI of protein was 8.69,
instability index (II) was 30.90, the aliphatic index
was 89.98, and GRAVY was 0.065. The solubility rate
was found to be 0.960121 when our construct was
analyzed through the SOLpro web server of
SCRATCH Protein Predictor.

3.8. Secondary structure of subunit construct

The secondary structure of the multi-epitope
construct was analyzed through the Raptor X tool to
determine the nature of the protein. This secondary
protein structure analysis revealed 32% helix, 11%
beta stands, and 56% coils. Moreover, a total of 62%,
19%, and 18% exposed, medium-exposed, and buried
contents, respectively, were found. In the current
protein structure, 39% of positions were in disordered
domains.

3.9. The tertiary structure of the subunit construct

In this study, the PHYRE2 protein fold recognition
server was used to develop the tertiary structure of
our multi-epitope subunit construct. The top pre-
dicted model was selected based on 100% confi-
dence and maximum coverage and identity from the
120 predicted models (Fig. 2).

3.10. Refinement process for the tertiary structure

The projected 3D model of the multi-epitope
construct was submitted to the GalaxyRefine web
server, and five different refined models were
found. In the current study, we selected Model 4 by
considering various parameters of refinement:
MolProbity (2.147), RMSD (0.213), and GDT-HA
(1.0000) (Fig. 2). The current model-calculated clash
score was found to be 12.8, the poor rotamers score
was found to be 2.2, and the Ramachandran-favored
score was found to be 96.0%. In contrast, our initial
model showed a MolProbity score of 1.856, RMSD of
0.000, and GDT-HA of 1.0000. The initial model-
calculated clash score was found to be 13.3, the poor
rotamers score was found to be 1.1, and the Ram-
achandran-favored score was found to be 96.8%.

3.11. Validation of refined 3D structure

The refined structure was validated through the
RAMPAGE web server. The structural analysis was
performed, and the Ramachandran plot was devel-
oped for the protein structure. Before refinement,
92.9% region was lying in the favorite region, 3.5%
in the additional allowed regions, and 2.7% struc-
tural region was found to be in the generously
allowed regions, as the refinement process lowered
the critical errors of the 3D model. After refinement,
the RAMPAGE-generated plot showed 96.5% resi-
dues in the favorite region, 2.7% in the additional
allowed region, 0% in the generously allowed re-
gion, and 0.9% in the disallowed regions (Fig. 3).

Table 4. Predicted population coverage of the constructed vaccine worldwide.

population/area Class I Class II Class combined

coveragea average_hitb pc90c coveragea average_hitb pc90c coveragea average_hitb pc90c

Europe 83.92% 1.19 0.62 50.62% 2.04 0.41 92.06% 3.23 1.08
Oceania 86.08% 1.13 0.72 33.27% 0.89 0.3 90.71% 2.02 1.02
North America 77.43% 1.03 0.44 48.06% 1.87 0.39 88.28% 2.9 0.85
East Asia 79.48% 1.06 0.49 25.25% 0.87 0.27 84.66% 1.94 0.65
Southeast Asia 78.11% 1.0 0.46 25.83% 0.84 0.27 83.77% 1.84 0.62
South Asia 62.35% 0.79 0.27 51.33% 2.16 0.41 81.68% 2.95 0.55
Northeast Asia 75.02% 0.96 0.4 26.62% 0.94 0.27 81.67% 1.9 0.55
West Indies 68.19% 0.9 0.31 38.53% 1.43 0.33 80.45% 2.33 0.51
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3.12. Molecular docking

The molecular docking of the refined vaccine
Model 4 and LBD of immune receptors TLR-3 and
TLR-4 (4G8A) were conducted through the
proteineprotein docking webserver Cluspro2.0.
This docking process predicted 30 different models
for the TLR-4 complex. Among all the models ob-
tained after the analysis, we selected Model 0 of the
vaccine þ TLR-4 complex; it had the lowest docking

energy of �753.3 kcal/mol and 92 cluster members.
The PDBsum server revealed a highly stable
bonding affinity between vaccine construct and
TLR-4. Our vaccine design linked TLR-4 potential
residues through 62 hydrogen bonds and 18 salt
bridges (Fig. 4). Moreover, the complex of
vaccine þ TLR-4_C4 (�686.1 kcal/mol) had more
incredible energy than the vaccine þ TLR-4, clearly
indicating that our vaccine has a more robust
interaction than the control. The primary interacting

Fig. 2. Showing the 3D Structure of Multi-epitope Construct. (A) is depicting the tertiary structure predicted through the PHYRE-2 Web-Serwer and
(B) is refined 3D-structure developed by Galaxy Refine webserver.

Fig. 1. Graphical abstract of the study.
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residues among vaccine, TLR-4, and vaccine þ TLR-
4_C4 are depicted in Fig. 4. It was found that the
vaccine attaches to the TLR-4 through the following
residues: Ser386:Ser386, Ala366:Asn365, Gly410:-
VaI411, Val411:VaI411, Val411:Gly410, Phe533:-
Phe533, Asn365:Ala366, His458:His458, and
Gln507:Gln507. Meanwhile, the C4 control attaches
to the vaccine þ TLR-4 complex through the
following residues: Phe553:Phe553, His458:His458,

Ala366:Asn365, Val411Gly410, Val411:Val411,
Gly410:Val411, Gln507:Gln507, Asn365:Ala366, and
Ser386:386 (Fig. 5).

3.13. Molecular dynamics (MD) simulation

The vaccine þ TLR-4 complex was fed to the
iMODS web server. A normal mood analysis was
performed to assess the vaccine þ TLR-4 complex's

Fig. 3. Showing the validation of 3D refined structure of vaccine construct performed through RAMPAGE web server.
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internal coordination. The complex's eigenvalue was
calculated to be 4.816138 e�06 (Fig. 6 (J)). The
deformability results in individual deformation of
each residue, as seen by the chain hinges approach
(Fig. 6 (H)). In addition, there is a gradual decrease
of variance in each typical mood (Fig. 6 (K)). All of
these findings point out stable binding interactions
in the vaccine þ TLR-4 complex.

3.14. Codon optimization and in silico method for
peptide expression

JCat was used for codon optimization, expression
creation, and reverse translation. The optimization
process was utilized to create a vaccine using E. coli
as the host organism (strain K12). The length of the
optimization codon was 1689 bp nucleotides. The

Fig. 4. Showing the molecular docking results predicted by the Cluspro webserver (C) is depicting molecular docking of multi-epitope subunit vaccine
construct and receptor TLR4. (D) is showing the molecular docking of multi-epitope subunit vaccine and TLR4 complex with C4 control.

Fig. 5. Showing the interaction results developed through the PDBsum webserver. (E) is depicting the interaction between TR4 and vaccine construct.
(F) is showing the TLR4þVaccine complex binding interaction of the residues with C4 control.
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codon adaptation index (CAI) was found to be 0.94
for the approved sequence. In contrast, guanine-
cytosine (GC) content was found to be 52.39. The in
silico cloning was done with the E. coli pET-
28a þ expression vector. The nucleotide sequence
was obtained from the Addgene vector database
Snap Gene v3.2.1 (GSL Biotech LLC, California,
U.S.A.) The codon sequence of the multi-epitope
subunit construct was inserted between the HindIII
(542) and NaeI (1472), which developed a clone of
4843 bp (Fig. 7).

3.15. Immune stimulation (IS) of the constructed
subunit vaccine

The host's immune response to the vaccine was
propagated through the online C-ImmSim web
server. The simulation steps were adjusted at one
thousand and fifty (1050), and the simulation vol-
ume was fixed at default. The IgM increase is the
indicator for the primary response. The secondary
and tertiary responses are characterized by a higher
level of B-cell population and high levels of

IgG1 þ IgG2, IgM, and IgG þ IgM. Furthermore, the
current study revealed cytokine and interleukin
production, which depicts the vaccine's efficiency in
triggering an immune response. TGF-, IFN-, and IL-
2 were also identified in significant concentrations,
all of which are vital for co-stimulation of T-cell
activation (Fig. 8).

4. Discussion

COVID-19 has become one of the world's most
critical public health concerns. Thus, investing time
to develop efficient preventive strategies is worth it.
Compared to traditionally adapted approaches used
in SARS-COV-2 vaccine designs, bioinformatics
techniques play a significant role in easing and
speeding up the prediction of potential epitope
vaccines [41,60,70,71,72]. Although several studies
have used immunoinformatic approaches to
develop possible vaccines against SARS-CoV-2
[62,73e75], these in silico investigations for SARS-
CoV-2 targeted both non-structural and structural
proteins. Our study focused largely on structural

Fig. 6. Showing the MDS results of vaccine and TLR4 docking complex. (G) is describing the mobility of vaccine and receptor directly towards each-
other, (H) is describing high the deformability regions in B factor plot, (I) is depicting the similarity in NMA and PDB which means our actual results
of complex and the simulation results are same. (J) is showing the low Eigenvalue of our construct as Eigenvalue is directly proportional to the
deformability of construct, (K) is describing the individual and cumulative variance in red and green color respectively. (L) is depicting the co-
variance plot of our construct in which co- relationship, uncorrelation and anti- correlation are described with red, white and blue colors respectively,
(M) is describing the stiffness level of our construct in which dark gray color is showing the stiffer region.
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proteins since they are promising for generating an
effective and safe immune response against SARS-
CoV-2. Furthermore, we focused on local Surabaya
isolates for vaccine development in this work, as
local viral vaccines are more effective and efficient
against viral infections [76]. The three structural
proteins of the SARS-CoV-2 virus were identified to
form richly immunogenic epitopes that can trigger
cellular and humoral responses. Antigenic, non-
allergenic, and non-toxic B- and T-cell epitopes
were created using the amino acid sequence of
1,366,505 from the Surabaya isolate. S, M, and N
proteins were identified in the amino acid sequence
of the SARS-CoV-2 Surabaya isolate, and B- and T-
cells were produced for each of these proteins
individually [50]. The sequences of the N
(epitopes ¼ 8), M (epitopes ¼ 6), and S
(epitopes ¼ 20) proteins revealed a total of 34 B-cell
epitopes. The antigenicity, non-allergenicity, and
non-toxicity of these linear B-cell epitopes were
determined using the VaxiJen v2.0, Aller TOP v.2.0,
and ToxinPred servers respectively. We adopted

this method as described in an earlier study [56],
and 5 B-cell epitopes were identified as potential
candidates for subunit vaccine formulation (Table
2). In this investigation, we used 9-mer and 15-mer
T-cell lengths for MHC-I and MHC-II, respectively
[50]. The N, M, and S proteins were used to predict
MHC-I and MHCeII binding using the IEBD tool,
yielding a total of 10,277 MHC-I epitopes and 4356
MHC-II epitopes. We chose epitopes with high
MCH-I and MCHeII binding affinity and a
percentile rank of �1 [50,56]. A total of seven highly
affinitive, antigenic, non-allergenic, and non-toxic
MHC-I epitopes were chosen as possible vaccina-
tion candidates (Table 3), and 10 MHC-II epitopes
with the same properties were chosen (Table 4).
Once, B-cells were the only source for developing

a possible vaccine. B-cell responses are significant
because they are responsible for producing anti-
body-based immunity. MHC-I and MHC-II T-cells
with HLA designs developed through bioinformat-
ics are more faster and effective in clinical research
[77]. T-cells can trigger a significant and cross-

Fig. 7. Showing the insertion of multiepitope vaccine in pET-28-a(þ) expression vector between HindIII and NaeI and found in results a colon of
4843bp.
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reactive immunological response against the SARS-
CoV-2 infection. T-cell-produced immunity is long-
lasting [78]. MHC-I, MHC-II, and B-cell epitopes
were used to create a multi-epitope subunit vaccine.
In addition, in the development of the vaccine, the
50S ribosomal protein L7/L12 was employed as an
adjuvant, and EAAAK linkers were utilized to con-
nect the L7/L12 (adjuvant) to the B-cell epitope;
moreover, GPGPG and AAY linkers were employed
to bind the B-cell to the MHC-I and MHC-II epi-
topes, respectively. Furthermore, there were over-
lapping sections in B-cell; MHC-I and MHC-II were
also merged to eliminate overlap [56]. A total of 7,
10, and 5 MHC-I, MHC-II, and linear B-cell epi-
topes, respectively, were employed in this multi-
epitope construct. The multi-epitope subunit
sequence constructed has a molecular weight of
59,974.20 Da based on 563 amino acids. The use of
adjuvant linkage with built vaccines improves the
construct's immunogenicity [79]. The design was
discovered to be antigenic and non-allergenic.

Vaccines, like other drugs, have the potential to
induce allergic responses. Mild vaccine reactions
are frequent, but sometimes they can lead to severe
consequences. It has been determined that the most
significant barrier to vaccine development is aller-
genicity [80].
The IEBD Population Coverage tool was used to

determine the global coverage of interacting epi-
topes of MHC-I and MHC-II alleles. There is a
divergence in MHC-HLA allele distribution around
the globe; therefore, the population coverage of H.
sapiens MHC-I and MHC-II interacting molecules
was conducted, and the following distribution was
obtained: 92.06% for Europe, 90.71% for Oceania,
88.28% for North America, 84.66% for East Asia, and
83.77% for Southeast Asia. Our population coverage
of 92.06% is in line with the 92.51% coverage re-
ported by Sadat et al. [50]. The vaccination must be
70% effective, and it must be 80% effective to pri-
marily eradicate an epidemic without the need for
additional measures [81]. The physio-chemical

Fig. 8. Showing the IS (immune simulation) results of constructed multi-epitope vaccine. (N) is depicting the antigen antibody relationship as antigen
decreased the antibodies level increased also showing the increase in IgG level which is indicator for primary responses. (O) is describing the B-cell
population level increasement which indicates secondary and tertiary responses, (P) is depicting the TH-cell population level rise up, (Q) is showing
the TC-Cell population level, (R) is showing dendritic-cells which depicts the presence of antigenic peptides on the MHC-I and II, (S) is showing the
epithelial cell generation, (T) is describing the interleukins and cytokines concentration level.
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characteristics of peptides significantly impact their
immunogenicity, transportation, and stability [82].
The current multi-epitope subunit construct has a
molecular weight of 59.97420 kDa (59974.20 Da),
within the ideal range of 40e70 kDa. The lesser
molecular weight of the vaccine is believed to be
ideal because the purification process of the vaccine
is easier for low molecular weight. The vaccine
protein's theoretical pI was discovered to be 8.69,
indicating that it is essential. The instability index
was determined to be 30.90; a value less than 40
indicates that the structure is more stable [83,84].
The structure's aliphatic index was 89.98, indicating
that our construct is thermostable [85]. Its GRAVY
was 0.065, indicating a hydrophobic protein [86].
The solubility rate was calculated to be 0.960121,
which meant high solubility, an essential indicator
that it can be purified easily and produced on a large
scale [87]. The secondary structure analysis revealed
that 32% of the proteins were a-helix, 11% were beta
stands, and 56% were coiled. Furthermore, a total of
62%, 19%, and 18% exposed, medium-exposed, and
buried contents, respectively, were discovered.
Disordered domains were identified in 39% of the

locations in the existing protein structure. For opti-
mum molecular docking, it is necessary to reduce
3D model inaccuracy and develop a high-quality 3D
structure. The 3D structure was refined using Gal-
axyRefine, and the required features of the structure
were developed. Additionally, RAMPAGE findings
clearly showed that all parameters were in accor-
dance, suitable for vaccine production. Only those
3D structures with more than 90% of their residues
in the favored region are deemed excellent. The
proteineprotein docking webserver Cluspro2.0 was
used to molecularly dock a refined vaccine model
with the LBD of the immune receptor TLR-4 (4G8A)
since TLR-4 of host immune cells can recognize the
viral protein of SARS-CoV-2, which is essential for
adaptive immunity [88]. The molecular docking
studies revealed stable interactions between the
multi-epitope subunit construct and the TLR-4
complex, with a �753.3 kcal/mol; this score is more
damaging than the control docking complex energy
score of �727.7 kcal/mol reported previously by
Safavi et al. [62]. The low energy score of docking is
necessary for the efficient binding of vaccines with
TLRs [89]. The multi-epitope construct eigenvalue of
MDS was 4.816138 e�06, and it climbed steadily in
each paradigm during the dynamics (Fig. 6). The
variance plot showed that the individual variance
decreased in each subsequent mode. These MDS
findings exhibit the overall stability of the current
vaccine construct þ TLR-4 complex [77].

The immunological simulation of a multi-epitope
subunit construct demonstrated perfectly normal
immune response trends after multiple antigen ex-
posures. The immunoreactivity of the subunit
construct was tested by expressing it in the host E.
coli K12 strain [56]. The server predicted higher B-
and T-cell levels after repeated antigen exposure for
a longer period. Increased levels of the antiviral
cytokines IFN and IL2 indicated the possibility of T-
helper cell activation and, consequently, increased
Ig production, which supports the humoral immune
response [90]. Most importantly, the vaccine design
must be expressed in an appropriate E. coli strain, to
develop recombinant proteins [91,92]. With a CAI of
0.94 and a GC content of 52.39%, the codon opti-
mization method demonstrated high expression in
E. coli K12. Finally, the multi-epitope subunit vac-
cine sequence was inserted into the pET-28a vector
to efficiently encode the constructed protein in E.
coli cells. The codon sequence of the multi-epitope
subunit construct was inserted between the HindIII
(542) and NaeI (1472), which developed a codon of
4843 bp (Fig. 5).
The current study results depicted strong cellular

and humoral responses computationally, confirm-
ing previous findings that S and N proteins have
properties that elicit both cellular and humoral re-
sponses. N protein individually generates corona-
virus-specific CD8 þ T lymphocytes, and SARS-
CoV-2 M protein is the most cellularly immuno-
genic protein [93e97]. Thus, these immunogenic
properties of the current structural protein vaccine
design suggest that the vaccine may be a better
choice for combating SARS-CoV-2 infection. Thus,
for the sake of public health, the study's findings
should be confirmed as quickly as possible in the
laboratory and field.

5. Conclusion

Effective drug development is a time-consuming
and expensive procedure; however, the only option
for halting the present COVID-19 epidemic is to
develop effective and timely vaccines. The use of
viroinformatic techniques will undoubtedly aid in
developing a rapid and effective SARS-CoV-2 vac-
cine. This study used various bio- and viroinfor-
matic techniques to design a multi-epitope subunit
vaccination. The potentiality of the developed
construct was evaluated using immunoinformatics.
Thus, an excellent humoral and cellular response
was discovered. Furthermore, the engineered sub-
unit construct was successfully colonized in the
expression vector pET-28 a (þ), demonstrating that
vaccine production on a large scale is feasible.
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Therefore, the designed construct's true potential
has to be validated in the lab and the field on a
priority basis in the interest of public health.
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