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Abstract

This paper reports the synthesis of CuO/ZnO and MgO/ZnO core/shell nanoparticles using atmospheric plasma jets.
The characterization of the synthesized CuO/ZnO and MgO/ZnO core/shell nanoparticles were confirmed by a series of
techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray dispersive spectroscopy
(EDS), transmission electron microscopy (TEM), and UVeVis spectroscopy. The XRD analysis confirmed no other peaks
related to the secondary phases for CuO, MgO, or ZnO, indicating the purity of these nanoparticles. Additionally, EDX
analysis confirmed the formation of high purity CuO/ZnO and MgO/ZnO core/shell nanoparticles. The surface
morphology, which represented the high agglomeration rate, was investigated using SEM. TEM analysis showed that
the sizes of the CuO/ZnO and MgO/ZnO core/shell nanoparticles were 32 nm and 70 nm, respectively. The energy
bandgaps were 3.3 eV and 3.1 eV for the CuO/ZnO and MgO/ZnO core/shell nanoparticles.

Keywords: Hybrid nanoparticles, Plasma jets, CuO/ZnO core/shell nanoparticles, MgO/ZnO core/shell nanoparticles,
Structural properties, Optical properties

1. Introduction

N anomaterials have one or more nanometer
dimensions (�100 nm) [1]. Nanomaterials

have received significant attention due to their
unique properties compared to their bulk counter-
parts. NPs have small sizes, large surface areas, and
unique chemical and physical properties that make
them suitable for various applications [2e4].
Recently, metal and metal oxide nanoparticles have
attracted great attention among essential materials
due to their improved properties, leading to various
applications in various fields [5,6]. These materials
have widely been studied in various fields such as
electronics and catalysis [5]. Among them, oxide
metal nanoparticles ZnO, CuO, MgO, etc. Zinc
oxide (ZnO) is a multifunctional material due to its
high thermal stability and nontoxic nature [6e8].

In contrast, copper oxide (CuO) nanoparticles
have been widely used in catalysis, solar energy,
electricity, batteries, gas sensors, and organic dye
degradation [9]. In recent years, it has been found
that surface coating with various semiconductors
can significantly improve the characteristics of
nanoparticles. There are few reports that have been
published related to manufacturing of metal oxide
nanocomposites [6,10], with different methods such
as ZnO/CuO by one-pot green synthesis [11], MgO/
CuO by chemical method [12], Co3O4eZnO by mi-
crowave method [13] etc.
Scientists have developed a new class of nano-

particles called hybrid nanoparticles, which are
well-organized nanomaterials that contain two,
three, or more single nano component types. Core/
shell NPs are hybrid nanoparticles called core/shell,
coreeshell, or core@shell nanoparticles. Core/shell
nanoparticles consist of two or more nanomaterials.
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One nanomaterial acts as the core, and the other
nanomaterial coated the core's surface is called the
shell [14,15].
Nanoparticles for various materials have been

produced using physical and chemical techniques
[16]. Nanoparticles can be prepared using various
methods such as pulsed laser deposition, solegel
preparation, chemical coprecipitation, thermal
decomposition, hydrothermal methods, etc. [17].
Recently, Plasma jets technology and microwave
have gained significant attention as a leading "green
technologies" method for nanomaterial synthesis
[18,19]. Plasma jets technology has several benefits
and advantages, such as environmental friendliness,
low cost, and no requirement for expensive equip-
ment [20]. The key to this application is the variety
of reactive oxygen and nitrogen species (RONS)
created by non-thermal atmospheric pressure
plasma sources [21]. Plasma liquid interactions are
essential in creating nanomaterials because plasma-
generated RONS change the chemical composition
of a liquid. During plasmaeliquid interactions, the
major types of RONS that are formed include hy-
droxyl radical, hydrogen peroxide, superoxide,
ozone, singlet oxygen, nitric oxide, etc. [22]. This
work studied the structural properties of CuO/ZnO
and MgO/ZnO core/shell nanoparticles. Also were
investigated the optical characteristics of these
nanoparticles synthesized by plasma jets.

2. Materials and methods

To synthesize hybrid CuO/ZnO and MgO/ZnO
core/shell nanoparticles, we used copper foil,
magnesium wire, and a zinc sheet with a purity
content of 99.99%, purchases from (THE BRITISH
DRUG HOUSES LTD./LONDON, Manufactured in
England, 652247/470611). As shown in Fig. 1, the
experimental setup consisted of a high voltage DC
power supply (20 kV) and a stainless steel tube that
acted as the cathode. At the same time, copper foil,
magnesium wire, or a zinc sheet were used as the
anodes, which were immersed in a glass beaker
containing 5 ml of deionized water. Ar gas with a
purity of 99.99% was used as the gas discharge, and
the gas flow was fixed at 2 (L/min) using a flow-
meter to control the gas flow. The plasma jet
propagated across the air, and the distance between
the plasma jet nozzle and the surface of the
deionized water was about 2 cm. The plasma
treatment of the metal in the liquid lasted for 5 min.
The color change in the early time of the reaction
indicated that nanomaterials were obtained. The
synthesis of CuO/ZnO and MgO/ZnO core/shell
nanoparticles was carried out via two steps. The

first step included the synthesis of the CuO and
MgO cores NPs. The second step included synthe-
sizing the ZnO shell NPs around the CuO and MgO
cores NPs. A UVeViseNIR Metertech dual-beam
spectrometer was used to record the UVevis ab-
sorption spectra of the samples in the 200e900 nm
wavelength range. The characterization of the syn-
thesized CuO/ZnO and MgO/ZnO core/shell
nanoparticles was examined by techniques,
including XRD (XPERT PAANALTICAL PHILLIPS
HOLLAND), SEM, EDS (TESCN MIRA3 FRENCH),
and TEM, were carried out in Iran at the University
of Kashan.

3. Results and discussion

3.1. XRD analyses

The crystal structure and phase purity of the CuO/
ZnO and MgO/ZnO core/shell nanoparticles syn-
thesized with the atmospheric plasma jets (APJs)
technique was confirmed by the X-ray diffraction
(XRD) analysis by comparing the ZnO, CuO, and
MgO diffraction angles (2q�) with the JCPDS card
number in the literature.
The XRD pattern was recorded in a 2q� angle

ranging from 25� to 70� for the CuO/ZnO core/shell
nanoparticles, as shown in Fig. 2. The CuO/ZnO
core/shell nanoparticles XRD pattern revealed
diffraction peaks at 31.7� and 56.57�, which were
related to the ZnO structure and indexed to the
Miller indices of (100) and (112), respectively. This
matched with the (JCPDS No: 36e1451) ZnO hex-
agonal wurtzite structure. Moreover, the smaller
peaks at the diffraction angles of 36.2� and 62.6�

were found to be related to CuO crystal planes of
(111) and (�113), respectively, and the diffraction
peaks of the CuO corresponded well to the mono-
clinic crystal structure (JCPDS card No. 45e0937).
In contrast, the XRD pattern was recorded with a

2q� angle in the range from 30� to 60� for the MgO/
ZnO core/shell nanoparticles, as shown in Fig. 3.
Broad diffraction peaks appeared in the XRD pat-
terns of the MgO/ZnO core/shell nanoparticles at
the diffraction positions of 31.40�, 34.1�, 36.3�, 47.7�,
and 56.94�. These peaks were related to the ZnO
structure and indexed to the Miller indices of (100),
(002), (101), (102), and (110), respectively. This
matched with the JCPDS No. 36e1451 for the ZnO
hexagonal wurtzite structure. The diffraction peaks
at the 2q� positions of 36.1� and 38.13� were found to
be related to the (002) and (202) planes, respectively,
and these peaks were matched with the JCPDS No.
87e0653, for the creation of the MgO polycrystalline
cubic structure.
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According to the literature, the XRD pattern of the
ZnO nanoparticles revealed an intense (002) peak of
diffraction with a wurtzite structure (JCPDS No.
36e1451) at a diffraction angle of 34.4� [23,24]. The
ZnO crystal structure was in a thermodynamically
stable state when the zinc and oxygen atoms had
tetrahedral arrangements. Thus, the presence of the

(002) diffraction peak confirmed that the ZnO
maintained a wurtzite structure with a hexagonal
unit cell after the ZnO shell was created around the
surface of the CuO core nanoparticles.
There were no other peaks related to the sec-

ondary phases for the CuO, MgO, or ZnO in the
XRD pattern of the CuO/ZnO and MgO/ZnO

Fig. 1. The experimental setup of CuO/ZnO and MgO/ZnO core/shell NP synthesis by plasma jet.

Fig. 2. XRD pattern for CuO/ZnO core/shell NPs synthesis by plasma
jet.

Fig. 3. XRD pattern for MgO/ZnO core/shell NP synthesis by plasma
jet.
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nanoparticles, indicating the purity of the created
nanoparticles. Moreover, the slight shifts in the
diffraction angles of the CuO, MgO, and ZnO
nanoparticles in comparison to the standard data
showed that the characteristic peaks of the CuO,
MgO, and ZnO changed. The occurrence of a
distinct line broadening in the diffraction peaks
confirmed the formation of nanometer-sized parti-
cles [25,26], indicating that CuO/ZnO and MgO/
ZnO core/shell NPs were successfully formed.
The Debye-Scherer Equation (1) was used to

measure the nanoparticle crystallite sizes of the
CuO/ZnO and MgO/ZnO core/shell nanoparticles
[27]:

D (�A) ¼ kl/bcosq (1)

In the expression, D is the crystallite size, k: is the
Scherer's constant (k ¼ 0.9), l is the X-ray wave-
length (1.540 Å), and b is the full width at half
maximum (FWHM) of the peaks at the q diffracting
angle from the Bragg's angle position.
The average crystalline sizes of the CuO/ZnO and

MgO/ZnO core/shell NPs were 28 nm and 36 nm,
respectively.
The intensity of the CuO and MgO peaks was

lower than that of the ZnO diffraction peaks, and
this corresponded to the EDX analysis results. The
average crystallite size decreased as the concentra-
tion of CuO and MgO decreased, indicating the
creation of nanoparticles with small sizes. The
minor alterations suggested that modifying the ZnO
with CuO and MgO had an impact on its structure.
The lattice distortion generated by the radius dif-
ference between the Znþ2, Cuþ2, and Mgþ2 ions
reduced the crystallite size [25,28].

3.2. SEM analyses

The morphology of the CuO/ZnO and MgO/ZnO
core/shell nanoparticles synthesized by the plasma
jets technique was investigated using scanning
electron microscopy (SEM) images. The SEM im-
ages demonstrated that the created particles had a
nanoparticle nature and morphology, that the
nanoparticles agglomerated, and that complete
separation was not achieved. The shapes of the
CuO/ZnO core/shell NPs synthesized by plasma
jets had the appearance of overlapped sheets, as
shown in Fig. 4, and the MgO/ZnO core/shell NPs
were spindle-shaped, as shown in Fig. 5. The pres-
ence of some large size grains and the aggregation
of the NPs could be attributed to the increased
surface areas and surface energies of the CuO and
MgO core NPs [25]. Because of the higher surface

area to volume ratio, the nanoparticles were held
together or agglomerated by the attractive physical
forces between them.

3.3. EDX analyses

To the knowledge of the synthesized samples
chemical composition, the energy dispersive X-ray
(EDX) analysis was used. The presence of peaks
related to Cu, Zn, and O elements in the CuO/ZnO
core/shell nanoparticles was confirmed by the EDX
spectrum, as shown in Fig. 6., and Mg, Zn, and O
elements in the MgO/ZnO core/shell nanoparticles,
as shown in Fig. 7. The composition of the core/shell
NPs, as confirmed by the EDX analysis, was pure,
with no other impurity elements present. The
plasma jet technique successfully synthesized CuO/
ZnO and MgO/ZnO core/shell nanoparticles, as
evidenced by the EDX spectra, confirming the
verified XRD result. The percentages of the com-
positions (weight % and atomic %) of the Cu, Mg,
Zn, and O in the CuO/ZnO and MgO/ZnO core/
shell NPs are stated in Fig. 6 and Fig. 7.

3.4. TEM analysis

A transmission electron microscopy (TEM) anal-
ysis was carried out to confirm the synthesis of the
core/shell nanoparticles with atmospheric plasma
jets due to the ability to measure the thickness and
the distance between the core and shells. The in-
formation relevant to the shape, size, and aggrega-
tion was also obtained from TEM analysis.
Additionally, the TEM analysis demonstrated that
there were two different regions. The dark inner
part represented the core, and the shiny part sur-
rounding the dark region represented the shell,
confirming the synthesis of CuO/ZnO and MgO/
ZnO core/shell nanoparticles. The Image J software
program was used to analyze the TEM image to
calculate the particle sizes. The average size of the
CuO/ZnO core/shell NPs was 32 nm, as indicated in
the size of particles histogram in Fig. 8b, and the
MgO/ZnO core/shell NPs had an average size of
70 nm, as shown in the size of particles histogram in
Fig. 9b.

3.5. Optical properties

The optical absorption properties of hybrid CuO/
ZnO, MgO/ZnO core/shell nanoparticles generated
using the atmospheric plasma jets (APJs) technique
were characterized using UVevis spectroscopy. The
optical characterization of the nanoparticles pro-
vided information about physical properties such as
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absorbance and bandgap energy. A UVevis spec-
trophotometer is based on sample light absorption.
The bandgap is the key optical parameter. Plotting
the experimental absorbance data is a common
method to measure the optical band gap of nano-
particles. The bandgap was measured directly from
lcut by applying Planck's law, as shown in Equation
(2) [27]:

Eg ¼ hc/lcut ¼ 1240/lcut (2)
whereEgistheopticalenergygap,h¼(6.626�10�34Js) is
Planck's constant, c¼ (3� 108 m/s) is the light velocity,
and lcut is the cut-off wavelength corresponding to the
optical bandgap. lcut was determined graphically from
the extrapolation of the linear region.
The electronic interactions caused by the ZnO

shell that was created on the surface of the CuO core
and MgO core nanoparticles were investigated
using the UVevis absorbance measurements of the

CuO/ZnO and MgO/ZnO core/shell NPs synthe-
sized with the atmospheric plasma jet technique. At
room temperature, UVevis absorption spectra of
CuO/ZnO and MgO/ZnO core/shell nanoparticles
as a function of wavelength are shown in Figs. 10
and 11. Broad absorption peaks were observed for
CuO/ZnO core/shell NPs in the wavelength range
of 300 nm to 400 nm, and 300 nm to 500 nm for
MgO/ZnO core/shell NPs.
Fig. 10 shows the optical absorption of the CuO/

ZnO core/shell NPs. We observed that the absorp-
tion edge of these nanoparticles exhibited a blue
shift due to the overall size. The total size of the
core/shell was greater than the core size after a shell
was created around the core surface. This blue shift
behaviour of the CuO/ZnO core/shell NPs was ex-
pected to increase the optical band gap value
(Eg ¼ 3.01 eV).

Fig. 4. SEM images of CuO/ZnO core/shell NPs synthesized by plasma jet technique at different magnification.
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Fig. 5. SEM images of MgO/ZnO core/shell NPs synthesized by plasma jet technique at different magnification.

Fig. 6. EDX spectra of the CuO/ZnO core/shell nanoparticles synthesized by plasma jet.
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Fig. 7. EDX spectra of the MgO/ZnO core/shell nanoparticles synthesized by plasma jet.

Fig. 8. (a). TEM image of CuO/ZnO core/shell NPs, (b). Size of particles
histogram of CuO/ZnO core/shell NPs synthesized by plasma jet.

Fig. 9. (a). TEM image of MgO/ZnO core/shell NPs, (b). Size of particles
histogram of MgO/ZnO core/shell NPs synthesized by plasma jet.
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In contrast, it was noted from Fig. 11 that the
MgO/ZnO core/shell NPs' absorption edge was
shifted to a longer wavelength (redshift), this
redshift behaviour was expected to decrease the
optical bandgap (Eg) value. According to Kumar
et al. (2013) [29], the aggregation in the samples
might have been responsible for the redshift. For the
MgO/ZnO core/shell NPs, the bandgap energies
were 2.8 eV. This result was less than reported in the
literature review [30,31].
This behaviour could have been due to the com-

bination of ZnO ions in the MgO lattice. The
outcome was consistent with Maruthai et al. (2018)
[31]. The MgO/ZnO core/shell nanoparticles
showed a significant absorption at wavelengths
below 550 nm. This was due to the higher absorp-
tion of the incident photon energy by the molecules
in the lower energy levels, which caused the mole-
cules to be excited to higher energy levels. The in-
crease in the absorbance of the MgO/ZnO core/shell
NPs compared with the MgO and ZnO NPs re-
ported in the previous literature might have been

caused by various factors such as particle size, ox-
ygen deficiency, or defects in the grain structure
[25,32].
Based on the absorbance spectra, the absorption

coefficients of the CuO/ZnO and MgO/ZnO core/
shell nanoparticles were determined graphically by
applying Tauc's relationship for direct transition, as
shown in Equation (3) [33]:

(ahy)r ¼ A(hy�Eg) (3)

Where a is the absorption coefficient, h is Planck's
constant, y is the incident photon frequency, A is a
constant equal to 0.9, Eg is the optical energy gap,
and r is a value that depends on the nature of the
transition type (r ¼ 2) for the allowed direct transi-
tion. Plotting a graph between the photon energy
(hn) and (ahn)r is a common method for determining
a bandgap by extrapolating the straight line to the
axis intercept, as shown in Figs. 12 and 13.
For the CuO/ZnO core/shell NPs, the value of Eg

was 3.3 eV. This result agreed well with that of Li

Fig. 10. CuO/ZnO core/shell nanoparticles optical absorption spectra.

Fig. 11. MgO/ZnO core/shell nanoparticles optical absorption spectra.

Fig. 12. Optical band gap energy for CuO/ZnO core/shell NPs.

Fig. 13. Optical bandgap energy for MgO/ZnO core/shell NPs.
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et al. [34]. The Eg of the CuO/ZnO NPs was found
higher than for the CuO NPs in the reported
literature. The increased energy gap between the
conduction and the valence bands of the CuO/ZnO
core/shell NPs could be attributed to the decreased
crystalline size. Hence, it might be concluded
that the ZnO shell NPs extended the energy gap
of the CuO NPs [35]. Furthermore, the bandgap
value for the MgO/ZnO NPs was 3.1 eV, and
this result was in good agreement with that of
Shi et al. (2015) [36].

4. Conclusion

The plasma jet technique was used to successfully
synthesize CuO/ZnO and MgO/ZnO core/shell
NPs. This synthesis technique provided nano-
particles with high purity according to XRD and
EDS analyses. The XRD results showed that the
nanoparticles were purely crystalline, and the
average crystallite sizes were 28 nm and 35.58 nm
for the CuO/ZnO and MgO/ZnO core/shell NPs,
respectively. The SEM and TEM results exhibited
the formation of aggregated small particles with a
mean diameter of 32.2 nm for the CuO/ZnO core/
shell NPs and 70 nm for the MgO/ZnO core/shell
NPs. The results obtained from our study demon-
strated that the CuO/ZnO and MgO/ZnO core/shell
NPs exhibited excellent optical properties for the
absorption and bandgap, and the NPs could be
more active in visible light for various applications
such as photovoltaics.
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