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from Water by Zn-doped TiO2 Nanoparticles with
Different Applications
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Abstract

Water purification via adsorption without energy consumption was considered a green process. Zn-doped TiO2

nanoparticles were fabricated by the Solegel method and characterized by different analysis techniques. Zinc doping of
TiO2 increases the surface area to 26.7m2g-1 with adsorption results, 75.1%, 71.1%, and 68.2% for methylene blue,
ofloxacin, and SLS, respectively. Variable affecting factors on adsorption have been studied. The adsorption behavior
fitted with Langmuir and Freundlich equations than Temkin isotherm, indicating the preferred heterogeneous
adsorption at equivalent adsorbent sites. The application of nanoparticles in many synthetic specimens of pollutants
gave excellent removal results, which exceeded 75% of detoxification.

Keywords: Nanoparticles, Zn doping, TiO2, Adsorption, Solegel, Characterization, Synthetic laboratory specimens,
Isotherm

1. Introduction

O ne of the most current serious challenges sci-
entists face worldwide is water pollution.

Various sources lead to the contamination of water
by multiple pollutants. The most affecting factor in
water is the industry's continuous progress in
different fields. Industrial wastes lead to elevated
levels of other contaminants, resulting in water
contamination and high toxicity parameters [1e5].
One of the heaviest industries is the textile fabrica-
tion or the paint industry. The utilization of various
dyes led to the high concentration of these organic
compounds in wastewater. These complex com-
pounds have extremely toxic effects when accumu-
lated in a high percentage of living cells because of
their continuous discharge in an aquatic environ-
ment, causing various skin infections respiratory
system and can cause cancer.

Various pharmaceutical products like antibiotics
were another type of common pollutants. Variable
antibiotics have been manufactured to face different
diseases which attack both animals and humans
[6e10]. By that time, the continuous consumption of
antibiotics and subsequent release of their wastes
into the environment through the ecosystem caused
their accumulation in living organisms to high and
dangerous levels [11e16]. This problem affects the
quality of water and the medical effect of these
drugs and generates microbial resistance [17e20].
The most common compounds which are used

everywhere in different products are surfactants.
They are used in detergents for toothpaste, sham-
poos, shaving foams, floor cleaners, clothes, etc.
Surfactants are also used to fabricate various types
of cosmetics for skin and hair care products [21e23].
We have to imagine the amounts of these complex
compounds released through water without
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subsequent several treatment stages. The shortage
in the treatment of water from these accumulated
amounts of toxic compounds could lead to harmful
and horrible results. These complex products are
not biodegradable and accumulate in water and
subsequently in a living organism's cell, leading to
several types of diseases and dangerous and carci-
nogenic effects [24e33].
Variable analytical techniques have been

employed to remove these common pollutants from
water in different treatment processes such as
chemical coagulation, sedimentation, reverse
osmosis, and electrodialysis [34e36]. Recently,
nanoparticles have been employed in wastewater

treatment via adsorption as a green and energy-
saving purification without any subsequent harmful
effects of energy consumption [36e44]. Bare TiO2

and zinc-doped TiO2 nanoparticles have been
employed in this field and have given excellent re-
sults. These nanoparticles have been synthesized by
a solegel method characterized by its simplicity and
can be carried out at ambient temperature with few
procedure needs. Doping of TiO2 by zinc species
improves its adsorption properties. This process
involves the sharing of electrons between an
adsorbent and an adsorbate, and a resulting thin
layer of chemical compounds is formed [5,45e48].
Adsorption is an essential class of catalysis that is

preferred more than many other chemical tech-
niques for wastewater treatment. Different types of
common adsorbents are widely used in toxin re-
movals like clay, activated carbon, graphene, and
different metal oxides [49e51]. TiO2 and zinc-doped
TiO2 nanoparticles can effectively absorb various
pollutants because they are characterized by their
high porosity and enhanced surface area.
It is known that the applicability of different

nanomaterials in wastewater treatment in light via
photocatalytic degradation or sonophotocatalytic
degradation processes [52e57]. But this work dis-
cusses the high performance of Zn-doped TiO2 than
bare TiO2 in removing organic compounds in the
dark without any assisting preparations or proced-
ures with very little amounts of nanomaterial and
free of energy consumption.

The choice of toxins in this study, methylene blue,
ofloxacin, and sodium lauryl sulfate (SLS), is a
desire to prove their possible application in the
widespread treatment of water from common pol-
lutants and the ability of the nanoparticles of
simultaneous removal of cationic and anionic com-
pounds from water [58,59]. The study involved the
successful application of Zn-doped TiO2 nano-
particles on several synthetic samples of common
pollutants.
The chemical structure of selected pollutants in

this article (a) methylene blue, (b) ofloxacin, and (c)
sodium lauryl sulfate (SLS) is represented as follows
in the scheme (1):

2. Experimental

2.1. Chemical precursors, solvents, and solid
materials

The precursors of titanium and zinc were Tita-
nium (IV) butoxide (Ti(OCH2CH2CH2CH3)4) grade
97%, and Zinc citrate dihydrate (C6H5O7)2Zn3 $
2H2O respectively, methylene blue (MB) powder
[C16H18ClN3S], Cetyltrimethylammonium bromide
(CTAB) [(C16H33) N (CH3)3]Br and Sodium lauryl
sulfate (SLS) [CH3 (CH2)11OSO3Na)], sodium hy-
droxide (NaOH) obtained from SigmaeAldrich.
Ofloxacin (C18H21ClFN3O4) was obtained from Loba
Company (India). Absolute ethanol �99.9%, glacial
acetic acid (CH3COOH), and hydrochloric acid
(HCl) were obtained from SigmaeAldrich and
double-distilled water.
Other chemical materials as interfering species

were utilized without treatment and used as
received.

2.2. TiO2 solegel preparation

Titanium dioxide nanoparticles have been syn-
thesized via the solegel technique as the following
steps: 20 ml titanium precursor (Titanium (IV) but-
oxide) was stirred with 40 ml of 99.9% ethanol fol-
lowed by adding of 4 ml glacial acetic acid with
stirring for 30 min at 1000 rpm. This solution was
considered solution A.

Scheme 1. Chemical structure for the selected pollutants.
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Solution B involved the dissolution of 4 g of CTAB
powder was dissolved in 100 ml of double-distilled
water at 70 �C using another flask with stirring for
10 min [45]. Solution A was added to B dropwise
with strong stirring to avoid agglomeration. The
vigorous stirring continued for 12 h. The formed
solid particles were isolated by centrifugation at
6000 rpm for 5 min and removing excess solution.
The precipitate was washed several times with
double distilled water and ethanol. The resulting
nanoparticles were dried at 70 �C for 6 h, then
calcined at 450 �C for 4 h with a 5 �C/min ramp.

2.3. Preparation of Zn doped -TiO2 nanoparticles

Considering the previous solegel preparation
of TiO2 nanoparticles, Zinc citrate dihydrate
(C6H5O7)2Zn3$2H2O was dissolved in double-
distilled water, corresponding to about 5% wt Zn to
the total amount of TiO2. The solution has been
vigorously stirred for 1 day. The resulting precipi-
tate was filtered, dried at 70 �C of obtaining nano-
particles of Zn doped -TiO2 at 70 �C for 6 h and
calcined at 450 �C for 6 h and 5 �C/min ramps.

2.4. Characterization

TiO2 and Zn doped -TiO2 chemical structure was
investigated by FTIR (FT/IR-6800 JASCO Japan).
XRD phase pattern (Lab XRD-6000 SHIMADZU
Japan) to study particle size different structure
phases with a scan rate of 8� min�1. SEM surface
textures were provided by (JSM IT 100 JEOL Japan).
The shape and size of nanoparticles were evaluated
using HR-TEM (JOEL 2000). UV spectrophotometer
(UV-2450 SHIMADZU Japan) is used to measure the
absorbance of the pollutants after being subjected to
treatment. The surface uptake performance of
nanoparticles has been studied by removing three
common toxic pollutants (methylene blue dye,
ofloxacin antibiotic, and the detergent sodium lauryl
sulfate (SLS).

2.5. Adsorption procedures of pollutants

Bare TiO2 and Zn doped-TiO2 nanoparticles have
been utilized in the adsorption of pollutants by
different doses of adsorbent (3, 5, 7, 10, 15, and
20 mg) and variable initial concentration range of
dye, drug, and surfactant (3e20 mg/ml). The pH
factor was studied using different pH solutions of
values (1, 3, 5, 7, 9, and 12). The effect of temperature
was examined in the range of (20e45 �C). The
absorbance values were measured at 663 nm and
took a reading every 5 min during continuous

stirring with nanoparticles. The same parameters
were studied for the other pollutant and the removal
of ofloxacin, and SLS was spectrophotometrically
recognized at 284 nm and 247 nm, respectively, as
seen in Table 1.
The effect of interfering species in total solution

was examined using "glucose, TiO2, KCl, Diclofenac
sodium" as interfering pollutants at higher con-
centrations 50-fold than that of dye, drug, and
detergent. These measurements were carried out
when the preparation of 10 ml of 10 mg/ml of
methylene blue, ofloxacin, and 200 mg/ml SLS was
prepared, followed by taking the blank solution
absorbance. After stirring the interfering compo-
nent for 5 min, another absorbance value was
measured.

2.6. Applications in water samples

After studying all of the above influencing factors,
it was essential to give a vital application through
the treatment of some artificial laboratory samples.
These samples were synthesized at varying con-
centrations of these different complex pollutants.
Then modified Zn doped -TiO2 nanoparticles were
introduced into the treatment process and stirred
with 10 ml of each wastewater sample. Each sample
was stirred for 5 min at 1500 rpm and then filtered,
followed by absorbance measurement of the resul-
tant clear solution by UVevisible spectrophotom-
eter, at 663 nm for methylene blue, 284 nm for
ofloxacin, and at 247 nm for the anionic detergent.

3. Results and discussion

3.1. Characterization of the fabricated
nanoparticles TiO2 and Zn doped -TiO2

3.1.1. Fourier transform infrared spectroscopy (FTIR)
The FTIR analysis of doped and undoped TiO2

nanoparticles represents a variable specific vibration

Table 1. Experimental conditions for dye, drug, and surfactant
adsorption.

Experimental conditions

Parameter Condition

Solution volume (ml) 10 ml
Stirring speed (rpm) 1500 rpm
Adsorbent dose (mg) 3e20 mg
Pollutant initial concentration (mg/ml) 3e20 mg/ml
pH 1e12
Temperature oC 20e45 �C
Wavelength (nm) 663 nm for dye

284 nm for drug
247 nm for surfactant

Frequent measurement Every 5 min
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and stretching bands which can be illustrated as fol-
lows: a clear peak at 495 cm�1 attributed to the
bending vibrationmode of (TieOeTi). For the doped
nanoparticles, it was noticed that the doping process
of TiO2 by zinc species causes the modification of the
spectrum shape of range (460e650) cm�1 due to the
change in nanoparticles structure and resulted in the
appearance of stretching band of (ZneO) at 470 cm�1.
The hydroxyl group has a peak at 1650 cm�1 repre-
senting the bending vibration mode of adsorbed
water at the surface of nanoparticles.
Broadband between (3400e3650) cm�1 refers to

stretching vibration of OeH hydroxyl groups as a
result of the hydrolysis of titanium precursor by

alcohol in addition to the reaction between nano-
particle surface and water. From the FTIR spectrum
in Fig. 1, it is clear that the increase in the intensities
of both stretching and bending peaks at (1650, be-
tween 3400 and 3600) results from successful zinc
doping in the crystal lattice of TiO2 [5].

3.1.2. X-ray diffraction characterization (XRD)
The nanoparticles fabricated via the sol-gel

technique were mainly anatase phase, proved by
XRD patterns in Fig. 2. For TiO2 and Zinc doped
-TiO2 nanoparticles. The doping process affected
particle sizes to smaller sizes by a few zinc species
and prevented the transforming anatase phase.

Fig. 2. XRD of TiO2 and Zn doped -TiO2 nanoparticles.

Fig. 1. FTIR curves of TiO2 and Zn doped -TiO2.
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A clear peak at 25.2� refers to the anatase phase, in
addition to the smaller peaks 37.6�, 48.0�, 54.9�, and
62.6�. The patterns of TiO2 and Zn doped -TiO2 are
close to each other due to the few doped impurities,
but Zn species gave more stabilization to the anatase
phase because of its electronic configuration, in
addition to the particle sizes that were calculated by
Scherer's equation have average particle sizes for

titanium dioxide were 20.2 nm and 29.5 nm, how-
ever, gave lower values of 19.4 nm and 25.1 nm for
Zn-doped TiO2 [5].

3.1.2.1. Morphological and characterization. Each
transmission and scanning electron microscope
provided with (EDX) gives valuable feedback and
sufficient study about the material's surface and the

Fig. 3. (a, b) SEM and TEM images for TiO2 and Zn doped -TiO2 with EDX.
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synthesized nanoparticles' morphology and shape.
The resultant synthesized modified nanomaterial by
doping` with different species can be examined by
(EDX) studies. EDX evaluated the successful doping
of TiO2 nanoparticles by zinc in this work. As seen
from Fig. 3 (a, b), most of the particles have a mainly
spherical shape with nearly a similar particle size,
but the doped nanoparticles have smaller sizes as a
result of doping by species with smaller ionic radii
like zinc, which replace the titanium ions in the
crystal lattice, causing their retraction to lower
dimensions.
TiO2 nanoparticles have a size range (22e30 nm)

that matches XRD results. Doping decreases this
size range, which became between 16 nm and
27.5 nm due to distortion of crystal lattices with
more restriction [46,47].

3.1.3. BET surface area analysis
N2 adsorptionedesorption measurements

measured the synthesized nanoparticles TiO2 and
zinc doped TiO2 to study BET surface area and pore
radius. The determined values were 15.512 m2g-1
and 17.623 nm for TiO2 and 26.756 m2g-1 and
1.911 nm for zinc-doped TiO2, illustrated by Fig. (4)
a, b, and Table 2.
From the measured data, it is clear that the dra-

matic modification of surface area and porosity with
increasing the number of pores for Zn-doped TiO2

more than bare TiO2 explains the better adsorption
properties for modified nanoparticles [60].

3.2. Adsorption of pollutants onto modified TiO2

Variable removal applications have been carried
out via adsorption technique using TiO2 and Zn
doped -TiO2 nanoparticles to examine their ability
to remove different toxins from wastewater and test
the efficiency of the modified surface. The examined
applications involved the adsorption of the most
common pollutants, which are present everywhere
and used continuously for different purposes like
the example of dyes (methylene blue), an example
of drugs (ofloxacin), and an example of surfactants
(Sodium lauryl sulfate (SLS)). Calculating the
removal% after equilibrium between the pollutants
(methylene blue, ofloxacin, and SLS) and the surface
of the nanoparticles (Bare TiO2and Zn-doped-TiO2)
according to the following equation (1):

Removal%¼
�
Ci �Ce

Ci

�
� 100 ð1Þ

where (Ci), (Ce) is the initial concentration of the
pollutant and at equilibrium (mg L�1). These cal-
culations can be computed from data on absor-
bance. The initial concentration and concentration
values at equilibrium can be replaced by the values
of initial absorbance (Ai) and absorbance at equi-
librium (Ae).

3.2.1. Removal results of pollutants by adsorption
Removal of toxins from wastewater was examined

by different doses of TiO2 and Zn doped -TiO2 (5, 7,

Fig. 4. N2 adsorption/desorption isotherms for (a) TiO2 and (b) Zn doped -TiO2.

Table 2. N2 adsorptionedesorption measurements for TiO2 and zinc doped TiO2.

Sample Surface area (m2g�1) Pore radius (nm) Pore volume (Cm3g�1)

TiO2 15.512 17.623 0.2925
Zn doped -TiO2 26.756 1.911 0.1381
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10, 15, and 20 mg) in solutions with different pH
values (1, 3, 5, 9, and 12). Different initial concen-
trations of the organic dye (3, 5, 7, 10, 15 ppm) have
been examined. The effect of temperature was
studied at a range of (20e45 �C) in addition to the
time factor. From the plotted curves (Fig. 5), it is
clear that the increasing of nanomaterial enhances
the adsorption results for all pollutant removal due
to more surface area and the increasing of available
pores and active sites. For methylene blue, the

removal was enhanced in a basic medium more
than an acidic medium due to the increase of
negatively charged sites on the adsorbent surface as
methylene blue is a cationic dye. Ofloxacin has both
basic and acidic groups in its chemical structure,
which causes different behavior towards the change
of the medium pH range. Removal of the ofloxacin
drug gave the best results between weak, acidic, and
weak basic mediums and became quite stable in a
neutral medium. The best removal range of pH for

Fig. 5. Factors affecting the adsorption process.
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the drug was between 4 and 9. The anionic surfac-
tant SLS possess a negative charge on their hydro-
philic end. The best removal results were from
acidic to quite a neutral medium of pH (3e6) due to
the availability of positive charged adsorption active
sites, which decreased by increasing the pH by more
than 7. For the three applications, the uptake of the
pollutants was enhanced when the temperature
increased from 20 to 45 �C, due to the chemical re-
action between the contaminants and the adsorbent
surfaces and due to the increasing intraparticle
diffusion of adsorbate ions between adsorbent pores
by rising of temperature reflecting endothermic
adsorption process. The adsorption efficiency
increased directly with time till saturation of the
surface adsorption sites and reached some stability
due to the equilibrium between adsorbent and
adsorbate. The removal efficiency decreased with
the increasing initial concentration of pollutants due
to the insufficient active sites for adsorption, and
hence the removal activity decreased.
For the three applications, when comparing

removal results carried out by TiO2 and zinc-doped
TiO2 nanoparticles in the best conditions, there are

more enhancements to the adsorption efficiency for
the modified nanoparticles. The modified nano-
particles Zn doped-TiO2 gave a more successful
outcome as seen from Figure (6) and more adsorp-
tion activity than TiO2 overall affecting factors due
to better surface properties for modified nano-
particles with higher surface area and better
porosity more available variables pore sizes as
active adsorption sites.

3.2.2. Behavior and mechanism of adsorption of zinc-
doped TiO2

The analysis results by BET revealed the
enhancement of the surface properties of TiO2 by
zinc doping, as illustrated in Table 2. XRD data
prove the positive impact of zinc doping due to the
synthesis of smaller nanoparticles and the incorpo-
ration of zinc ions of smaller ionic radii in the TiO2

crystal lattice, which results in lattice distortion. The
difference in the coordination between Ti4þ, Zn2þ

causes the availability of free electrons at the
nanoparticle surface, which enhances the adsorp-
tion ability of doped nanoparticles. The pH factor
has a special role in controlling the adsorption

Fig. 6. The removal efficiency of TiO2, Zn doped -TiO2 over different factors.
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process. At lower pH than 5 the availability of Hþ

and protonated active sites tend to adsorption of
anionic SLS and repulsion with cationic species
(methylene blue). Higher pH values of more than 8
cause the depletion of protons in addition to the
deprotonation of hydroxyl groups on nanoparticle
surfaces and better adsorption of methylene blue.
Ofloxacin chemical composition is characterized by
anionic and cationic groups in its chemical struc-
ture, which reflect the possible adsorption in a wide
pH range. The negative charge of the TiO2 and the
presence of positive zinc sites gave the diversity of
doped nanoparticle surface and the ability of
adsorption of methylene blue cationic dye and SLS
anionic surfactant and ofloxacin drug.

3.3. Effect of the interfering species on the
adsorption efficiency

For examining the effect of the interfering species,
the interfering pollutant should have a higher con-
centration (about 50 fold) to have the interfering
effect on the value of absorption of the dye, drug,
and the surfactant by UV spectrophotometer by
which the absorbance was taken without and with
each of the interfering material taking in consider-
ation that the initial value of absorbance were 0.657,
1.74 and 0.124 for 10 ppm methylene blue, 10 ppm
ofloxacin, and 200 ppm SLS detergent respectively.
The interfering species were "glucose, TiO2, KCl,
Diclofenac sodium, ammonium salt, lead acetate,
and CTAB and the results were summarized in
Table 3.

3.4. Adsorption isotherm for methylene blue,
ofloxacin, and detergent

The efficiency of adsorption depends on the
chemical and physical properties of the adsorbents.
This work studied different adsorption isotherms
(Langmuir, Freundlich, and Temkin) for pollutants
on the surface of modified TiO2.

3.4.1. Langmuir adsorption isotherm
Langmuir's adsorption isotherm model studies

the coverage of the surface of the adsorbent with
maximum adsorption capacity (Qmax) by homoge-
neous monolayers on identical equivalent active
sites in a simple system [60,61].
The values of QE and Qmax are the amount of

adsorbates at equilibrium and a maximum mono-
layer adsorption capacity (mg/g), respectively, can
be calculated from equation (2):

1
qe

¼ 1
qmax

þ 1
qmaxkLCe

ð2Þ

where Ce is the concentration of the adsorbates at
equilibrium (mg/L) and KL is the Langmuir
adsorption constant. The values of qmax and kL can
be calculated from the graph between 1/qe and 1/Ce

through the slope and intercept as in Table 4 and
Fig. 7.

3.4.2. Freundlich adsorption isotherm model
Freundlich adsorption isotherm can be applied to

study adsorption at heterogeneous surfaces [61e64].
Qe is the adsorbed pollutant per gram of the
adsorbent at equilibrium (mg/g) that can be repre-
sented from equation 3:

Log Qe ¼ Log Kf þ 1/n Log Ce (3)

where Kf is the Freundlich isotherm constant (mg/g),
n is the adsorption intensity, and Ce is the equilib-
rium concentration of adsorbates (mg/L).
The Kf constant value is considered an approxi-

mate indicator of adsorption capacity. When n is
equal to 1, the partition between the two phases is
independent of concentration. The values of 1/n, Kf

can be calculated from the slopes and intercepts of
the previous curves as in table (4) and Fig. 7.

3.4.3. Temkin adsorption isotherm model
Temkin adsorption isotherm assumes that the

energy of adsorption for molecules decreases

Table 3. The effect of the interfering species on the adsorption efficiency.

Interfering Components M.B. Interfering effect % Ofloxacin Interfering effect % SLS Interfering effect %

None 0.657 .... 1.74 .... 0.124 ....
Glucose 0.616 6.24 1.741 .... 0.123 0.8
Diclofenac sodium 0.613 6.7 1.734 0.34 0.120 3.2
KCl 0.631 3.96 1.748 .... 0.129 ....
TiO2 0.564 14.1 1.685 3.2 0.114 8.1
CTAB 0.653 0.6 1.738 0.11 0.123 0.8
NH4

þ 0.655 0.3 1.739 0.1 0.124 ....
Lead acetate 0.651 0.9 1.736 0.22 0.122 1.6
Methylene blue 0.66 .... 1.735 0.25 0.12 3.2
Ofloxacin 0.657 .... 1.741 .... 0.122 1.6
SLS 0.656 0.1 1.739 0.1 0.124 ....
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linearly with increasing the coverage of the surface
of the adsorbent due to the adsorbateeadsorbent
interaction. Temkin also assumes that distribution
is characterized by uniformity up to maximum
binding energy [63,64]. The following equation (4)
can describe the Temkin isotherm model:

Qe ¼ B Ln A þ B Ln Ce (4)

where: Qe: is the metal adsorbed in mg/gram of
adsorbent, Ce is the concentration of the adsorbates at
equilibrium in ppm. The value of A is the equilibrium
binding constant, and B is a constant related to the
heat of sorption,which is equal to B¼RT/bT.WhereR
is the ideal gas constant (8.314 J mol�1 K�1 and bT is

Fig. 7. Isotherm curves for the three pollutants.

Table 4. Parameters of variable isotherms.

Parameter Methylene blue Ofloxacin Detergent

Langmuir isotherm Qmax 9.304 11.28 7.5
KL 0.025 0.249 0.172
R2 0.97 0.938 0.92

Freundlich isotherm 1/n 0.54 2.62 1.42
N 1.85 0.28 0.7
Kf 1.43 2.81 0.92
R2 0.937 0.93 0.941

Temkin isotherm A 5.073 4.021 3.51
B 0.33 0.21 0.137
R2 0.882 0.89 0.88
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the Temkin isotherm constant), Temkin parameters
can be determined from the Qe vs. log Ce graph.
All parameters of variable isotherms Langmuir,

Freundlich and Temkin are summarized in Table 4
and Fig. 7. In both models of adsorption isotherms
Langmuir and Freundlich, it was noticed that the
straight lines and higher values of R2 than that ob-
tained by the Temkin equation indicated heteroge-
neous adsorption on the surface of the adsorbent
but at many equivalent active sites. That explains
the adsorption behavior fitted with Langmuir and
Freundlich equations than Temkin isotherm.

3.5. Practical applications on water samples

For the potential application of Zn doped -TiO2

nanoparticles in the treatment of some synthetic
polluted water samples. New stock solutions of
pollutants (methylene blue 10 ppm, ofloxacin
7 ppm, and SLS 50 ppm) have been prepared and
diluted with water in different amounts to obtain ten
different concentrations (Co) of pollutant mixture
which have been treated with nanoparticles by
mixing and vigorous stirring.
The initial concentrations and at equilibrium (Co,

Ce) were determined according to the absorption
reading with removal % (R %) calculation. The
results which were summarized in Table 5 show
that the cationic dye, quinolone antibiotic (oflox-
acin), and detergent (SLS) were effectively adsor-
bed on the surface of modified Zn/TiO2

nanomaterial, reflecting its applicability and high
performance in the removal of organic compounds
from the wastewater by great amounts exceeded
75% for each, inhibiting their accumulation and
subsequent dangerous environmental side effects
and free of consumed energy.

3.6. Advantages and the reusability of Zn doped
TiO2

The modified nanoparticles were characterized by
their easy preparation procedure; very low cost,
available raw materials in addition to very small
required amounts with high removal activity for
variable pollutants.
After each adsorption application, the nano-

particles can be washed by ethanol several times
and employed for another adsorption treatment for
about 2e3 cycles, but with descending of their ac-
tivity due to repeated removal processes as shown
in Figure (8).

3.7. Adsorption efficiency comparison with other
works

Many adsorption studies have been established
using various adsorbents to remove different pol-
lutants, such as methylene blue ofloxacin and SLS.

Table 5. Removal results of pollutants from synthetic samples.

Sample code Methylene blue Ofloxacin SLS

Co (mg/L) Ce (mg/L) R% Co (mg/L) Ce (mg/L) R% Co (mg/L) Ce (mg/L) R%

1 9.34 2.92 68.7 3.16 3.16 65.1 50.1 21.1 57.8
2 5.97 1.24 79.3 4.47 4.47 63.0 28.4 10.2 64.0
3 4.83 1.1 77.2 2.66 2.66 47.3 45.3 20.4 55.0
4 3.81 1.22 67.9 1.84 1.84 37.5 33.2 14.2 57.2
5 2.89 1.01 65.0 4.13 4.13 76.9 25.8 17.6 68.2
6 2.12 1.52 28.3 4.55 1.93 57.5 44.1 13.6 69.1
7 3.42 1.24 63.7 3.21 1.66 48.2 23.2 10.2 48.4
8 2.51 1.22 51.3 6.44 2.22 65.5 36.2 14.1 38.9
9 3.14 1.63 48.0 5.21 2.35 54.8 39.3 15.4 60.7
10 1.96 1.2 38.7 3.45 1.24 64.0 47.9 12.9 73.0

Fig. 8. Reusability of Zn doped TiO2.
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Their maximum adsorption results (Qmax) were
summarized in Table 6. Many of these adsorbents
have higher costs and are less active than our
modified nanoparticles, characterized by their low
cost-benefit with simple and rapid application in
ambient conditions [35,50,65].

4. Conclusion

The study reflects a positive impact on the
importance of the modified zinc doped TiO2
nanoparticles in wastewater treatment by
adsorption. The successful doping of anatase TiO2

by zinc species affects the crystal particle sizes to a
smaller range of (19e25 nm) and increases the
surface area to be 26m2g-1. The modified zinc
doped TiO2 nanoparticles have high adsorption
activity in wastewater treatment with excellent
removal results, 75.1%, 71.1%, and 68.2% for
adsorption of methylene blue, ofloxacin, and SLS,
respectively, in synthetic samples without any
required energy or subsequent pollution. The
adsorption behavior was better discussed by
Langmuir and Freundlich isotherm models than
Temkin isotherm according to the R2 correlation
coefficient. The modified nanomaterial is charac-
terized by its good regeneration and reusability
for about 2e3 cycles. The removal of different
contaminants from wastewater via modified Zn-
doped TiO2 nanoparticles by adsorption can be
considered as an effortless, low-cost, and clean
process without the need for complex toxic
chemicals or consumed energy.
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