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Abstract

The Adaptive Optics technique has been developed to obtain the correction of atmospheric seeing. The
purpose of this study is to use the MATLAB program to investigate the performance of an AO system with
the most recent AO simulation tools, Objected-Oriented Matlab Adaptive Optics (OOMAO). This was
achieved by studying the variables that impact image quality correction, such as observation wavelength
bands, atmospheric parameters, telescope parameters, deformable mirror parameters, wavefront sensor
parameters, and noise parameters. The results presented a detailed analysis of the factors that influence
the image correction process as well as the impact of the AO components on that process.
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RESEARCH PAPER

Performance Simulation for Adaptive Optics
Technique Using OOMAO Toolbox

Mahmood K. Mirdan*, Raaid N. Hassan, Bushra Q. Al-Abudi

Department of Astronomy and Space, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

The Adaptive Optics technique has been developed to obtain the correction of atmospheric seeing. The purpose of this
study is to use the MATLAB program to investigate the performance of an AO system with the most recent AO simulation
tools, Objected-Oriented Matlab Adaptive Optics (OOMAO). This was achieved by studying the variables that impact
image quality correction, such as observation wavelength bands, atmospheric parameters, telescope parameters, deformable
mirror parameters, wavefront sensor parameters, and noise parameters. The results presented a detailed analysis of the

factors that influence the image correction process as well as the impact of the AO components on that process.

Keywords: Adaptive optics (AO), OOMAO, Strehl ratio (SR), Full turbulence, Residue turbulence, Noise

1. Introduction

daptive Optics (AO) technology has been

utilized for a variety of applications [1]. It
aims to capture images with higher resolution or to
achieve accurate beam control, which employs a
wavefront corrector to regulate and correct the op-
tical wavefront in real-time.

At the height of the cold war, the U.S. department
of defense launched a program to develop the first
AO system to obtain clearer images of foreign sat-
ellites flying overhead. Despite the difficulty, the
developments were a huge success and the real-
time atmospheric compensator closed the first loop
in the laboratory in 1973 [2]. Field experiments will
be followed by larger, quicker, and more effective
systems, so astronomers have become interested in
applying AO to astronomy. Currently, AO technol-
ogy has been used in astronomical observations [3],
retinal imaging [4], laser beam shaping [5], and
other fields [6—8].

An AO system, whether used for imaging or laser
beam propagation, is made up of three main com-
ponents that are at the heart of all current AO

systems. These components are the Wavefront
Sensor (WFS), the Deformable Mirror (DM), and the
Real-Time Computer (RTC) [9]. The majority of the
developed systems have a variety of supporting
subsystems. These subsystems include the wave-
front divider, which is shown in Fig. 1, as a beam
splitter and other optical components such as the
collecting telescope, imaging optics or scientific
camera, and pupil reimaging optics [10].

The configuration of an astronomical AO system
is normally set up as illustrated in Fig. 1, where
undistorted light beams from a distant reference
source travel through the turbulent atmosphere and
are absorbed by a telescope. The distorted optical
beam is then reduced in diameter [11].

After passing through the wavefront corrector the
deformed optical beam is sampled by a beam
splitter, which transmits a duplicate of the input
wavefront to the WFS. The WEFS determines the
wavefront departure from a plane wave by
measuring the local wavefront slope over an array of
subapertures and generating electrical outputs that
correspond to the observed optical errors [12]. The
data processor, represented by RTC, transforms
these error signals into electrical commands, which
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Fig. 1. AO systems arrangement.

are then given back to the wavefront corrector DM.
The control loop is closed to a specific number of
loop iterations, representing the AO process's
recurrence number [13].

2. Wavefront representations

The AO system aims to minimize phase aberra-
tions to the absolute minimum to restore image
quality in astronomical images. This can be done in
two sensing methods: the first is zonal representa-
tion, where the wavefront error is described for
every point or zone across the pupil. The phase
aberration profile in this study is represented using
the Zonal method in the form of regular grid sur-
faces of randomly generated values that follow the
Von Karman model of turbulence [14].

An alternative method is model representation. In
this approach, a sequence of smoothly varying
modes is often used to represent the wavefront
surface. These modes might be polynomials or other
functions that expand across the telescopes' pupil
plane [15,16]. The characterization of the wavefront
distortion by decomposing the phase into the Zer-
nike polynomials or modified Zernike polynomials
can be found in Refs. [17,18].

2.1. Strehl ratio
Several criteria may be used to assess an optical

system's performance. However, a parameter that is
more commonly used is the Strehl Ratio (SR).

The SR indicates how close the image is to the
theoretical diffraction limit, which is the ratio of the
maximum intensity of an actual image to the
maximum intensity of a fully diffraction-limited
image normalized to have the same total flux [19].

The SR of an image is determined by the variance

of the pupil phase, as follows [20]:
SR=exp(—a?) 1)
where o2 represents the variance of the phase ¢
measured in (rad?). It's clear for a pupil of any shape
that the SR for small aberrations is determined by
its variation throughout the apodized pupil rather
than its type.

The SR value is always between 0 and 1, and in a
real optical system, it is impossible to obtain an SR
of unity, where the aberrations and amplitude var-
iations in the pupil (for example, an annular aper-
ture) always reduce the SR [21].

2.2. Simulation toolbox

Simulation is essential for the development of any
AO system since it allows designers to set the pa-
rameters of the AO components, troubleshoot the
system, and even evaluate the efficiency of a system
on a specific instrument.

Some of the modeling tools are Code for Adaptive
Optics Systems (CAOS), which is a software appli-
cation that allows a quick study of all the modules in
a conventional AO system [22]. A second tool is Yao,
which stands for Yorick Adaptive Optics, which is
an open-source AO software simulation package
that is used to simulate medium-size AO systems
for extremely large telescopes [23]. It is fast, flexible,
and an open-source library on Github [24], where
installation is supported on Linux and OsX.

In this paper, Objected-Oriented Matlab Adaptive
Optics (OOMAO) has been utilized, which is a
Matlab toolbox and the most recent AO modeling
tool developed by Conan and Correia (2014) to
model an entire AO system [25]. OOMAO is
designed fully in the Matlab programming language
and employs various Matlab-built algorithms that
have been written and optimized in packages of
code. OOMAOQO's Matlab source code is freely
available to download on the Github website [26].

As the title implies, the package was designed in
an object-oriented style. Object-Oriented Program-
ming, or OOP, is a contemporary programming
language that allows for the easy and manageable
building of huge and complex software architec-
tures. OOP is a programming paradigm that focuses
on objects and data rather than actions and logic [27].
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OOMAO was built on a combination of classes
that represent the atmosphere, source, telescope,
DM, WEFS, and an imager of the AO system. This
basic set of classes enables the modeling of Natural
Guide Star (NGS), Laser Guide Star (LGS), Single
Conjugate Adaptive Optics (SCAO), and Laser To-
mography Adaptive Optics (LTAO) systems on
telescopes as large as extremely large telescopes.
OOMAO has its own dynamic influence function
model for simulating various types of DMs, LGSs'
cone effect, altitude thickness, and intensity profile
are emulated as well. Modal and zonal modeling
approaches are both implemented. OOMAO also
contains a large theoretical expression library for
evaluating the statistical features of turbulence
wavefronts.

3. Results and discussion

The simulation outputs of OOMAO have been
analyzed in general and OOMAOQO's class parameters
in particular. The analysis was carried out by
studying the image quality metrics and how they
were affected by the parameter changes.

In this study, the image quality metrics were
confined to SR, which is calculated by the empirical
expression in equation (1). SR is computed from the
phase variance of the aberrated wavefront and the
wavefront after the compensation. This process is
completed in two cases, with and without WFS de-
tector read-out noise.

Overall, the calculation outcomes will be four
vector rows for SR, where the phase of the aberrated
wavefront is referred to as “Full Turbulent” and the
phase of the compensated wavefront is referred to
as “Residue Turbulent.” While in the noise case, the
term “noise” is added to the labels (i.e., Full Tur-
bulent means AO off and Residue Turbulent means
AO on) it is good to mention that higher SR is
desired.

In this work, analysis of parameters variation
included the NGS's observed wavelength bands
regarding source class, the Fried coherence param-
eters rp and time constant 79 regarding atmosphere
class, the telescope aperture diameter regarding
telescope class, the number of DM's actuators and
actuator mechanical coupling regarding DM class,
the number of lenslets array regarding Shack-
Hartmann Wavefront Sensor (SH-WFS) class, and
finally the noise effect.

3.1. SR criteria of the observed bands

Several wavelength bands of observed NGSs have
been analyzed as shown in Table 1. OOMAO is

Table 1. NGS's observed wavelength bands.
Band

Spectrum

Visible

Wavelength (um)

440
500
640
790
1215
1654
2179

Infrared

AL—T—R<L=

*Special description of the title. (dispensable).

equipped with a set of photometric bands within the
photometry object. These band sets were plotted
against the SR of the aberrated and compensated
wavefront, as shown in Fig. 2.

To view the relationship between the AO correc-
tion ability and the photometric bands, the SR was
plotted as a function of the observed wavelengths,
as illustrated in Fig. 3.

The results in Figs. 2 and 3 were obtained using a
circular aperture with a telescope aperture diameter
of 3.6 m. The same atmospheric layers for each
wavelength were used with Fried coherence pa-
rameters ryg = 15 cm, the lenslets array is 102, 50%
DM's actuator coupling, and for 400 loop iterations
with detector read-out noise of about 5 photo-elec-
tron/pixel/frame.

It's clear that from Figs. 2 and 3, the correction
processes (compensations) are proportional to
longer wavelengths and high bands. Whereas they
head toward higher wavelengths, they are less
affected by atmospheric turbulence.

3.2. Fried parameter, time constant and seeing

The most important parameters in the AO field
are the Fried Coherence Length 7y and atmospheric
time constant 7, which have been analyzed. Fried's
parameter is a widely used descriptor of the level of
atmospheric turbulence at a particular site, while
the atmospheric time constant is the rate of change
in wavefront phase structure; this is due primarily to
the wind that carries the turbulence pattern as it
passes over the telescope.

SR was plotted as a function of the Fried coher-
ence length 1 in cm and atmospheric time constant
7o in milliseconds, as shown in Fig. 4, computed for
NGS at J-band with three identified atmospheric
layers, a 3.6 m telescope aperture diameter and a 10
lenslet array of SH-WEFS.

The results in Fig. 4, demonstrate that the SR of
the correction process has the same behavior as the
SR of the observed bands when compared to Fig. 3.
This returns to the proportional relationship in the
atmospheric structure-function equation between
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Fig. 2. SR as a function of the observed wavelength bands.

the Fried coherence length and wavelength, where
r002%° = SRaAar.

Further, the SR has another proportional rela-
tionship which is that with 7y, since 7y has propor-
tionality with ry as 79 = 0.314 ro/ v (v stands for wind
speed), Toary=SRaryary this explains the SR incre-
ment with time constant rate. The importance of 7
calculations to an AO system is to determine the
Greenwood frequency of that system, which gives
an idea of how fast the AO system must respond to
the phase structure changes.

Also in Fig. 4, shows the strength of the turbulence
effects on the seeing disk (seeing is a term used to
illustrate how light entering a telescope can change
direction randomly), where the small values of r,
and 79 correspond to strong turbulence (poor
seeing), while large values correspond to weak

08 T r T
Residue Tubulent| ! §
--+-Residue (noise) ' '
——Full Tubulent

==+-Full (noise)

0.8 f-+-seeees

0.36 0.66 096 126 156
Wavelength (micron)

186 216

turbulence (good seeing). This highly depends on
the observation location.

For a deep investigation of the seeing effect, it's
plotted versus SR, as shown in Fig. 5. It is clear that a
bit of change in seeing disk caused a high incline in
the SR. This in turn caused a blurring in image
quality. That's due to the inverse proportional of

seeing € with Fried parameter as € = 0.98 Alrg
where € « ry!
3.3. Telescope aperture diameter

The telescope aperture diameter has been

analyzed and several circular aperture diameters in
meters are plotted versus SR, as shown in Fig. 6.

) (millisecond)
064 470 876 1282 1689 2095 2501 2907 3181

08

08

--+-- Residue Turbulent
Residue (noise)

—e—Full Turbulent ---4

--+-- Full (noise)

02

Fig. 3. SR as a function observed wavelengths.

Fig. 4. Fried Coherence Length and Time Constant vs. SR.



310 MK. Mirdan et al. / Karbala International Journal of Modern Science 8 (2022) 306—312

Residue Turbulent|---
--w-- Residue (noise)
—+—Full Turbulent
| =-+=-Full (noise)

Iogmseelng (arcsec)

Fig. 5. The performance of AO system with seeing effect.

This was carried out by a constant DM actuator
density across all tested apertures.

The results clearly show the inverse relationship
between SR and aperture diameter, so that when the
telescope aperture is increased by 1 m, the SR de-
creases by an average of about 17%.

The distinction here is that in the noise case at 1 m
aperture diameter, SR has the same value as the full
aberrated and compensated phase. This is the
reason that the AO system is built for telescopes
with 3 m apertures or bigger.

3.4. Shack-Hartmann Wavefront Sensor lenslet
arrays

The phase recovery at subapertures of SH-WFS
lenslets has been analyzed and plotted against SR as
illustrated in Fig. 7, which also represents the
analysis of the number of actuators of DM since it
correlates to the lenslet arrays according to Fried
geometry. The analysis was performed for NGS at J-
band, D = 3.6 m, ry = 15, and actuator coupling of
50%.

08 T T T T : ;
i ' ' : Residue Turbulent
: ' : --+--Residue (noise)
0.6 |- N oo R I £=| —s—Full Turbulent
! ' ' : --«--Full (noise)

........

““““““

1 3 5 7 9 1 13 15
Telescope Diameter (m)

Fig. 6. The performance of AO system with telescope aperture diameter.

-------

Residue Turbulent
--=-.- Residue (noise)
=—=—Full Turbulent
===-Full (noise)

ry e ry re L]
0t 1 i 1 1
5° 10° 15° 20° 25

Number of Lenslets (or Nuber of Actuator +1)

2

30

Fig. 7. The performance of AO system with lenslets array size (or
actuator array size +1).

The results showed that the best lenslet array size
for an aperture diameter of D = 3.6 m is a 20 x 20
subaperture array.

3.5. DM's mechanical coupling

The DM actuators' mechanical coupling has been
analyzed and plotted versus SR as shown in Fig. 8,
and it was calculated for NGS at J-band, D = 3.6 m,
1o = 15 cm.

The coupling parameter in percentage is linked to
DM's influence function that gives DM the shape.
This parameter shows how much the movement of
one actuator will displace its neighbors. The anal-
ysis showed that actuators with high mechanical
coupling (>50%) reduce the compensation effi-
ciency by 25% and even get worse at very high
values. As is obvious in Fig. 8, for a full mechanical
coupling (90—100% actuator coupling) the perfor-
mance indicator was extremely dropped because
of the inability of DM to produce the required
compensations.

7 T T T T T -
0 H ' ' : : Residue Turbulent
06F : : ' : i |=-=-- Residue (noise) .
: : : : i | == Full Turbulent
05 ;--'---'?-------g-----—-g-'--"";‘\ -=*= Full (noise) 1
; : : AN e SO S 4
7 S
o : : : : : ' : A
@ 03F s
‘\
02F \‘ 4
Y
01F e
kY
0 ¥ ¥ + ¥ ¥ ¥ ¥ ¥
1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
Actuators Mechanical Coupling %

Fig. 8. The performance of AO system with actuators mechanical
coupling.
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3.6. Detector read-out noise

The read-out noise of the SH-WEFS detector is
investigated and analyzed. It's determined for NGS
at J-band with an apparent magnitude of 10,
D =3.6 m, rp =15 cm, and a lenslet array of SH-WFS
10> with a closed-loop number of iterations of 20.
The measuring unit of this type of noise is photo-
electron per pixel root mean square (rms) per frame,
which means that every pixel in every taken frame
has the same read-out rms noise characteristics
(with the exception of some edge pixels).

Every optical instrument is influenced by noise.
Since the telescopes observe very faint objects, the
noise may cover the observed signal. In this work,
the effect of detector noise shows how noise de-
grades the wavefront measurements, leading to
degradation in AO performance. But when plotted
against SR (see Fig. 9) and compared with noiseless
residue turbulent, it's found that at lower noise
levels the read-out noise causes a bit of a raise in the
wavefront phase compensation until reaching a
specific threshold (here at 9 photo-electron) and
above, the noise effect takes its turn in degrading
the compensation process.

This is possibly due to the low time duration
throughout the compensation (closed-loop itera-
tions number). This can be confirmed by compari-
son with Fig. 2, the J-band subplot, where the
difference between the mean of the noiseless res-
idue turbulent and the noisy one at (5 photo-elec-
tron detector noise) is about 0.0320 for 20 loop
iterations, while for 400 loop iterations the differ-
ence is about 0.0185.

3.7. Photon background noise

The photon background or sky background noise
has been analyzed and determined to be the same
set-up as the read-out noise detection for NGS with
an apparent magnitude of 10. The measuring unit of

A

14
) :
0.2 bmmeeemeeee e 4— Residue Turbulent | |
' : --£--Residue (noise)
11| SRS, S PNT —— —— :
. a ; :

5 10 15 20
Detector Read-out Noise (photo-electron/pixel/frame)

Fig. 9. Detector Read-out Noise vs. SR.

: 4— Residue Turbulent
....... --&c--Residue (noise) |
—#— Full (noise)

..........

i
10° 10’ 107 10°
No. of Photon Background Noise (photon/frame)

Fig. 10. Photon Background Noise vs. SR.

this noise is photons per frame, which means the
detected number of photons is for the whole taken
frame.

As with read-out noise, the photon noise also
raised the values of the wavefront phase compen-
sation, but at a lower rate than the read-out noise, as
shown in Fig. 10, when plotting SR as a function of
photon background.

On the other hand, the degradation in perfor-
mance begins after the threshold (at 50 photons per
frame). Although both sensed noises have the same
affection behavior on AO performance, the photon
noise has a higher impact ratio compared to the
read-out noise.

This was done by comparing noises at a specific
value with the noiseless SR residue turbulent. The
results showed that read-out noise reduces the
compensation process by 10% and photon back-
ground noise reduces it by 40%.

4. Conclusion

This work investigated a statistical analysis of the
physical performance of an AO system; our con-
clusions can be summarized by the following main
points:

e The performance of an AO system is highly
affected by the observed wavelength, so for good
image quality it's better for a single conjugate
adaptive optics system to observe near-infrared
wavelengths or higher.

e The atmospheric parameters are important for
the observing process since the strength of the
atmospheric turbulence and seeing conditions
negatively affect the image quality. So to get the
best astronomical observations, the site selection
(high altitude locations) and the seeing condi-
tions (rp > 15 cm) must be kept in mind.
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e In general, AO systems are built for large tele-
scopes, and this work demonstrated the inverse
relationship between AO performance and
aperture diameter. So when the telescope aper-
ture is increased by 1 m, the performance de-
creases by an average of about 17%. Thus every
large telescope (>3 m) has special and appro-
priate AO system configurations in order to get
the best results from the attached system.

e The number of DM's actuators is correlated with
the number of SH-WEFS lenslets array, and for
the best phase recovery and compensation, each
telescope aperture has a specific lenslet array
size that is appropriate to the aperture shape and
diameter. Further, the low mechanical coupling
between neighboring actuators of DMs im-
proves AO system performance.

e The noise effect (detector read-out noise and

photon background noise) on the AO system

may have the same affection behavior on AO
performance but different degradation values,
where the photon background noise degrades

AO performance by 30% more than the detector

read-out noise.

Finally, for a specific telescope the OOMAO

toolbox can be used to get the best AO system

configuration, which will grant the highest obser
ving performance and image resolution.

5. Recommendations

We recommend that large telescopes (>3 m)
operate at infrared wavelengths, especially in poor
seeing conditions. Also minimize the DM's actuator
coupling and WEFS noise as much as possible.
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