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Abstract

Global infection and mortality rates have soared to millions due to SARS-CoV-2 human-to-human transmission via
droplets which then declared as pandemic. This study examined the created cold plasma equipment (CPE) effectiveness
in reducing COVID-19 transmission in a confined space. CPE sucked air using a fan in a test chamber then pushed it into
a cold plasma reactor. The results indicated that it was able to terminate all SARS-CoV-2 variants along with bacteria and
fungi indoors by keeping it turned on for 30 min’ minimum. CPE was proven as safe and effective to hinder virus
transmission with the acceptable ozone emission as the side effect.
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1. Introduction

T he prevalence of SARS-CoV-2 was firstly
discovered in China [1] which then globally

infected millions of people worldwide [2,3]. The
decision to declare this massive infection as a
pandemic by the World Health Organization was
made in March 2020. The global health and world
economy have been harmed by this extensive
outbreak [4,5]. This worldwide catastrophe has
forced scientists to act fast in mobilizing extensive
investigations on SARS-CoV-2 centering on its
clinical features, position, and its contagion pro-
cedures with an ultimate intention to prevent more

disastrous consequences [6,7]. In this current global
health threat, approximately 450 million people
have become the victims of this recent outbreak,
SARS-CoV-2 or COVID-19, which was identified as
the seventh corona virus resulting in more than 6
million mortalities globally. From the data retrieved
from John Hopkins University online website which
keeps an eye of COVID-19 cases in actual time, the
number of traced cases in Indonesia alone has
reached more than 5.8 million cases, meanwhile
fatalities due to this lethal virus have hit around
150,000 people [8].
The classification of the coronavirus family itself

contains four different genera, from Deltacor-
onavirus, Gammacoronavirus, Betacoronavirus, and
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Alphacoronavirus. Meanwhile, SARS-CoV-2 genome
is identified as a single-stranded positive-sense
RNA with roughly around 30 kb. Furthermore, the
genome determines four structural proteins, which
are envelope (E), spike (S), membrane (M), and
nucleocapsid (N) [9,10]. In the development of a
vaccine for SARS-CoV-2, it is the aforementioned
spike protein which becomes the primary targeted
antigen [11]. Formerly, it was the constructed
structural protein which became a peptide-based
vaccine nominee [12]. Moreover, an infection was
triggered by the virus-host interplay including a
complicated response from the immune system [13].
On the other hand, Indonesian COVID-19 isolates
express contradictory phenomena with the discov-
ery of antibody-dependent enhancement (ADE)
within them [14]. Therefore, ADE has become a
major steppingstone in developing treatment and
vaccines based on antibodies [15,16].
Generally, to be able to facilitate any early diag-

nosis and regulating the virus, SARS-CoV-2 pattern
of transmission needs to be acknowledged and
developed. During this present time, a pattern of
transmission has been well recognized, which is the
claim of SARS-CoV-2 airborne infectious transfer
between humans. This rapid contagion pattern of
this virus through the flying droplets secreted from
the respiratory tract in the form of coughing and
sneezing. Besides airborne scheme, SARS-CoV-2
water transmission should get precautionary atten-
tion with the risk of SARS-CoV-2 transmission to
people and animals via water is possible as well.
Furthermore, scholars these days aim to derive

diverse approaches in tackling the fast spread
SARS-CoV-2. However, no effective medication
(drugs) yet is found to fight the virus [17e24]. Thus,
this investigation offered a preliminary study of cold
plasma to prevent airborne transmission to fight
COVID-19 pandemic in Indonesia.
Recently, the use of cold plasma in research is

quite common. This cold plasma is commonly and
increasingly applied in biomedical and industrial
fields at particular atmospheric pressure and room
temperature because the cold atmospheric plasma
(CAP) contains components of reactive oxygen and
nitrogen species (RONS) displaying its high
compatibility [1,18,19]. Many preliminary studies
exhibited that cold plasma equipment (CPE) turns
out to have great potential to be utilized as efficient
approach for disinfection [18,19], especially with the
termination of microorganism which related to
nosocomial infections which are Escherichia coli,
Pseudomonas alcaligenes, Staphylococcus epidermidis,
Micrococcus luteus, and Serratia marcescens with the
level of inactivation is up to 70% [25].

An investigations in virus immobilization using
plasma as the mediator only began 20 years ago [26].
However, the publication on this had been double
in number over the last few years and cold plasma-
virus research also had expanded fast from the
definition of virucidal property to its ability to
immobilize viruses. In addition, previous studies
also showed that there are only a few successful
researches in using cold plasma technology in
inactivating virus by creating equipment for indoors
which is very crucial in this pandemic period like
these days along with its acceptable ozone emission
as the result of cold plasma reactors, both based on
corona discharge and dielectric barrier plasma
[17,25,26]. Meanwhile, the permissible concentra-
tion of ozone in a room with an occupant is only
0.08 ppm. Significantly, based on previous study,
plasma reactors can eliminate microorganisms, on
the other hand the ozone released into the room is
still much smaller than the threshold, for example
EPA 2012, Minister of Health Regulation of the Re-
public of Indonesia (Number 70), 2016.
Besides, it is very crucial to stick to an environ-

mentally friendly technology in killing the virus
efficiently with easily and safely application without
creating any waste or other products as new pollu-
tion and containing any toxic chemicals. The idea of
utilizing cold plasma exposure for terminating and
inactivating the viruses intends to offer a solution
with all of these features [26]. Therefore, this
investigation has developed an equipment that can
be placed indoors including in public spaces. This
paper also discusses the results of testing an
equipment called CPE.

2. Methods

2.1. Virus isolates

The virus isolate used for this study was derived
from the Professor Nidom Foundation (PNF), Sur-
abaya, Indonesia. This laboratory was one of the
approved diagnostic laboratories for COVID-19 by
the Ministry of Health of the Republic of Indonesia
(HK.01.07/MENKES/4642/2021). Meanwhile, the
virus genome was already deposited in the GISAID
database (hCoV-19/Indonesia/JI-PNF-211373/2021;
Accession ID: EPI_ISL_6425649).

2.2. Cells and chemicals reagents

This investigation applied ethanol (�99.8%,
SigmaeAldrich, USA), fetal bovine serum (FBS)
(SigmaeAldrich, USA), RNA extraction kit
(Geneaid, Taiwan R.O.C.), Vero cell (African green
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monkey kidney) (ATCC, USA), penicillin-strepto-
mycin (SigmaeAldrich, USA), Minimum Essential
Medium Eagle (DMEM) (SigmaeAldrich, USA),
fungizone (SigmaeAldrich, USA) and dimethyl
sulfoxide (Merck, Germany) as the chemical re-
agents. The cultivation of Vero cells was accom-
plished in DMEM at 37 �C in a 5% CO2 incubator
involving 10% FBS and penicillin-streptomycin
(Gibco, USA). Then, the detachment of confluent
monolayer from Vero cells was conducted using
trypsineEDTA with the cells being incubated at
37 �C for 5 min. Next, the addition of the medium
was performed then it was pipetted gently and
enumerated by applying a hemocytometer (Paul
Marienfeld, Germany). Lastly, the addition of the
cells into 96-well plates was conducted with
1 � 106 cells/10 mL and then the incubation process
in 5% CO2 was completed at 37 �C.

2.3. Cold plasma equipment and study design in the
test chamber

Cold plasma equipment (CPE) was developed
using corona discharge reactors [18e24]. Inside the
CPE, there were two cylindrical reactors with a
length of 15 cm and a diameter of 5 cm. Corona
discharge electrodes configuration was serrated
with wire and cylinder. CPE was generated in the
corona discharge implementing a DC voltage of
4 kV. CPE utilized a fan at the top and this fan could
suck air from the room at a rate of 5 m3 min�1. This
fan pushed the air which was already spoiled with
microorganisms and chemical pollutants into the
corona discharge reactor. The cold plasma in the
corona discharge converted the dirty air into clean
air [18]. The test chamber with dimension
90 � 90 � 120 cm was also contaminated with SARS-
CoV-2.
Viruses that passed through the cold plasma

would die because the virus entered the areas con-
tained with reactive oxygen species, reactive nitro-
gen species, electrons, ions, and electromagnetic
waves [27]. After passing through the cold plasma
area in the corona discharge reactor, the air was
very clean and released back into the room through
the window at the bottom of the CPE. The concen-
tration of ozone in the room in which the CPE was
turned on was measured at 0.04 ppm. This con-
centration was smaller than 0.08 ppm set by the
ozone emission threshold in a contained space with
an occupant according to the 2012 US EPA for
Health Effects of Ozone in the General Population.
Fig. 1 displays the test chamber of the CPE and the
numbers 1, 2, 3, and 4 exhibiting the shelves on

which Petri dishes containing serum contaminated
with SARS-CoV-2 need to be placed (see Fig. 2).
Two milliliters of each SARS-CoV-2 and negative

control serum were placed in twelve Petri dishes
with the design as shown in Table 1. Petri dishes
were placed on the rack provided in the chamber of
CPE with positions scattered in all parts of the
chamber room. The position was as shown in Fig. 1.

Fig. 1. A CPE is put in a test chamber for experi-mental transmission of
SARS-CoV-2 through airborne in the chamber. This test chamber was
built as a BSL3 facility. The test chamber is free from contamination
when the stained plates are inserted into the test chamber. Indications
with numbers 1, 2, 3, and 4 show the shelves on which to place Petri
dishes containing serum with SARS-CoV-2 contamination in the
chamber test.

Fig. 2. CT value in post CPE test SARS-CoV-2 qRT-PCR results based
on Petri dishes.
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Each Petri dish was opened, then CPE was turned
on by using a remote for 15, 30, and 60 min. Petri
dishes were then taken according to the code and
duration to be continued with a viral RNA extraction
stage. After 60 min, CPE was turned off, then all the
remaining Petri dishes were taken to continue with
the viral RNA extraction stage (see Table 2).

2.4. RNA extraction

The extraction of viral RNA was accomplished by
using Viral Nucleic Acid Extraction Kit II (Geneaid,
Taiwan R.O.C.) as mentioned in the manufacturer's
protocol. After this step was completed, the sample
directly was processed into real-time PCR (qPCR)
[28].

2.5. Real-time PCR (qRT-PCR)

The application of qRT-PCR with QuantStudio 5
Applied Biosystem (AB) PCR machine was pro-
ceeded with STANDARD M nCOV Real-Time
Detection Kit (Lot #MNCO0120026) and MBioCoV-
19 RT-PCR Kit (Lot #6900820) as the kits which was

performed at the Coronavirus and Vaccine Formu-
lation Research Group, Professor Nidom Founda-
tion, Surabaya, Indonesia. The detection of positive
criteria was confirmed when two genes (E and
RdRP) �36. In case the results were only exhibited
in E gene �36, then the results would express
inconclusiveness. On the other hand, any negative
criteria will be confirmed when E and RdRP were
not detected.

2.6. Median tissue culture infectious dose (TCID50)
and inhibition analysis

This study applied 315 mL of virus dilution from
10�1 to 10�7 in PBS placed in a micro tube. At this
stage of study, the chemical reagent used was Vero
cells that had been confluent monolayered on 48
well plates. The removal of the growth medium was
completed and then the cells were cleaned by
washing them three times with PBS. A total of
100 mL of virus dilution was then mixed to each well
according to the sign; meanwhile, for the negative
control, the virus was replaced with PBS. Next, the
incubation was done in 5% CO2 for 60 min at 37 �C.
Maintenance medium (MM) was added as much as
100 mL per well which then proceeded again with
incubation for 48 h in the same condition which was
in 5% CO2 at 37 �C. After 48 h, the removal of me-
dium from each well was conducted and 10%
formalin at 100 mL for each well was employed to fix
the cells which then placed at room temperature for
30e60 min. Following this, the formalin was
removed and then the cells were washed using
running water carefully. Then the cells were stained
using crystal violet and left at room temperature for
5 min. Next, the plate was washed under running
water. The method from Reed and Muench was
employed to read and calculate TCID50 value [29].

2.7. Methods for bacterial and fungal reduction
using cold plasma equipment

Microbiological tests were analyzed using the
Microbiological Air Sampler (MAS-100 NT). MAS-
100 NT employed the inspection principles when
the air was sucked in and passed through a Petri
dish containing nutrient agar (NA) media to grow
bacteria. MAS-100 NT operating time was adjusted
to the volume of the room (according to MAS-100
NT standard) to be tested. Tests were carried out
before and after the CPE was turned on. Meanwhile,
sampling was completed from the test room after
CPE was turned on for 1 h, 2 h and 3 h. Ozone
Scientific was utilized to calculate the total ozone
concentration after the indoor CPE was switched on.

Table 1. Study design in Petri dishes.

Code Formula Duration

1.1 SARS-CoV-2 (2 mL) 15 min
1.2 SARS-CoV-2 (2 mL) 30 min
1.3 DMEM (2 mL) 30 min
2.1 SARS-CoV-2 (2 mL) 30 min
2.2 SARS-CoV-2 (2 mL) 60 min
2.3 DMEM (2 mL) 60 min
3.1 SARS-CoV-2 (2 mL) 30 min
3.2 SARS-CoV-2 (2 mL) 30 min
3.3 DMEM (2 mL) 60 min
4.1 SARS-CoV-2 (2 mL) 15 min
4.2 SARS-CoV-2 (2 mL) 60 min
4.3 DMEM (2 mL) 60 min

Table 2. The results of CPE testing for Covid-19 virus in the test
chamber using RT-PCR (based on Petri dishes).

Code Description qRT-PCR

E Gene RdRp Gene

C-19-original 27.33 28.27
1.1 C-19-15m-1 28.16 29.53
4.1 C-19-15m-2 31.71 33.94

C-19-original 27.33 28.27
1.2 C-19-30m-1 31.82 33.11
2.1 C-19-30m-2 28.56 29.33
3.1 C-19-30m-3 30.79 32.48
3.2 C-19-30m-4 32.11 33.49

C-19-original 27.33 28.27
2.2 C-19-60m-1 31.55 32.28
3.3 C-19-60m-2 36.02 35.09
4.2 C-19-60m-3 33.27 33.37
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The concentration of ozone in the test chamber
measuring 3 � 3 � 3 m using a unit of CPE was
0.08 ppm. This ozone concentration test was very
important to be qualified within the 2012 EPA
standard. In growing the bacteria (NA medium), the
incubation of the previously used sample cup con-
taining the media was accomplished for 24e48 h at
37 �C, then the number of developing colonies on
the medium was measured by using the colony
counters [30].

3. Results and discussions

3.1. Cold plasma equipment testing for SARS-CoV-2

From the cycle threshold (CT) value data obtained
from different positions and exposure times of CPE,
it displayed an increased CT value from the original
virus and after testing in the test chamber. CT value
seems to increase linearly with the test time length.
Based on this CT value, it can be concluded that
CPE can reduce 10e12% (15 min), 13e14% (30 min)
and 19e23% (60 min) the amount of SARS-CoV-2
(viral load) in the environment. Any confirmation of
COVID-19 negative result is robust if CT value
is > 36.00.
In detecting the existence of the virus, a certain

method needed to be applied, which was PCR. This
method multiplied the genetic materials of RNA
cyclically making it easily to be spotted on. In
addition, CT value is the total number of cycles
required for spotting the virus. Theoretically, the
higher CT value shows the lesser detected SARS-
CoV-2 [6] (see Tables 3 and 4).
In media without virus (DMEM) which was placed

in the test chamber of CPE during the test, it showed
a CT value of 29.31e40.00 (see Table 5).
Table 6 displays the decreasing TCID50 value after

the CPE was turned on for 15 min which can also
mean that the virus concentration decreases.
Meanwhile, with 30 min CPE exposure, only one of
the four samples displayed a lower concentration of
TCID50 compared to 15 min. Additionally, with
60 min CPE treatment duration, TCID50 value was
zero, expressing that there is no SARS-CoV-2 in the
Petri dish anymore.

Based on PCR examination, E gene and RdRP
gene experienced a significant difference (p < 0.05)
between formulas. The most significant difference
appeared in the leaping CT values at 0 min of
treatment to 60 min of treatment.
The percentage of CPE's inhibition against SARS-

CoV-2 ranged from 99 to 100% in 60 min of CPE
exposure. There was a significant difference be-
tween CT value of qRT-PCR and the percentage of
inhibition displaying that CT value recorded in
qRT-PCR test did not indicate a live virus, but could
be inactive or in the form of SARS-CoV-2 virus
particles.

3.2. Cold plasma equipment for bacteria and fungi

Research on the ability of CPE to reduce the
number of bacteria and fungi in the room was also
performed twice at different times for two months.
The first experiment was in February 2020 and the
second experiment was in April 2020. The time

Table 3. Average results of SARS-CoV-2 testing in CPE chamber using
qRT-PCR.

Formula Description qRT-PCR

E Gene RdRp Gene

Viral Control C19-original 27.33 28.27
SARS-CoV-2 2 mL C19-15m 29.93 31.73
SARS-CoV-2 2 mL C19-30m 30.82 32.10
SARS-CoV-2 2 mL C19-60m 33.61 33.61

Table 4. Results of media testing without SARS-CoV-2 in the CPE
chamber using qRT-PCR.

Code Formula Description qRT-PCR

E Gene RdRp Gene

Viral Control C19-original 27.66 28.61
1.3 DMEM-2 mL Media-30m 33.38 33.65
4.3 DMEM-2 mL Media-60m-1 32.53 33.76
2.3 DMEM-2 mL Media-60m-2 34.66 31.74

Table 5. Significant difference values of SARS-CoV-2 testing in CPE
chamber using qRT-PCR.

Formula Description qRT-PCR

E Gene RdRp Gene

Viral Control C19-original 27.33 ± 0.00 28.27 ± 0.0
SARS-CoV-2 2 mL C19-15m 29.93 ± 2.51 31.73 ± 3.11
SARS-CoV-2 2 mL C19-30m 30.82 ± 1.61 32.10 ± 1.89
SARS-CoV-2 2 mL C19-60m 33.61 ± 2.25 33.61 ± 1.37
Control Control 33.52 ± 1.07 33.05 ± 1.14

Table 6. SARS-CoV-2 test results after CPE exposure using TCID50

value and percentage of inhibition (inhibition test).

Code Description TCID50 % Inhibition

C19-original 5.9165 � 105

1.1 C19-15m-1 3.574 � 103 99.40
4.1 C19-15m-2 3.987 � 102 99.93

C19-original 5.9165 � 105

1.2 C-19-30m-1 Zero 100.0
2.1 C-19-30m-2 Zero 100.0
3.1 C-19-30m-3 Zero 100.0
3.2 C-19-30m-4 1.163 � 101 99.99

C19-original 5.9165 � 105

2.2 C-19-60m-1 Zero 100.0
3.3 C-19-60m-2 Zero 100.0
4.2 C-19-60m-3 Zero 100.0
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difference also caused differences in the number of
colony microorganisms. Figs. 3 and 4 show the
average of colony concentration and average per-
centage with the decrease of bacteria and fungi from
five sampling positions in a test room measuring
3 � 3 � 3 cubic meters based on the exposure time
of CPE.
Figs. 5 and 6 exhibit the average of colony con-

centration average percentage of decreasing bacte-
ria and fungi from five sampling positions in a test
chamber measuring 3 � 3 � 3 cubic meters based on
the exposure time of CPE. Data collection was car-
ried out in May 2020. From the two figures, it can be
seen that the decrease in bacterial colonies is greater
than the decrease in fungal colonies. After one hour
of the activation of CPE in the test chamber, bacteria
were reduced by about 55% while fungi were
around 45%. The same thing is seen in the experi-
ment for 2 h and 3 h’ duration of activated CPE. In
the April 2020 experiment, the highest bacterial
reduction was 73% with CPE duration in the test
chamber for 2 h, and became 65% after 3 h. This
may be due to the contamination during the
experiment, for a test time of 3 h. The results ob-
tained also highlighted that CPE can eliminate mi-
croorganisms [31e33].
Furthermore, as a side effect of using cold plasma

technology, CPE emits ozone as well. In this investi-
gation,CPEhasbeen tested for ozone released into the
room to see whether this created equipment is safe to
use [34]. Themeasured ozone in the room is stillmuch
smaller than the threshold, for example based on
EPA2012, Minister of Health Regulation of the

Republic of Indonesia (Number 70), 2016. This test has
also shown that CPE can control pathogenic micro-
organisms, especially SARS-CoV-2. In addition, as
CPE was developed using absolutely no chemical
com-pounds, CPE uses corona discharge by sup-
pressing the ozone released from the reactor. Thus,
CPE is an equipment which is comfortable and can be
placed indoors including in public spaces.
The spreading of SARS-CoV-2 is done by the

exhaled respiratory droplets of infected people.
There are three possibilities of transmission of

Fig. 3. Total number of bacterial and fungal colonies with CPE exposure
in the test chamber based on plasma exposure time. Note: TPC: Total
plate count; YMC: Yeast and mold counts.

Fig. 4. Percentage of decreased (inhibited) bacteria and fungi with
activated CPE in the test chamber based on plasma exposure time. Note:
TPC: Total plate count; YMC: Yeast and mold counts.

Fig. 5. Number of bacterial and fungal colonies with activated CPE in
the test room as function of plasma exposure time. Note: TPC: Total
plate count; YMC: Yeast and mold counts.
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COVID-19 between the infected person to the new
recipients, they are through the circulation of large
drop from the mouth of the infected to the re-
cipient's mouth, nose or eyes; the physical exposure
of sticked droplet in the surface (fomites) which
then subsequently being transferred to the respira-
tory mucosae of the recipient; and at last, the
microdroplets from the infected which are airborne
due to the currents of ambient air and then being
inhaled by recipient [17e19,33e38].
Based on a theoretical model, the prediction of

airborne transmission scheme is confirmed and
considered harmful as it includes the inspirations of
tiny aerosol droplets which stay in the confined,
well-mixed indoor place. The shear-induced or
capillary instability of the mucosal linings of the

lungs, respiratory tract, and saliva in the mouth
leads to an array of liquid droplets to be ejected
when a person coughing, sneezing, singing, talking,
or breathing [17,35e38].
In this work, we designed a CPE that has

demonstrated to lots of potential for being used as a
disinfection method. This feature of disinfectant can
be found as well in the research of Thakur et al.
(2021) which outlined the effect of graphene nano-
particles in limiting the propagation of COVID-19
and having antibacterial and antiviral properties.
Antimicrobial effectiveness of graphene and its de-
rivatives is good, with both physical and chemical
modes of harm. They are ideal nanomaterials for
coating onto textiles such as personal protective
equipment, face masks, and gloves to effectively
prevent the transmission of SARS-CoV-2 due to
their lightweight, excellent characteristics, and
simplicity of functionalization [18].
Lastly, Fig. 7 displays a schematic illustration of

cold plasma that can kill microorganisms (bacteria,
fungi and viruses, including SARS-CoV-2) [39,40].
Cold plasma at atmospheric pressure always pro-
duces reactive oxygen species, positive ions, nega-
tive ions, reactive nitrogen species, electrons,
photons, and ultraviolet [41,42]. However, a
comprehension of the virus inactivation funda-
mental mechanisms by cold plasma will be essential
for the fine-tuning cold plasma therapy before their
distribution and application in industrial, agricul-
tural, and medical environments along with the
easier prediction of all possible consequences
constituting the formation of unwanted derivation
that do not support to the inactivation [26].

4. Conclusions

In summary, cold plasma was able to neutralize
the new variant of Indonesian SARS-CoV-2 con-
tained in Petri dishes or circulated in the chamber
(air) seen in the increase in CT values and TCID50

results as well as the percentage of inhibition. The
application of indoor cold plasma equipment to
break the chain of this virus circulation and other
microorganisms such as bacteria and fungi is an
important milestone in the preventive steps of
COVID-19. The current research is anticipated to
accelerate the development of cold plasma as
extremely sensitive, precise, and cost-effective in-
struments for effectively regulating the spread of
COVID-19 and other airborne microbes. However,
the bulk of studies are based on lab-scale observa-
tions, and further research is needed to fully un-
derstand other characteristics of this material in
order to build and create innovative technologies.

Fig. 6. Percentage of decreased (inhibited) bacteria and fungi with
activated CPE in test room based on plasma exposure time. Note: TPC:
Total plate count; YMC: Yeast and mold counts.

Fig. 7. A schematic mechanism of cold plasma killing bacteria, fungi,
and viruses.
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