
Volume 8 Issue 3 Article 3 

Attack Prediction to Enhance Attack Path Discovery Using Improved Attack Attack Prediction to Enhance Attack Path Discovery Using Improved Attack 
Graph Graph 

Zaid. J. Al-Araji 
Universiti Teknikal Malaysia Melaka, Melaka, Malaysia, zaid.jassim4@gmail.com 

Sharifah Sakinah Syed Ahmad 
Universiti Teknikal Malaysia Melaka, Melaka, Malaysia 

Raihana Syahirah Abdullah 
Universiti Teknikal Malaysia Melaka, Melaka, Malaysia 

Follow this and additional works at: https://kijoms.uokerbala.edu.iq/home 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Al-Araji, Zaid. J.; Syed Ahmad, Sharifah Sakinah; and Abdullah, Raihana Syahirah (2022) "Attack Prediction to Enhance 
Attack Path Discovery Using Improved Attack Graph," Karbala International Journal of Modern Science: Vol. 8 : Iss. 3 , 
Article 3. 
Available at: https://doi.org/10.33640/2405-609X.3235 

This Research Paper is brought to you for free and open access 
by Karbala International Journal of Modern Science. It has been 
accepted for inclusion in Karbala International Journal of 
Modern Science by an authorized editor of Karbala International 
Journal of Modern Science. For more information, please 
contact abdulateef1962@gmail.com. 

https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home/vol8
https://kijoms.uokerbala.edu.iq/home/vol8/iss3
https://kijoms.uokerbala.edu.iq/home/vol8/iss3/3
https://kijoms.uokerbala.edu.iq/home?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol8%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol8%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.33640/2405-609X.3235
mailto:abdulateef1962@gmail.com
https://uokerbala.edu.iq/en/
https://uokerbala.edu.iq/en/


Attack Prediction to Enhance Attack Path Discovery Using Improved Attack Attack Prediction to Enhance Attack Path Discovery Using Improved Attack 
Graph Graph 

Abstract Abstract 
Organisations and governments constantly face potential security attacks. However, the need for next-
generation cyber defence has become even more urgent in a day and age when attack surfaces that 
hackers can exploit have grown at an alarming rate with an increase in the number of devices that are 
connected to the Internet. As such, next-generation cyber defence that relies on predictive analysis is 
more proactive than existing technologies that rely on intrusion detection. Many approaches with which 
to detect and predict attacks have been proposed in recent times. One such approach is attack graphs. 
The primary purpose of an attack graph is to not only predict an attack but its next steps within a network 
as well as. More specifically, an attack graph depicts the paths that an attacker may employ to circumvent 
network policies by exploiting interdependencies between the vulnerabilities. However, extant attack 
graphs are plagued with a few issues. Scalability is just one of the main issues that attack graph 
generation faces. This is because an increase in the number of devices used increases the number of 
vulnerabilities within a network. This, in turn, increases the complexity as well as the amount of time 
required to generate an attack graph. At present, existing studies that have used attack graphs to predict 
the subsequent steps during an attack have had to manually assigned the attack location for attack graph 
analysis. In order to overcome this limitation, this present study recommends the use of intelligent agents 
to reduce reachability time by calculating between the nodes as well as using the A* prune algorithm to 
remove useless edges and reduce attack graph complexity. For the attack graph analysis, the random 
forest (RF) algorithm was used to detect, predict, and dynamically ascertain the attack location in the 
network. The results of the attack graph generation experiment revealed that the A* prune attack graph 
produced better results than existing attack graphs. 

Keywords Keywords 
Attack Graph, Attack Path, A* prune algorithm, attack path discovery, attack graph analysis 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 
License. 

This research paper is available in Karbala International Journal of Modern Science: https://kijoms.uokerbala.edu.iq/
home/vol8/iss3/3 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://kijoms.uokerbala.edu.iq/home/vol8/iss3/3
https://kijoms.uokerbala.edu.iq/home/vol8/iss3/3


RESEARCH PAPER

Attack Prediction to Enhance Attack Path Discovery
Using Improved Attack Graph

Zaid J. Al-Araji a,b,*, Sharifah Sakinah Syed Ahmad a, Raihana Syahirah Abdullah a

a Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
b University of Mosul, Mosul, Iraq

Abstract

Organizations and governments constantly face potential security attacks. However, the need for next-generation
cyber defense has become even more urgent in a day and age when attack surfaces that hackers can exploit have grown
at an alarming rate with an increase in the number of connected devices to the Internet. The next-generation cyber
defense that relies on predictive analysis is more proactive than existing technologies that rely on intrusion detection.
Many approaches with which to detect and predict attacks have been proposed in recent times. One such approach is
attack graphs. The primary purpose of an attack graph is to not only predict an attack but its next steps within a network
as well. More specifically, an attack graph depicts the paths that an attacker may employ to circumvent network policies
by exploiting interdependencies between the vulnerabilities. However, extant attack graphs are plagued with a few
issues. Scalability is just one of the main issues that attack graph generation faces. This is because an increase in the
number of devices used increases the number of vulnerabilities within a network. This, in turn, increases the complexity
as well as the amount of time required to generate an attack graph. At present, existing studies that have used attack
graphs to predict the subsequent steps during an attack have manually assigned the attack location for attack graph
analysis. In order to overcome this limitation, this present study recommends the use of intelligent agents to reduce
reachability time by calculating between the nodes, as well as using the A* prune algorithm to remove useless edges and
reduce attack graph complexity. For the attack graph analysis, the random forest algorithm was used to detect, predict,
and dynamically ascertain the attack location in the network. The results of the attack graph generation experiment
revealed that the A* prune attack graph produced better results than existing attack graphs.

Keywords: Attack graph, Attack path, A* prune algorithm, Attack path discovery, Attack graph analysis

1. Introduction

T he exponential growth of computer
networking technologies has considerably

changed the way that people live [1]. Networks have
permeated every aspect of life and break the limits
of space and time for the benefit of humanity. Ac-
cording to Statista [2], the number of devices con-
nected through the Internet increases annually. In
2010, there were around eight billion devices con-
nected through the Internet. This number increased
by 20% to 10 billion in 2021.
The exponential growth of Internet in-

terconnections increases security concerns [3].

Furthermore, the increase in the usage of devices
through the Internet also increases vulnerabilities
within a network, which results in increased attacks
on organisations and individual networks [4].
Amidst Malaysia's significant commitment to cyber
security and its ranking as the third most secure
country globally, there were 6274 cyberattacks re-
ported in 2017 [5]. This indicates that cyberspace
cannot be entirely secure. Consequently, cyber se-
curity is becoming increasingly important as the
world's reliance on information technology and the
Internet grows. These attacks cause tremendous
damage to individuals and organisations alike.
As the cybersecurity community accepted that

they could not entirely eliminate cyber-attacks, the

Received 28 January 2022; revised 5 May 2022; accepted 9 May 2022.
Available online 1 August 2022

* Corresponding author at: Universiti Teknikal Malaysia Melaka, Melaka, Malaysia.
E-mail address: zaid.jassim4@gmail.com (Z.J. Al-Araji).

https://doi.org/10.33640/2405-609X.3235
2405-609X/© 2022 University of Kerbala. This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:zaid.jassim4@gmail.com
https://doi.org/10.33640/2405-609X.3235
http://creativecommons.org/licenses/by-nc-nd/4.0/


focus of current studies shifted to prevention,
detection, prediction, and lowering the impact of
security incidents [6]. Many approaches that pre-
vent, detect, and predict attacks have been proposed
[7]. One of these approaches is attack graphs.
Phillips and Swiler proposed attack graphs in 1998

[8]. Since then, several researchers have used various
methods of generating attack graphs in order to
enhance the attack graph model [9]. An attack graph
is a very useful tool that provides an abstract depic-
tion of all the possible paths that attackers may use to
compromise a network [10]. It comprises vertices and
directed edges, with vertices representing network
states and edges representing state transitions. Attack
graph construction combines vulnerabilities with
access control rules to show all possible attack paths
within a network, from source to target. There are two
ways to generate an attack graph which are using a
tool like [11] use MalVAL tool, or using program
languages. Using the program languages, there are
four stages to generate an attack graph; reachability
calculation, attack graph modelling, core building,
and analysis [12].
Reachability calculation examines network

reachability, which determines if two given hosts
can communicate with each other [13]. Attack graph
modelling is the construction of attack templates
that describe the elements of several attacks, vul-
nerabilities, and correlations between the vulnera-
bilities. Core building is the main algorithm used to
generate an attack graph and aims to prune several
paths. Finally, attack graph analysis is significant as
it identifies the path that an attacker will most likely
use to reach the target. Although researchers usu-
ally combine this stage with the core building stage,
they should be conducted separately as they both
use different methods and techniques and have
different purposes. The main difference between the
attack graph analysis and the core building stages is
that the core building aims to prune the number of
paths to reduce the complexity and time required to
generate an attack graph, while the analysis stage
aims to discover the optimal path that attackers may
use to reach the target.
However, existing attack graphs are plagued with

a few issues, one of which is scalability [14]. This is
because an increase in network size increases the
complexity of the network. Secondly, attack nodes
need to be assigned manually. Therefore, this pre-
sent study used an A* prune algorithm as well as
the personal agent used in the attack graph gener-
ation to reduce complexity and generation time. The
RF algorithm was then used to detect, predict, and
dynamically locate attack locations to analyse the
attack graph. The improvement will remarkably

contribute to network security in handling issues of
attack detection and prediction. An improved attack
graph will increase the accuracy rate of detection,
predicting the next step of the attack. This research
focuses on enhancing the attack graph representa-
tion and analysis to find the optimal path that might
use by the attacker to reach the target node.
In summary, the contributions of the paper are as

the following:

- The naïve approach pruning algorithm is one of
the simplest algorithms that is used to prune the
graph edge, not only the simplest but also the
fastest and more accurate algorithm. While
Personal agents refer to computer programs that
learn about a user's preferences, interests, and
behaviours in order to provide them with pro-
active, personalised support through a computer
application. This contribution achieved two
parts: (1) provide a fast response from the node
using a personal agent, which leads to the fast
calculation of the reachability, thus will reduce
the generation running time. (2) prune unnec-
essary edges from the attack graph to minimise
the attack graph's complexity.

- Machine learning algorithms are commonly
employed to categorise network traffic in an
attempt to detect attacks. Four ideas are pre-
sented in this contribution: (1) Detect and pre-
dict a network attack, (2) dynamically discover
the attack location in the network, (3) find the
target node in the network based on the path
steps between the attack node and the servers,
(4) determine all attack paths between the attack
node and the target node

The rest of this study is organised as follows:
Section 1 discusses previous studies, while section 2
presents the attack graph model. Section 3 explains
the proposed model, while section 4 describes the
experiments. The results are explained in section 5,
while section 6 provides a conclusion.

2. Related work

Recently, many attack graphs have been gener-
ated using different methods and techniques to
enhance attack graphs. In this section, the most
recent attack graphs will be discussed in two parts:
attack graph generation and analysis that encom-
passes the previous stages.

2.1. Attack graph generation

In recent years, many attack graphs that use
different methods and techniques have been

314 Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329



proposed. In order to ensure that all computing
agents are parallelising computing the load
balancing, Li et al. [15] proposed a search forward
attack graph using hypergraph partitioning. Chen
et al. [16] proposed a supervised Kohonen neural
network attack graph that could forecast attack sta-
tus and success rate should the attacker successfully
exploit the vulnerabilities. Yichao et al. [17] pro-
posed a compact graph planning that depends on
the attack path discovery algorithm that might use
permeation testing goal information to prune un-
necessary paths depending on another structure
proposed by Frances and Geffner [18]. Guan et al.
[19] used parallel distributed computing to construct
sub-graphs and then combine them into the entire
network attack graph. To compute the attack prob-
abilities of every node in-network, vulnerability
values, attacker information, attacker willingness,
and attack skills to build the security evaluation
index system were used. Ibrahim et al. [20] pro-
posed a hybrid attack graph (HAG) that captures
both the logical changes under attack as well as the
real values of resilience parameters associated with
the attacks that make up the graph. Shuo et al. [21]
used heuristic searching in attack graph generation.
A predicate logic was used to explain the attack
patterns and network environment. A matching
index table and attack graph structure were then
used to generate the attack graph. Hong et al. [22]
proposed using a multi-layer hierarchical attack
representation model (HARM) to reduce computa-
tional complexity by modelling different compo-
nents in different layers of the system. Li et al. [23]
proposed that attack graph generation depends on
state reduction while Cook et al. [24] generated
large-scale attack graphs. In this present study, a
serial algorithm was first used, followed by
complexity analysis to identify bottleneck and par-
allelisation opportunities. A parallel algorithm was
then used to compare the performance characteris-
tics of these algorithms. Zhang et al. [25] established
an attack graph-based quantitative assessment
approach for ICS security. The data from a high-
performance graph database is used to create a
flexible attack graph model. The authors offered a
complete calculating approach with a predefined
selection strategy to locate critical paths in ICSs,
whether in the form of a nested path or a parallel
path, by leveraging graph indications on specific
nodes and edges to obtain security metrics. Sabur
et al. [14] present a scalable security state (S3)
framework for the network based on segmentation.
The framework divides the large scale network re-
gion into smaller, controllable portions using the
well-known divide-and-conquer strategy. To

partition the system into segments based on the
similarity between the services, this work use a well-
known segmentation approach derived from the K-
means clustering algorithm. The segments are
separated by a distributed firewall (DFW), which
prevents the attacker from moving laterally and
compromising them.
In summary, although different methods have

been used to improve attack graph generation,
attack graphs still suffer from a few issues, espe-
cially scalability.

2.2. Attack graph analysis

Hughes and Sheyner [26] were the first to use
attack graphs to forecast cyber-attacks. Since then,
several researchers have used the forecasts of attack
graphs analysis to concentrate on traversing the
graph and looking for an optimal attack path or on
the probability of the graph's edges [27].
Wang et al. [28] recommended using the breadth-

first search (BFS) on the attack graph, starting with
the most recent warnings. The hunt proceeds from
the latest warnings to find paths that meet all se-
curity requirements and exploits without consid-
ering the conjunctive and disjunctive correlations
between exploits. The technique basically searches
the attack graph for all the next attacks. Although
the prediction results were not discussed, compu-
tational and memory use was addressed. In 2013,
two alert correlation models, both including pre-
diction, were proposed. Chung et al. [29] proposed
NICE, a framework of countermeasure choices in
virtual networks that employ threat graphs to proj-
ect and model attacks. On the other hand, Kotenko
and Chechulin [30] recommend CAMIAC, a
framework for cyberattacks simulation and effect
evaluation using attack graphs. Both methods use
attack projection as part of a broader framework
that this present study is not based on.
Fayyad and Meinel [31] described a prediction

model using object-oriented data obtained from an
attack graph that was constructed after network
recognition. Data derived from various databases,
namely, the integrated data store (IDS) database, the
national vulnerabilities database (NVD), and data
for the attack graphs, were used. Similar to the
prediction model of this present study, the predic-
tion mechanism predicted the attacker's next step
and the attack scenario. Nevertheless, the weights of
each state are manually allocated and are dependent
on vulnerability exploitations.
Ramaki et al. [32] proposed a method for real-time

warning correlation and prediction. The framework
operated in two modes; online and offline. A

Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329 315



Bayesian attack graph (BAG) was built using low-
level warnings in the offline mode. The intruder's
next move in the online mode was then predicted
using the offline BAG. The efficacy of the method
was tested using the DARPA 2000 dataset. The
prediction precision was found to increase over the
duration of an attack case. The precision ranged
between 92.3 per cent at the first attack stage to 99.2
per cent at the fifth attack stage.
Orojloo and Abdollahi Azgomi [33] combined

attack graphs and fuzzy logic to predict attacker
attitudes using a series of potential malefactor
moves. The study described attack behaviours upon
gaining access to the network and described the
capability of attacks perpetrated by experts.
Polatidis et al. [34] combined attack graph analysis

with technological recommendations to predict the
next steps of an attack. The network was studied, and
a graph of possible attack routeswas created. Amulti-
level collaborative filter was employed to predict how
the attackers may proceed after gaining access to
some of the properties. However, the starting node
still had to be assigned manually, and the proposed
model could only predict the next steps of an attack
once the network had been breached.
In summary, the studies examined in this litera-

ture review used attack graph models to predict
attacks. More specifically, they were used only to
predict the next step of an attack. These studies also
needed to manually identify the starting node of an
attack location in the network. The following section
provides an overview of attack graph models to
present a fuller picture of attack graph generation.

3. Proposed model

This section discusses the method of attack graph
generation. As seen in Fig. 1, the generation process
is divided into four phases. The first step determines
the reachability of an attack graph. This entails
determining reachability conditions between hosts.
The modelling phase explains the extent of an attack
graph's configuration and how individual attack
models could be built. The attack graph is then
generated by calculating the potential attack paths
during the core building phase. At this stage, several
useless paths are pruned. The analysis is then used
to determine all the possible paths of an attack, from
the starting to target nodes. Every phase will be
discussed in greater detail in the subsequent section.

3.1. Reachability calculation

Reachability calculation uses the information in
the network to find the paths between hosts. As

such, the filtering devices rule of the network must
be extracted and modelled. Reachability calculation
can be performed in many ways. This present study
used a multigraph and connection matrix to calcu-
late the reachability of the nodes in the network. The
purpose of calculating reachability using a connec-
tion matrix and multigraph was to reach each IP
address and the port of each node in the network.
A connection matrix contains the reachability of

each node in a network. The row represents the
source, while the column represents the target. If
there is a connection between the nodes, the value
will be 1. It is 0 if there is no connection between the
nodes. Each node calculates its reachability and
sends this data to the administrator via a personal
agent.
Multigraphs allow for multiple edges (or parallel

edges) [36]. This implies that edges have the same
end nodes. However, two vertices can be connected
by more than one edge. A multigraph is distinct
from a hypergraph as it connects any number of
nodes, not just two.
In this present study, the reachability of the mul-

tigraph depicted the connectivity conditions be-
tween the software applications installed in the
hosts. The firewall rules, access control, trust re-
lations and security policies of the software

Fig. 1. Attack graph generation phases [35].

316 Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329



applications were used to define the reachability
information.
These factors, as well as other information, were

collected from the nodes via a personal agent and
sent to the administrator server, which is respon-
sible for constructing the attack graph. Every per-
sonal agent was responsible for collecting the data
required to calculate reachability. Personal agents
were also responsible for updates to reduce time
and complexity. The administrator server was
responsible for defining the attacker's privileges and
the vulnerability exploits of several software
applications.
The graph-vertex indicates the nodes in the

network. On the other hand, a graph edge depicted
source and destination software applications that
could connect directly with each other if certain
requirements were provided. These conditions
permitted direct accessibility between the software
applications, which were stored on every edge.

3.1.1. Personal agent
A personal agent is a computer program that

learns the users' preferences, interests, and habits to
provide them with proactive assistance through an
application [37]. This present study employed a
personal agent between the nodes and the admin-
istrator node. The job of a personal agent is to save
the reachability and the information of each node
and send it to the administrator to complete the
reachability calculation. Apart from that, if any up-
date occurs in the node and it cannot connect to the
server to send new information, the personal agent
keeps using the old information until the connection
with the server is restored, at which stage it will
send the new information. Fig. 2 shows the flow-
chart of a personal agent.

3.2. Attack graph modelling

Modelling attack templates and determining the
structure of attack graphs are all aspects of attack
graph modelling. The pre-and post-conditions for
the vulnerabilities are described in the attack tem-
plate modelling. It also provides a mechanism for
calculating these criteria for individual vulnerabil-
ities using data from publicly available vulnerability
and weakness databases. Choosing nodes and edges
types in an attack graph is part of evaluating the
attack graph structure.

3.2.1. Attack template modelling
Usually, the attack template is derived from the

vulnerabilities data provided by CVE and NVD, and
the formalization method expresses the attack

template factors. The attack template was used for
the first time by Jha et al. [38], which suggested and
explained the attack template and divided it into
four categories: attacker pre-conditions, network
pre-condition, attacker post-condition, and network
post-condition. In this paper, we use the same attack
template in Refs. [15,39]. Fig. 3 shows the attack
template that used in our work.
Definition 1. Condition refers to the information

that could be gained using software applications. It
has two elements which are Category represent the
gains on the application, Host refer to the location of
the software applications.
Definition 2. Direct condition assigns an addi-

tional element to the condition. This contains CPEId;
which represents the CPE identifier of the software.
Definition 3. An indirect condition assigns an

additional element to the condition. This contains
ProductType; which represents the product type of
the software.
Definition 4. Vulnerability in this work is defined

as a single CVE entry defined in the CVE database.

3.2.2. Attack graph structure
The structure defines the nodes and edges of the

attack graph generation. We will use the attack
graph structure proposed by Kaynar and Sivrikaya
[39], as shown in Fig. 4.
Definition 5. Privilege node refers to the attacker

privilege on software applications on a network
host.
Definition 6. A vulnerability conjunction node

denotes a conjunction connector for more than one
vulnerabilities node in the attack graph.
Definition 7. A vulnerability node refers to a

vulnerability in a software application on a network
host.

Fig. 2. The personal agent process flowchart.

Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329 317



3.3. Attack graph core building

Core building refers to the main algorithm pro-
cess of the attack graph that was developed in this
present study. It is viewed as a search problem that
is solved using a personal agent. A reachability
multigraph was first created for this purpose. The

A* pruning algorithm was then implemented on the
reachability information contained in the multi-
graph. The core building process can be divided into
two stages; attack graph generation and pruning.
These two stages are explained in greater detail in
the subsequent section.

3.3.1. Attack graph generation
An administrator generated an attack graph after

the data of each node provided by the personal
agents was collected (Fig. 5). The algorithm began
by extracting the information of every node in the
network. This information included reachability,
vulnerabilities, privileges, application list, and
connection information. The mutual vulnerability
between the nodes and the nodes in the reachability
list of the node was then checked. If more than one
vulnerability connected the node and the reach-
ability nodes list, the node was labelled a conjunc-
tion node. If only one vulnerability connected the
node and the reachability nodes list, it was labelled
a vulnerability node. Lastly, if no vulnerabilities
were connected to the node, it was labelled a priv-
ileged node.
The attack graph was then updated prior to the

implementation of the pruning algorithm. This up-
date is of utmost importance during attack graph
generation as the personal agent may receive some

Fig. 3. Attack template [15,39].

Fig. 4. Attack graph structure [39].

318 Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329



privileges or vulnerabilities only after the genera-
tion is complete. If there are any changes in the
information of any of the nodes, for instance, gain-
ing privileges or discovering a new vulnerability
caused by installing an application, the personal
agent sends this information to the administrator to
dynamically update the attack graph (Fig. 6).

3.3.2. A* pruning paths
A*-search is a well-known searching strategy in

Artificial Intelligence. This present study used the
A* prune as presented by Liu and Ramakrishnan
[40], with some changes to the definitions and steps.
A* prune combines A* search algorithm and proper
pruning techniques to better prune algorithms. The
definitions of the algorithm are as follows:
Definition 8: Consider a network depicted by

graph G ¼ ðV ;EÞ; where V refers to a set of vertexes
and E refers to a set of edges. Every edge ði; jÞ2 E is
related to R; not negative and QoS values: wrði; jÞ;
r ¼ 1; 2;…;R. A length function w0 was determined
as follows:

w0ði; jÞ¼
XR

r¼1

arwrði; jÞ ð1Þ

Definition 9: Additive Parameters: If the
Wrðpði; jÞÞ the parameter is associated with the pði; jÞ

path, and Wrðpði; jÞÞ ¼ wrði; jÞ when pði; jÞ is one
path, then wr is an additive parameter if

Wr
�
pði; uÞ pðu; jÞ� ¼ Wr

�
pði; uÞ� þ Wr

�
pðu; jÞ�

ð2Þ
Definition 10: Tail path and head path:

Supposing that node u is an intermediate node of
the path pði; jÞ: Node u divides the pði; jÞ path into
two; path pði; uÞ and path pðu; jÞ: The pði; uÞ path is
known as the head path while the pðu; jÞ path is the
tail of path pði; jÞ: Therefore, the pði; jÞ path is
expressed as a combination of the tail path and head
path given in the format below:

pði; jÞ¼pði;uÞpðu; jÞ ð3Þ
Definition 11: App edge: If app m defines the

edge between nodes i and j; m is an application of a
set of the joint application list M between nodes i
and j

m2M;Mði; jÞ¼�
app1;app2;…::;appn

� ð4Þ
Beginning with path pðs; sÞ, in which s denotes

the source node, although the A*Prune algorithm
can theoretically reach all the paths in Pðs;VÞ, only
paths in the admissible head path set Pðs;V ;HðpÞ;CÞ
remain as candidates for future expansion after
sufficient pruning using the constraints C. More-
over, the candidate paths are organised in such a
way that the path with the shortest projected length
H0ðpÞ are chosen and expanded first. The expansion
is halted once a sufficient number of constrained-
shortest-paths (CSPs) are identified or there are no
more candidate paths. Only a portion of the ad-
missible head path (AHP) set Pðs;V ;HðpÞ;CÞ are

Fig. 5. Attack graph generation.

Fig. 6. Attack graph update.

Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329 319



expanded using the proposed approach. Fig. 7 de-
picts the A*Prune algorithm pseudocode.
The first step of the algorithm is to obtain the full

attack graph with V ; the nodes; and E; the edges; as
well as the list of networks (vul list), the application
list (app list) for all nodes, and the number of paths
in the full attack graph.
Assuming that AHP heap has been obtained, an

acceptable head path list is initialized with the trivial
path pðs; sÞ. The path expanding procedure then
picks and eliminates path p from AHP heap; then
expands the chosen path to obtain all the available
extended paths and inserts all allowable head paths
into AHP heap.
Once the process chooses the first path in

AHP heap, it is removed from the AHP heap before
each node in the path is checked by the vulnera-
bilities and application lists of each node. If there is
compatibility, an edge is added between these
nodes until the target t is reached. This process is
repeated for all paths in the attack graph until a
CSP list is returned, which contains all paths in the
attack graph after it has been pruned.

3.4. Attack graph analysis

The attack graph analysis will be discussed in this
section. The attack prediction and attack projection
for the path from the attack location until the target
will be explained in detail. Fig. 8 shows the attack
graph process. Each step will be discussed in detail
below.

3.4.1. Attack prediction
In this section, the attack prediction using ma-

chine learning will be explained. The aim of using
attack prediction in the attack graph is to find the
attack location dynamically. Fig. 9 shows the attack
prediction process using machine learning.

3.4.1.1. Data collection and preparation. In the attack
prediction process, network traffics will be used.
There are many datasets used in detection and
prediction like the 913 MALICIOUS dataset [41],
CSE-CIC-IDS2018 and KDD, also there are many
techniques are used to generate the traffics like
Ostinato, Genesids and Cisco TRex [42]; however,
the data used in this work is CIC-IDS2017 because it
is large and has many types of attacks. The CICIDS-
2017 was established by the Canadian Institute for
Cybersecurity at the University of New Brunswick.
Note that it has 85 attributes. The data collection
period took five days, beginning from Monday

Fig. 7. A* prune algorithm.

Fig. 8. Attack graph analysis.

Fig. 9. Attack prediction process.

320 Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329



(2017, July 3) at 9 a.m. and ended at 5 p.m. Friday
(2017, July 7). Attacks include DoS, Botnet, Web
Attack, Brute Force FTP, Brute Infiltration, DDoS
and Force SSH. More details about the dataset can
be found in Ref. [43].

3.4.1.2. Feature selection. A research question in
network intrusion detection questions how to
choose appropriate features. Discovering critical
attributes not only speeds up data manipulation but
also has the potential to increase identification rates.
There are several attributes in selection algorithms.
The most widely used feature selection method is

Information Gain [44], which is a feature selection
dependent on filters [45]. Information Gain elimi-
nates noise generated by irrelevant features by
employing a simple attribute rank. It then de-
termines a feature with the most information base in
a particular class. Calculating the entropy of a
feature determines which one is the greatest. Bere-
zi�nski et al. [46] defined entropy is a measure of
uncertainty that may be employed to infer the fea-
tures’ distribution in a succinct manner. The en-
tropy may be determined using the following Eq.
(5):

EntropyðSÞ¼
Xc

i

�Pi log2 Pi ð5Þ

where c denotes the number of values in the clas-
sification class while Pi denotes the number of
samples for class i. The Information Gain value is
determined after the entropy value has been ob-
tained by employing Eq. (6):

GainðS;AÞ¼EntropyðsÞ �
X

ValuesðAÞ

jSvj
jSj EntropyðSvÞ ð6Þ

where S denotes a sample, A denotes an attribute, v
represents a potential value for attribute A, while
ValuesðAÞ denotes a set of potential values for A.
Moreover, jSvj refers to the number of samples for
value v; jSvj is the number of samples for all data
samples, while Entropy (Sv) is the entropy for the
sample with a value v.

3.4.1.3. Machine learning algorithm. Machine learning
algorithms have been widely used for several clas-
sification and prediction problems and have pro-
vided accurate results. In this work, the Random
Forest algorithm is used to classify the network
traffic to detect, predict and find the attack location,
as in Fig. 10.
One of the ensemble classifier approaches is

Random Forest (RF). If a decision tree classifier is

used in an ensemble, the classifiers are called a
forest. Each decision tree is generated by selecting
attributes at random at each node for separation
[47]. Breich suggested the RF algorithm in 2001 [48].
It has been used in some anomaly detection exper-
iments, for instance, research performed by Lallie
et al. [49].

3.4.1.4. Attack location. The location of the attack in
the network is important to identify the starting
node for the attack to find the path that the attacker
might use. In this matter, the location will be iden-
tified using machine learning algorithms as in
Fig. 11.
After the RF is trained, the administrator will

monitor the network and capture the traffic and
send it to RF to test it. The algorithm will split the
network traffic depending on the IP addresses and
then test the traffic based on the IP address. If there
is an attack in the traffic, the algorithms will return
the address and attack type. After identifying the
location of the attack, the algorithm will find the

Fig. 10. The Random Forest training algorithm.

Fig. 11. Attack location pseudocode.

Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329 321



nearest data server to the location to identify it as a
target node for the attacker.
To find the location of the attack, the RF will

construct the node's location based on the coming
traffic. Once the algorithm assigns that there is an
attack on the traffic, the algorithm will analyses the
traffic information to construct the IP address of the
attack node and the type of the attack. After the
traffic has been classified, the system will get the IP
address of the node that has been attacked or is still
under attack; then, the system will apply rules to
block this node from the network. Fig. 12 shows the
algorithm that has been used to block the node in
the network.
Once the system confirms there is an external

attack on the network and applies the rules to block
the node that got attacked, the system will load the
node information from the attack graph to find the
capability of the attack.

3.4.1.5. Performance measure. To calculate the per-
formance of RF, first of all, the algorithm will classify
the dataset into four types which are True Positive
(TP), False Positive (FP), True Negative (TN) and
False Negative (FN). Using these four factors, Pre-
cision and recall for the algorithm will be calculated.
Precision is the ratio of the attack flows (TP) to the
characteristic flows (TP þ PF), as in Eq. (7):

Precision¼TP=ðTPþFPÞ ð7Þ
Meanwhile, Recall or Sensitivity is a ratio of

correctly identified attacks (TP) with the overall
predicted flows (TP þ FN) as in Eq. (8):

Recall¼TP=ðTPþFNÞ ð8Þ
If the model has been established, it could be

employed to recognize possible targets for traffic
attacks. We utilized our developed model to forecast
attacks based on traffic classification during the
testing process. If the attacker did indeed target a
host as expected by the machine learning algorithm,
the model is deemed correct. Eq. (5) is employed to
measure the model's accuracy, given by:

Accuracy¼Number of predict attack
number of the attack

� 100 ð9Þ

To test the RF performance, in this paper, the
CICIDS-2017 dataset will be used. The CICIDS
dataset contains eight files, each file collected at a
different time and has different attacks. The dataset
includes 78 function columns and a one-mark col-
umn, which were included in this study. The dataset
includes two “Fwd Header Length” features or col-
umns, all of which are redundant, so one must be
omitted. After deleting the obsolete features, there
are only 77 features left to evaluate [44].

3.4.2. Attack projection
Attack projection defines the attack's next step

inside the network. It is used to project the
resumption of an attack and predict upcoming
events. To predict the attack's next step, first, we use
the attack location in the network, besides the vul-
nerabilities list, privileges list and network connec-
tion. The rule-based methods will be used to predict
the next attack step.
Attackers can get unauthorized access to the sys-

tem by using basic privileges that satisfy some initial
input requirements. In general, attackers can gain
access to information systems by exploiting several
vulnerabilities, like software vulnerabilities.
The attack path discovery pseudocode is shown in

Fig. 13, while the following activities need to be
executed for the algorithm to determine the attack
paths:

1. Entry Points: the entry point will be the attack
location. After we find the location of the attack
in the network, it will be the point to start to find
the all paths from this point until reaching the
target.

2. Vulnerability Chains (VC): In VC, this work uses
a rule-based reasoning approach to generate a

Fig. 12. Blocking attack node algorithm. Fig. 13. Attack path discovery.

322 Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329



chain of vulnerabilities on various assets that
result from multi-step attacks launched from the
source to exploit the target vulnerabilities.

To find the attack's next step and all possible
paths, first, the algorithm starts to get the attack
location, attack target, attack graph, vulnerabilities
list and privilege list as an input. In the beginning,
the algorithm starts to generate an attack graph
from the attack location to the target nodes by using
the construction function as explained in Fig. 14.
Then the algorithm tries to find the possible at-

tack's next step by using the vulnerabilities list and
privilege list. For all nodes connected to the attack's
location node, check the vulnerabilities and gain
privileges; if there are gain privileges and vulnera-
bilities that might be exploited, then calculate the
score of the gain privilege and vulnerabilities.
After finding the higher score between all the

nodes, the algorithm will return a recommendation
to the administrator with the attack paths and the
possible next step for the attack, as shown in Fig. 15.

4. Experiment

The experiment was conducted on a typical en-
terprise network to test our proposed attack graph.
The generated attack graph was tested using the
network topology portrayed in Fig. 16. The network
contains three servers which are a webserver, file

server and database server; it also has an IDS device
and four workstations, two workstations are work-
ing with windows 10, and the other two worksta-
tions are using windows 7. There is a perimeter
firewall. The following firewall rules regulate
network connectivity in this network topology:

� The network includes bidirectional connectivity
between the workstations and the webserver.

Fig. 14. Construct attack graph between two nodes [50].

Fig. 15. Vulnerabilities score calculation.

Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329 323



� There is bidirectional connectivity between
workstation 1 with workstations 2, 3 and 4.

� There is bidirectional connectivity between
workstations 3 and 4.

� The attacker's host is connected to the Internet
and has HTTP protocol and HTTP port access to
the webserver.

� The four workstations and fileserver have access
to each other through the NFS protocol and NFS
port.

� The HTTP protocol and HTTP port provide
internet access to the four workstations and file
servers.

� Workstation 4 has access to the network data-
base server.

The experiments used to evaluate the generating
attack graph in this environment uses the CPU with
core i5 2.0 GHz with 8 GB of RAM. The operating
system is Windows 10, while the coding was done
using Microsoft Visual Studio C# 2012. The attack
graph generation for the network topology above is
shown in Fig. 17.

5. Results

The findings of the experiment are explained in
the subsequent section in two parts; attack graph
generation and analysis.

5.1. Attack graph generation

The results indicate that a personal agent is able to
collect data and send it to the administrator as well

as reduce latency, leading to no missing data when
the attack graph is updated, if any information has
been changed. The A* prune algorithm reduced the
generation time and complexity of an attack graph.
As seen in Fig. 16, the running time for network
topology after using the A* prune algorithm was
0.3 s.
These results encouraged the testing of more

factors in the attack graph as well as larger numbers
of nodes and servers to test the running time
and complexity of the attack graph. Table 1 shows
the results of each stage of the attack graph
generation.
In Table 1, the running time of different stages of

attack graph generation is explained. We can see the
advantage of using the A* pruning algorithm and
personal agent in decreasing the generation time,
especially the personal agent, which reduces the
reachability calculation in different network sizes.
Other pruning algorithms were used to generate

the attack graph; however, it was determined that
the A* prune algorithm provided the best and most
accurate results among the tested algorithms
(Fig. 18). The performance of the A* prune algo-
rithm used in this present study was compared with
that of depth-first search, breadth-first search, and
greedy algorithm on the same number of nodes and
topology. The results show that the A* prune algo-
rithm provided better results than the other algo-
rithms. The reason is that the A* pruning algorithm
expands far fewer nodes than other algorithms. In
this case, the paths will be found faster than other
algorithms.

Fig. 16. Experiment network topology.

324 Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329



Four different network sizes were used to test the
results obtained by extant studies with that of this
present study, which used the A* prune algorithm.
The results indicated that the model adopted by this

present study provided faster generation times than
that of extant studies. This was because this present
study used the A* prune algorithm, which is faster
than the other algorithms. This present study also
used a personal agent to facilitate faster information
reachability (Table 2).
Comparing the results, our work is faster than

others because [39] depends on multi-agent to
calculate and generate the subgraphs and then
combine them in the administrator to generate
the full graph. While Li et al. [51] depending on
the size of the queue to represent the number of
threats to decrease the generation time, however,
merge the sub-graphs is another issue because it
requires a long time to generate the full graph.
While Feng et al. [52] depending on a decrease in
the number of vulnerabilities in each node to
ensure the attack graph will not be larger so it will
lead to a decrease in the generation time, however,
the attack graph is supposed to represent all
the vulnerabilities in the network, so once the

Table 1. Running time of the attack graph (seconds).

Nodes
Number

Full
graph

Full graph
with A*prune

Full graph
with parallel

Our
work

8 1.604 1.332 0.527 0.232
50 67.489 58.120 10.269 8.173
100 146.48 118.591 23.402 16.160
250 305.631 261.017 57.594 41.018
400 737.17 598.591 102.907 91.67
600 1278.816 1038.36 201.398 147.739
750 2103.479 1772.831 348.682 261.948
1000 4891.529 4167.192 603.481 479.018

Fig. 18. Comparison results.

Fig. 17. Example of the attack graph.

Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329 325



vulnerabilities number increased, the generation
time will be increased.

5.2. Attack graph analysis

The predictions and projections are explained in
this section. In terms of attack prediction, the
CICIDS2017 dataset was used to test the perfor-
mance of the RF algorithm. Different criteria were
used to test the performance of the RF algorithm,
namely, the accuracy of detecting an attack, running
time, recall, and precision. Table 3 compares the
performance of the RF algorithm using the
CICIDS2017 dataset with that of other machine
learning algorithms, such as artificial neural
network (ANN) and support vector machine (SVM).
The RF algorithm was found to provide higher

average accuracy (98.1%) than the ANN algorithm
(92.5%) and the SVM algorithm (74.7%). However,
for the detection time, the SVM algorithm had the
fastest running time (7.8 seconds), while the RF and
ANN algorithms had running times of 8.9 seconds
and 132.5 seconds, respectively, as shown in Fig. 19.
The RF consist of multiple single trees, each based

on a random sample of the training data. So it is
typically more accurate than other algorithms. Also,
the RF is second faster to train because it is working
only on a subset of features, so we can easily work
with hundreds of features and a larger dataset.
While SVM and ANN do not perform very well with
a large dataset and when the dataset has more noise.
For attack projection, the network depicted in

Fig. 16 was used. Fig. 17 shows the attack graph of
the network, while Fig. 19 presents the attack path
from the attack to the database server.

If an attacker only has access to a webserver on
this network, the attacker's first step is the web-
server. From the webserver, there are only four
ways for the attack to travel from the workstations to
the target, i.e., the database server (Table 4).
Here, A denotes the attacker, W denotes the

webserver, D denotes the database, and the
numbers symbolise the workstations. Only the
webserver can provide the attacker with access to
the workstations. In this situation, the attacker's
subsequent move is to attack the webserver. How-
ever, as the webserver has a bidirectional connec-
tion to the workstations, it cannot directly connect to
the database server. This can only be accomplished
via the workstations in a network. In this scenario,
the attacker must first conquer the workstations
before attempting to conquer the database server by
exploiting network vulnerabilities.
The accuracy and running time of the machine

learning algorithms are first measured, followed by
system execution time. Fig. 20 displays the running
time of the system, starting with the generation time
for the attack graph, the detection time, and the

Table 2. Comparison with previous work.

Network size [39] [51] [52] Our work

8 nodes 4.102 9.35 5.616 0.232
50 nodes 9.83 13.61 11.381 8.173
100 nodes 14.67 21.583 16.62 16.160
250 nodes 47.38 52.172 49.521 41.018
Complexity OðN2 =logðNÞÞ OðjQdjNe =n þ k1jQdjÞ Oðn *m2Þ Oðn *mÞ

Table 3. Performance of machine learning algorithm in a 70:30 split
dataset.

Detection Random Forest SVM ANN

DoS/DDoS 99.9 90.6 99.4
Port Scan 100 98.5 99.9
Bot 98.8 77.6 99.9
Web Attack 99.9 66.9 84.2
Infiltration 90 50 75
Brute Force 100 65 96.6
Average 98.1 74.7 92.5
Running Time 8.9 7.8 132.5

Fig. 19. Attack detection time.

Table 4. Attack path.

Path number Path

1 A-W-4-D
2 A-W-1-4-D
3 A-W-3-4-D
4 A-W-1-3-4-D
5 A-W-3-1-4-D

326 Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329



projection until the optimal path is found. The re-
sults indicate that the SVM algorithm system had
the shortest running time (9.5 seconds), while the RF
algorithm took 11.2 seconds and the ANN algorithm
took 143.8 seconds (see Fig. 21).

6. Conclusion

There is an increased need for reliable attack
identification as network threats become more
complex and diverse. As cyber-attacks cannot be
completely eliminated, the cybersecurity industry
geared its research and development efforts towards
detecting and minimizing the damage of security
breaches. There is an increasing trend of developing
more constructive security approaches that help
deter or minimize security events before they cause
more harm. As such, many approaches have been
proposed in recent years. One of these approaches
is the attack graph. In this present study, a personal

agent and the A* pruning algorithm were used to
improve attack graph generation by reducing the
running time and latency of collecting and updating
the data from the host. The RF algorithm was also
used to improve attack graph analysis by detecting
and predicting an attack and its location to project
the next steps of an attack. The results showed that
the attack graph developed in this study produced
better results than the current attack graph. The
results of the analysis indicated that the RF algo-
rithm had higher accuracy than the ANN and SVM
algorithms. Therefore, future studies could explore
the use of different algorithms and techniques to
reduce generation time as well as use more infor-
mation to calculate reachability. Future studies may
also use different attack prediction methods to in-
crease the accuracy of finding the attack location in a
network.

References

[1] A.A. Mutlag, M.K.A. Ghani, M.A. Mohammed, A. Lakhan,
O. Mohd, K.H. Abdulkareem, B. Garcia-Zapirain, Multi-
agent systems in fogecloud computing for critical healthcare
task management model (CHTM) used for ECG monitoring,
Sensors. 21 (2021) 6923e6939, https://doi.org/10.3390/
s21206923.

[2] Z.J. Al-Araji, S.S.S. Ahmad, M.W. Al-Salihi, H.A. Al-Lamy,
M. Ahmed, W. Raad, N.M. Yunos, Network Traffic Classifi-
cation for Attack Detection Using Big Data Tools : A Review,
Intelligent and Interactive Computing, 67, Springer, 2019:
pp. 355e363, https://doi.org/10.1007/978-981-13-6031-2_37.

[3] J. Jang-Jaccard, S. Nepal, A survey of emerging threats in
cybersecurity, J Comput Syst Sci. 80 (2014) 973e993, https://
doi.org/10.1016/j.jcss.2014.02.005.

[4] Y. Yang, L. Wu, G. Yin, L. Li, H. Zhao, A survey on security
and privacy issues in internet-of-things, IEEE Internet

Fig. 20. Attack path discovery.

Fig. 21. System running time.

Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329 327

https://doi.org/10.3390/s21206923
https://doi.org/10.3390/s21206923
https://doi.org/10.1007/978-981-13-6031-2_37
https://doi.org/10.1016/j.jcss.2014.02.005
https://doi.org/10.1016/j.jcss.2014.02.005


Things J. 4 (2017) 1250e1258, https://doi.org/10.1109/JIOT.
2017.2694844.

[5] N. Rahim, Bibliometric analysis of cyber threat and cyber
attack literature: exploring the higher education context, in:
Cybersecurity Threats with New Perspectives, IntechOpen,
London, United Kingdom, 2021: pp. 142e157, https://doi.org/
10.5772/intechopen. 98038.

[6] M. Hus�ak, V. Barto�s, P. Sokol, A. Gajdo�s, Predictive methods
in cyber defence: current experience and research chal-
lenges, Future Generat Comput Syst. 115 (2021) 517e530,
https://doi.org/10.1016/j.future.2020. 10.006.

[7] K. Kim, J.S. Kim, S. Jeong, J.H. Park, H.K. Kim, Cybersecurity
for autonomous vehicles: review of attacks and defence,
Comput Secur. 103 (2021) 102150e102177, https://doi.org/10.
1016/j.cose.2020. 102150.

[8] C. Phillips, L.P. Swiler, A graph-based system for network-
vulnerability analysis, in: Proc Workshop New Secur, Para.,
1998: pp. 71e79, https://doi.org/10.1145/310889.310919.

[9] X. Zhang, Q. Wang, X. Wang, R. Zhang, Attack path analysis
of power monitoring system based on attack graph, IOP
Conf Ser Earth Environ Sci. 645 (2021) 12064e12070, https://
doi.org/10.1088/1755-1315/645/1/012064.

[10] L. Wang, T. Islam, T. Long, A. Singhal, S. Jajodia, An attack
graph-based probabilistic security metric, 5094, Artificial
Intelligence, Springer, 2008: pp. 283e296, https://doi.org/10.
1007/978-3-540-70567-3_22.

[11] K.P. Grammatikakis, I. Koufos, N. Kolokotronis, C. Vassila-
kis, S. Shiaeles, Understanding and mitigating banking tro-
jans: from Zeus to emotet, in: Proc Int Conf Cyber Secur and
Resilience, IEEE, 2021: pp. 121e128, https://doi.org/10.1109/
CSR51186.2021.9527960.

[12] K. Kaynar, A taxonomy for attack graph generation and
usage in network security, J Inf Secur Appl. 29 (2016) 27e56,
https://doi.org/10.1016/j.jisa.2016.02.001.

[13] Z.J. Al-Araji, S.S.S. Ahmed, R.S. Abdullah, A.A. Mutlag, H.A.
A. Raheem, S.R.H. Basri, Attack graph reachability: concept,
analysis, challenges and issues, Netw Secur. 2021 (2021)
13e19, https://doi.org/10.1016/S1353-4858(21)00065-9.

[14] A. Sabur, A. Chowdhary, D. Huang, A. Alshamrani, Toward
scalable graph-based security analysis for cloud networks,
Comput Network. 206 (2022) 108795e108815, https://doi.org/
10.1016/j.comnet.2022.108795.

[15] H. Li, Y. Wang, Y. Cao, Searching forward complete attack
graph generation algorithm based on hypergraph partition-
ing, Procedia Comput Sci. 107 (2017) 27e38, https://doi.org/
10.1016/j.procs.2017.03. 052.

[16] Y. Chen, K. Lv, C. Hu, Optimal attack path generation based
on supervised Kohonen neural network, in: Int Conf Netw
Sys Secur, Springer, 2017: pp. 399e412, https://doi.org/10.
1016/j.jnca.2008.06.001.

[17] Z. Yichao, Z. Tianyang, G. Xiaoyue, W. Qingxian, An
improved attack path discovery algorithm through compact
graph planning, IEEE Access. 7 (2019) 59346e59356, https://
doi.org/10.1109/ACCESS.2019. 2915091.

[18] G. Frances, H. Geffner, Modeling and computation in plan-
ning: better heuristics from more expressive languages, Proc
ICAPS (25) (2015) 70e78, https://doi.org/10.17/936-98-37.

[19] X. Guan, Y. Ma, Y. Hua, An attack intention recognition
method based on evaluation index system of electric power
information system, in: Proc Inform Technol Netw Electron
Auto Contr Conf, IEEE, 2017: pp. 1544e1548, https://doi.org/
10.1109/ITNEC.2017. 8285053.

[20] M. Ibrahim, A. Alsheikh, Automatic hybrid attack graph
(AHAG) generation for complex engineering systems, Pro-
cesses. 7 (2019) 1e15, https://doi.org/10.3390/pr7110787.

[21] W. Shuo, G. Tang, G. Kou, Y. Chao, An attack graph gen-
eration method based on heuristic searching strategy, 2nd
Int Conf Comput Comm (2016) 1180e1185, https://doi.org/
10.1109/CompComm.2016.7924891.

[22] J.B. Hong, D.S. Kim, Towards scalable security analysis using
multi-layered security models, J Netw Comput Appl. 75
(2016) 156e168, https://doi.org/10.1016/j.jnca. 2016.08.024.

[23] T. Li, H. Zhang, J. Wang, N. Wang, Research for modelling
network security based on attack-defence grapy of state
reduction, IET Conf Publ (2015) 52e56, https://doi.org/10.
1049/cp.2015.0805.

[24] K. Cook, T. Shaw, P.J. Hawrylak, J. Hale, Scalable attack
graph generation, in: Proc Annu Cyber and Inform Secur Res
Conf, 2016: pp. 1e4, https://doi.org/10.1145/2897795.2897821.

[25] Y. Zhang, B. Wang, C. Wu, X. Wei, Z. Wang, G. Yin, Attack
graph-based quantitative assessment for industrial control
system security, in: Proc Chinese Automat, Congr. CAC,
2020: pp. 1748e1753, https://doi.org/10.1109/CAC51589.2020.
9327842.

[26] T. Hughes, O. Sheyner, Attack scenario graphs for computer
network threat analysis and prediction, Complexity. 9 (2003)
15e18, https://doi.org/10.1002/cplx.20001.

[27] M. Hus�ak, J. Kom�arkov�a, E. Bou-Harb, P. �Celeda, Survey of
attack projection, prediction, and forecasting in cyber secu-
rity, IEEE Commun Surv Tutor. 21 (2018) 640e660, https://
doi.org/10.1109/COMST.2018. 2871866.

[28] L. Wang, A. Liu, S. Jajodia, Using attack graphs for corre-
lating, hypothesising, and predicting intrusion alerts, Com-
put Commun. 29 (2006) 2917e2933, https://doi.org/10.1016/j.
comcom.2006.04.001.

[29] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, D. Huang, NICE:
network intrusion detection and countermeasure selection in
virtual network systems, IEEE Trans Dependable Secure
Comput. 10 (2013) 198e211, https://doi.org/10.1109/TDSC.
2013.8.

[30] I. Kotenko, A. Chechulin, A cyber attack modeling and
impact assessment framework, in: Int Conf Cyber Confl
CYCON, IEEE, 2013: pp. 1e24.

[31] S. Fayyad, C. Meinel, Attack scenario prediction methodol-
ogy, in: Proc 10th Int Conf Inf Technol: New Generations,
2013: pp. 53e59, https://doi.org/10.1109/ITNG.2013.16.

[32] A.A. Ramaki, M. Khosravi-Farmad, A.G. Bafghi, Real-time
alert correlation and prediction using Bayesian networks, in:
Proc 12th Int ISC Conf Inf Secur Cryptol, 2015: pp. 98e103,
https://doi.org/10.1109/ISCISC.2015.7387905.

[33] H. Orojloo, M. Abdollahi Azgomi, Predicting the behaviour
of attackers and the consequences of attacks against cyber-
physical systems, Secur Commun Network. 9 (2016)
6111e6136, https://doi.org/10.1002/sec.1761.

[34] N. Polatidis, E. Pimenidis, M. Pavlidis, S. Papastergiou, H.
Mouratidis, From product recommendation to cyber-attack
prediction: generating attack graphs and predicting future
attacks, Evol Syst. 11 (2018) 1e12, https://doi.org/10.1007/
s12530-018-9234-z.

[35] Z.J. Al-Araji, S.S.S. Ahmad, R.S. Abdullah, Propose vulner-
ability metrics to measure network secure using attack
graph, Int J Adv Comput Sci Appl. 12 (2021) 51e58, https://
doi.org/10.14569/IJACSA.2021.0120508.

[36] G. Chartrand, P. Zhang, A first course in graph theory, Dover
Publications, Inc., New York, USA, 2013.

[37] S. Schiaffino, A. Amandi, Polite personal agents, IEEE Intell
Syst. 21 (2006) 12e19, https://doi.org/10.1109/MIS.2006.15.

[38] S. Jha, O. Sheyner, J. Wing, Two formal analyses of attack
graphs, Proc Comput Secur Founda (2002) 49e63, https://doi.
org/10.1109/CSFW.2002. 1021806.

[39] K. Kaynar, F. Sivrikaya, Distributed attack graph generation,
IEEE Trans Dependable Secure Comput. 13 (2015) 519e532,
https://doi.org/10.1109/TDSC.2015.2423682.

[40] G. Liu, K.G. Ramakrishnan, A *Prune: an algorithm for
finding K shortest paths subject to multiple constraints, Proc
INFOCOM, IEEE. 2 (2001) 743e749, https://doi.org/10.1109/
infcom.2001.916263.

[41] J. Rose,M. Swann,G. Bendiab, S. Shiaeles,N.Kolokotronis, 913
Malicious Network Traffic PCAPs and Binary Visualisation
ImagesDataset, IEEEDataport, 2021. https://ieee-dataport.org/
open-access/913- malicious- network- traffic- pcaps- and
-binary-visualisation-images-dataset. (Accessed 23 April 2022).

[42] M. Swann, J. Rose, G. Bendiab, S. Shiaeles, N. Savage, Tools
for Network Traffic Generation - A Quantitative

328 Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329

https://doi.org/10.1109/JIOT.2017.2694844
https://doi.org/10.1109/JIOT.2017.2694844
https://doi.org/10.5772/intechopen. 98038
https://doi.org/10.5772/intechopen. 98038
https://doi.org/10.1016/j.future.2020. 10.006
https://doi.org/10.1016/j.cose.2020. 102150
https://doi.org/10.1016/j.cose.2020. 102150
https://doi.org/10.1145/310889.310919
https://doi.org/10.1088/1755-1315/645/1/012064
https://doi.org/10.1088/1755-1315/645/1/012064
https://doi.org/10.1007/978-3-540-70567-3_22
https://doi.org/10.1007/978-3-540-70567-3_22
https://doi.org/10.1109/CSR51186.2021.9527960
https://doi.org/10.1109/CSR51186.2021.9527960
https://doi.org/10.1016/j.jisa.2016.02.001
https://doi.org/10.1016/S1353-4858(21)00065-9
https://doi.org/10.1016/j.comnet.2022.108795
https://doi.org/10.1016/j.comnet.2022.108795
https://doi.org/10.1016/j.procs.2017.03. 052
https://doi.org/10.1016/j.procs.2017.03. 052
https://doi.org/10.1016/j.jnca.2008.06.001
https://doi.org/10.1016/j.jnca.2008.06.001
https://doi.org/10.1109/ACCESS.2019. 2915091
https://doi.org/10.1109/ACCESS.2019. 2915091
https://doi.org/10.17/936-98-37
https://doi.org/10.1109/ITNEC.2017. 8285053
https://doi.org/10.1109/ITNEC.2017. 8285053
https://doi.org/10.3390/pr7110787
https://doi.org/10.1109/CompComm.2016.7924891
https://doi.org/10.1109/CompComm.2016.7924891
https://doi.org/10.1016/j.jnca. 2016.08.024
https://doi.org/10.1049/cp.2015.0805
https://doi.org/10.1049/cp.2015.0805
https://doi.org/10.1145/2897795.2897821
https://doi.org/10.1109/CAC51589.2020.9327842
https://doi.org/10.1109/CAC51589.2020.9327842
https://doi.org/10.1002/cplx.20001
https://doi.org/10.1109/COMST.2018. 2871866
https://doi.org/10.1109/COMST.2018. 2871866
https://doi.org/10.1016/j.comcom.2006.04.001
https://doi.org/10.1016/j.comcom.2006.04.001
https://doi.org/10.1109/TDSC.2013.8
https://doi.org/10.1109/TDSC.2013.8
https://doi.org/10.1109/ITNG.2013.16
https://doi.org/10.1109/ISCISC.2015.7387905
https://doi.org/10.1002/sec.1761
https://doi.org/10.1007/s12530-018-9234-z
https://doi.org/10.1007/s12530-018-9234-z
https://doi.org/10.14569/IJACSA.2021.0120508
https://doi.org/10.14569/IJACSA.2021.0120508
https://doi.org/10.1109/MIS.2006.15
https://doi.org/10.1109/CSFW.2002. 1021806
https://doi.org/10.1109/CSFW.2002. 1021806
https://doi.org/10.1109/TDSC.2015.2423682
https://doi.org/10.1109/infcom.2001.916263
https://doi.org/10.1109/infcom.2001.916263
https://ieee-dataport.org/open-access/%20913-%20malicious-%20network-%20traffic-%20pcaps-%20and%20-binary-visualisation-images-dataset
https://ieee-dataport.org/open-access/%20913-%20malicious-%20network-%20traffic-%20pcaps-%20and%20-binary-visualisation-images-dataset
https://ieee-dataport.org/open-access/%20913-%20malicious-%20network-%20traffic-%20pcaps-%20and%20-binary-visualisation-images-dataset


Comparison, 2020: pp. 24e29, https://doi.org/10.20533/
worldcis.2020.0003. ArXiv Preprint ArXiv: 2109.02760.

[43] R. Panigrahi, S. Borah, A detailed analysis of CICIDS2017
dataset for designing Intrusion Detection Systems, Int J
Eng Technol. 7 (2018) 479e482, https://doi.org/10.1201/136.
2018.3.

[44] D. Stiawan, M.Y. Bin Idris, A.M. Bamhdi, R. Budiarto, others,
CICIDS-2017 dataset feature analysis with information gain
for anomaly detection, IEEE Access. 8 (2020) 132911e132921,
https://doi.org/10.1109/ACCESS.2020.3009843.

[45] T.A.Alhaj,M.M.Siraj,A.Zainal,H.T.Elshoush,F.Elhaj, Feature
selection using information gain for improved structural-based
alert correlation, PLoS One. 11 (2016) e0166017ee0166034,
https://doi.org/10.1371/journal.pone.0166017.

[46] P. Berezi�nski, B. Jasiul, M. Szpyrka, An entropy-based
network anomaly detection method, Entropy. 17 (2015)
2367e2408, https://doi.org/10.3390/e17042367.

[47] J. Han, M. Kamber, J. Pei, Data mining concepts and tech-
niques, in: The Morgan Kaufmann Series in Data Manage-
ment Systems, 3rd ed., Morgan Kaufmann, Singapore, 2011:
pp. 83e124, https://doi.org/10.1016/C2009-0-61819-5.

[48] M.C. Belavagi, B. Muniyal, Performance evaluation of su-
pervised machine learning algorithms for intrusion detec-
tion, Procedia Comput Sci. 89 (2016) 117e123, https://doi.
org/10.1016/j.procs.2016.06.016.

[49] H.S. Lallie, K. Debattista, J. Bal, A review of attack graph and
attack tree visual syntax in cyber security, Comput Sci Rev.
35 (2020) 100219e100260, https://doi.org/10.1016/j.cosrev.
2019.100219.

[50] Geeksforgeeks, Find all paths between two nodes, print all
paths from a given source to a destination. https://www.
geeksforgeeks.org/find- paths- given-source-destination/,
2022. (Accessed 6 April 2022).

[51] M. Li, P. Hawrylak, J. Hale, Concurrency strategies for attack
graph generation, in: Proc - 1st Int Conf Data Intell Secur
ICDIS, IEEE, 2019: pp. 174e179, https://doi.org/10.1109/
ICDIS.2019.00033.

[52] Y. Feng, G. Sun, Z. Liu, C. Wu, X. Zhu, Z. Wang, B. Wang,
Attack graph generation and visualization for industrial
control network, Chin Control Conf CCC (2020) 7655e7660,
https://doi.org/10.23919/CCC50068.2020.9189450.

Z.J. Al-Araji et al. / Karbala International Journal of Modern Science 8 (2022) 313e329 329

https://doi.org/10.20533/worldcis.2020.0003
https://doi.org/10.20533/worldcis.2020.0003
https://doi.org/10.1201/136.2018.3
https://doi.org/10.1201/136.2018.3
https://doi.org/10.1109/ACCESS.2020.3009843
https://doi.org/10.1371/journal.pone.0166017
https://doi.org/10.3390/e17042367
https://doi.org/10.1016/C2009-0-61819-5
https://doi.org/10.1016/j.procs.2016.06.016
https://doi.org/10.1016/j.procs.2016.06.016
https://doi.org/10.1016/j.cosrev.2019.100219
https://doi.org/10.1016/j.cosrev.2019.100219
https://www.geeksforgeeks.org/%20find-%20paths-%20given-source-destination/
https://www.geeksforgeeks.org/%20find-%20paths-%20given-source-destination/
https://doi.org/10.1109/ICDIS.2019.00033
https://doi.org/10.1109/ICDIS.2019.00033
https://doi.org/10.23919/CCC50068.2020.9189450

	Attack Prediction to Enhance Attack Path Discovery Using Improved Attack Graph
	Recommended Citation

	Attack Prediction to Enhance Attack Path Discovery Using Improved Attack Graph
	Abstract
	Keywords
	Creative Commons License

	Attack Prediction to Enhance Attack Path Discovery Using Improved Attack Graph
	1. Introduction
	2. Related work
	2.1. Attack graph generation
	2.2. Attack graph analysis

	3. Proposed model
	3.1. Reachability calculation
	3.1.1. Personal agent

	3.2. Attack graph modelling
	3.2.1. Attack template modelling
	3.2.2. Attack graph structure

	3.3. Attack graph core building
	3.3.1. Attack graph generation
	3.3.2. A∗ pruning paths

	3.4. Attack graph analysis
	3.4.1. Attack prediction
	3.4.1.1. Data collection and preparation
	3.4.1.2. Feature selection
	3.4.1.3. Machine learning algorithm
	3.4.1.4. Attack location
	3.4.1.5. Performance measure

	3.4.2. Attack projection


	4. Experiment
	5. Results
	5.1. Attack graph generation
	5.2. Attack graph analysis

	6. Conclusion
	References


