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Molecular Docking and Dynamics Simulation Studies to Predict Multiple
Medicinal Plants’ Bioactive Compounds Interaction and Its Behavior on the
Surface of DENV-2 E Protein

Abstract

The envelope protein (E) is a fusion class Il protein that is essential for DENV fusion. We use two active
compounds derived from commonly used plants in Indonesia: galangin and kaempferide. We ran a
docking and 1000 ps molecular dynamic analysis with normal physiological parameters. During the
simulation, galangin and kaempferide binding sites fluctuated. But chloroquine has lesser ligand mobility,
hence keeping contact with fusion loops, whereas both drugs lose contact with hydrophobic pockets.
However, the two active compounds have a more stable ligand configuration. Less than 2 A alterations
were seen in the RMSF simulation of the protein E residues. In a 1000 ps simulation, all tested
compounds form stable complex with protein E, demonstrating that the two active compounds may be
predicted as DENV-2 E protein fusion inhibitors, despite chloroquine inhibiting in a unique manner linked
to its interaction domains.
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Abstract

The envelope protein (E) is a required fusion class II protein for DENV fusion. We use galangin and kaempferide, two
active chemicals obtained from commonly used plants in Indonesia. Normal physiological parameters were used to a docking
and 1000 ps molecular dynamic analysis. The galangin and kaempferide binding sites fluctuatingly changed throughout the
experiment. However, chloroquine retains contact with fusion loops due to its lower ligand mobility, whereas both other
drugs lose contact with hydrophobic pockets. In contrast, the ligand structure of the two active molecules is more stable. The
RMSF simulation of the protein E residues revealed changes of less than 2 A. In a 1000 ps simulation, all tested compounds
form stable complexes with protein E, indicating that the two active compounds may be expected as DENV-2 E protein fusion
inhibitors, despite chloroquine inhibiting in a manner that is distinctively tied to its interaction domains.

Keywords: Anti-viral, DENV-2 E protein, Molecular dynamic, RMSF

1. Introduction

D engue fever, a serious public health issue in
tropical and subtropical regions, imposes one
of the most severe social and economic costs of any
virus transmitted by mosquitoes. Dengue fever is
caused by infection with the dengue virus (DENV), a
single positive-stranded RNA virus of the family
Flaviviridae and genus Flavivirus, as well as other
insect-borne viruses such as West Nile Virus and
Zika virus, further categorized into four serotypes:
DENV-1, -2, -3, -4 [1-5]. These serotypes differ
antigenically, and their intricate interactions with

the human immune system have hindered efforts to
develop a definitive treatment and vaccine [6].
Dengue fever has struck havoc in Indonesia, making
it one of the world's worst-affected nations. Indo-
nesia's tropical climate is excellent for the growth of
dengue vectors. In addition, the disease has
expanded due to the rapid growth of urban and
suburban areas. In addition, community migration
patterns influence the Indonesian dengue disper-
sion pattern [7,8]. Since its initial occurrence in 1968,
dengue fever has spread throughout Indonesia. All
DENV serotypes are prevalent in Indonesia; how-
ever, DENV-2 and DENV-3 infections are the most
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common since they are both endemic in tropical
areas, and the principal vector is Aedes aegepti, which
is also endemic in the tropics [9,10]. Consequently,
the death rate continues to decline year after year,
from 41% at the outbreak's onset to less than 1%
recently. The epidemiological pattern of dengue
infection in Indonesia follows a ten-year cycle, with
the number of cases reaching a high every ten years
[11].

DENV's protein is classified into two major cate-
gories: structural proteins and nonstructural pro-
teins. The structure of mature DENV virions is
determined by structural proteins, while the repli-
cation mechanism of DENV in target cells is deter-
mined by nonstructural proteins [12]. Among the
DENV structural proteins, the envelope protein (E),
which is encased in a lipid bilayer of the viral en-
velope, is regarded as the most important for anti-
viral and vaccine development due to its antigenic
properties recognized by the immune system, role
in the infection cascade, and exposed position in the
extracellular environment, which makes it suscep-
tible to small-molecule intervention [6,13]. The
DENV-2 E protein is a fusion class II protein that
functions through receptor-mediated, clathrin-
dependent endocytosis induced by a low pH envi-
ronment [14—17]. The fusion loops (98—109), the
hydrophobic kl hairpin (270—279), and a hydro-
phobic pocket are some of the key domains in the
DENV-2 E protein that may be disrupted by small-
molecule inhibitors (130, 135, 193, 198, and 279).
These domains are thought to be critical in the
DENYV fusion mechanism, which is also thought to
be the most critical and delicate stage [18—20]. This
critical step alters the shape of the E protein's fusion
unit, allowing the viral membrane to fuse with the
target cell. Antiviral drugs interacting with protein E
are highly likely to disrupt this mechanism. This is
how antiviral drugs such as those used to treat
H1N1 and H3N2 infections perform [18,19,21—23].

Chloroquine, an inexpensive, readily accessible,
and well-tolerated lysosomotropic 9-aminoquino-
line that is regularly used as an antimalarial medi-
cation, has been the topic of a number of drug
repositioning studies in the DENV context [24,25].
Chloroquine inhibits low-pH entry steps by pre-
venting endosomal acidification; it also prevents the
virus from fusing with the endosomal membrane
and interferes with post-translational modifications
of newly synthesized proteins required for flavivirus
replication such as glycosylation of the trans-
membranal envelope protein M [13,26,27]. Chloro-
quine inhibited DENV replication in BHK-21 cells
(ECyp = 5.04 + 0.72 pM) but had no impact in a
DENV-2 replicon assay, indicating that chloroquine

may disrupt the viral entry stage, a hypothesis
confirmed by an in vivo investigation in Aotus azarai
infulatus monkeys [28—30]. In wvitro experiments
using U937 cells revealed that dosages of >5 pg/mL
delivered one hour after infection inhibited DENV
replication as well. This study compares galangin
and kaempferide as DENV-2 E protein inhibitors
with chloroquine, utilizing molecular dynamic pa-
rameters [13,25].

2. Materials and methods

2.1. Data retrieval and pre-docking screening

The 3D structure of protein E was retrieved from
the primary database, the RSCB PDB (https://www.
rcsb.org/) (1OKE), using the AutoDock Vina-
compatible PDB file format. The three-dimensional
structure is a homodimer with a sequence length of
394 residues and a native ligand of 2-acetamido-2-
deoxy-beta-pD-glucopyranose on Asn67 and Asn153
residues. PyMol is used to optimize the target pro-
tein by eliminating the native ligand from the amino
acid sequence. We picked 121 bioactive compounds
from PubChem (https://pubchem.ncbi.nlm.nih.gov/)
from six different sources (data not shown).

Chloroquine was utilized as a positive control in
this research (CID: 2719). All compounds were
assessed using the Lipinski rule of five parameters
(http://www.scfbio-iitd.res.in/software/drugdesign/
lipinski.jsp), then minimized and translated to the
AutoDock format using the PyRx tool incorporated
with the OpenBabel graphical user interface [31,32].

2.2. Molecular docking process

Docking is accomplished with AutoDock Vina,
which is integrated with PyRx (https://pyrx.
sourceforge.io/). We used blind docking mecha-
nism, so we look at the whole structure of the target
protein [33]. The molecular coverage area is
39.8415 x 56.3282 x 149.8127 1&, and the central co-
ordinates are —12.7517 x 69.0073 x 24.4419 A. The
major docking factors are the molecule's affinity
(measured in kcal/mol), the location of the binding
site, and the interaction between the protein and the
ligands [34].

2.3. Molecular dynamics simulation

To simulate the DENV-2 E protein, the top two
ligands with the lowest binding affinity scores and a
pharmacological control from the previous experi-
ment, galangin, kaempferide, and chloroquine,
were chosen for molecular dynamic simulations
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against the DENV-2 E protein, respectively. It was
necessary to build the protein and ligand complex
structures at physiologically relevant conditions
(37 °C, 1 atm, pH 7.4, 0.9 percent salinity) to run
1000 ps simulations. When simulating molecular
dynamics, the md run macro program was used,
and when analyzing the molecular dynamics data,
the md analyze, and md analyeres macro programs
were used, respectively.

3. Results

The top two compounds, galangin and kaemp-
feride, exhibited similar affinity values (—8.6 kcal/
mol), which was 62.3 percent lower than chloro-
quine (—5.3 kcal/mol) as a control in blind docking
against DENV-2 E protein.

Prior to performing the 3D analysis with PyMol,
an alignment procedure was used to compare the
structure of the protein-ligand complex before and
after simulation using a cycle value of 5.0 and a
cutoff value of 2.0. PyMol alignment revealed that
none of the three complexes differed by more than
2 A. The DENV-2 E-galangin complex exhibited the
most significant structural deviation (RMSD:
1807 A), whereas the DENV-2 E- chloroqume com-
plex exhibited the least (RMSD: 1287 A). Comparing
the three post-simulation complexes to the struc-
tures before simulation, no major deformations can
be observed. In addition, the binding site position
and ligand shape did not vary significantly in any of
the three complexes visually examined (see Figs. 1
and 2; Table 1).

The two-dimensional plots of the three protein-
ligand complex structures before and after molecu-
lar dynamic simulation revealed that over 60% of
the residues in pre-MD interactions were conserved
throughout the three complexes. Galangin and
kaempferide interacted with kl hairpin residues
(I1e270, GIn271, and Leu277) but not hydrophobic
pocket residues. The two compounds’ interactions
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with GIn271 changed significantly. After simulation,
the interaction of galangm with GIn271 revealed a
0.31 A reduction in the hydrogen bond distance
compared to before the simulation. Simultaneously,
the interaction of kaempferide with GIn271 revealed
the insertion of one hydrogen bond with a distance
of 2.88 A after the simulation. Chloroquine main-
tained a continuous interaction with the fusion loop
residues (Asp98, Arg99, Asn103).

To assess each protein-ligand complex flexibility
and overall stability, we performed a time-depen-
dent MD simulation at 1000 ps. The graph of the
potential energy of the three protein-ligand com-
plexes shows stabilization around —6.92¢° after the
first 50 ps of simulation until the end of the simu-
lation, indicating that no abnormal behavior
occurred in protein-ligand complexes. Also, there is
no significant difference between every protein-
ligand complex tested. The MD simulation's stability
was quantified in terms of deviations and variations
from the original structure of the DENV-2 E-ligand
complexes. After 50 ps, the RMSD plots of the three
protein-ligand complexes revealed that the majority
of them remained in a relatively stable form. The
mean RMSD values for the three protein-ligand
complexes remained within range of 1.58—1.64 A.
The DENV-2 E-kaempferide complex exhibited a
more stable plot than the other two complexes, with
minor changes and lowered mean and standard
deviation values (1.58 + 0.22 A) Although the
DENV-2 E-chloroquine complex had the most
prominent deviation (SD: 0.31 A), the deviation was
not as significant as the deviations for the other two
complexes (galangin: 0.29 A; kaempferide: 0.22 A).
However, after 750 ps, all three exhibit a similar plot
pattern, an increase in the RMSD value to the
maximum point (galangin: 2.39 A; kaempferide:
2.02 A; chloroquine: 2.37 A), until ultimately drop-
ping below 2 A in the final 100 ps of the simulation.

The RMSF plot is used to determine the stability
and accuracy of protein-ligand complex equilibrium

Galangin -8.6
Kaempferide -8.6
Chloroquine -5.3
-10 -8 -6 -4 -2 0
Affinity (kcal/mol)

Fig. 1. The comparison of the affinity values of the top two compounds and chloroquine is based on the blind docking results against the prefusion

DENV-2 E protein.
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Fig. 2. The 3D and 2D structure visualization of DENV-2 E and (A) galangin, (B) kaempferide, (C) chloroquine complex. The cyan structures in 3D
visualization indicate the protein-ligand complex before MD simulation, while the green structures are after MD simulation. The colored diagram in
2D indicates protein-ligand complex after MDD, while the greyscale diagram indicates protein-ligand complex before MD.

throughout the simulation. The plots revealed that
the target protein residues generally fluctuated
below 2 A in the three protein-ligand complexes
studied. Each monomer's N- and C-terminal do-
mains experienced the most remarkable flexibility.
There are more significant changes in residues
146—175 and 581—610. However, these two sections
do not contain any of the identified vital regions or
residues, indicating that the majority of the residues,
particularly its critical residues or domains that
interact with potent compounds, were stable. The
majority of residues that interacted with the tested
ligand did not exhibit significantly greater flexibility
than the remaining residues in each compound. The
fluctuation patterns of the three ligand-protein
complexes were highly similar, with no discernible
differences.

Chloroquine had the most stable ligand move-
ment plot of the three ligands studied, as seen by its
lowest mean value (2.34 + 0.31 A). After 100 ps, the
chloroquine plot becomes planar but fluctuates be-
tween 350 and 950 ps. Both galangin and kaemp-
feride have some degree of active ligand mobility.
Galangin demonstrates the trend of the RMSF
value, which settled in the 2.5 A between 400 and
800 ps, although the graph of the galangin ligand
movement overall exhibits an increasing tendency

throughout the simulation duration. While the
kaempferide ligand did not indicate a clear trend
like galangin, its value ranged between 3 and 3.5 A
during the simulation period, resulting in the
highest mean value of the three ligands examined
(2.68 + 0.55 A). That value is significantly greater
than the value for galangin, whose plot indicates an
upward trend over the simulation period
(246 + 0.61 A).

According to the simulation results, the two
candidate compounds have a more favorable ligand
conformational graph than chloroquine. Galangin is
the most stable conformational chart, with a mean
deviation of less than one (0.93 + 0.18 A). Addition-
ally, the conformational graph of the galangin ligand
has a planar trend after 100 ps, with one fluctuation
up to 1.5 A between 600 and 650 ps. Meanwhile,
kaempferide exhibits a conformational graph for the
first 200 ps that flattens out around 1 A before rising to
approximately 1.5 A and stabilizing until the simu-
lation period ends. The ligand conformation of
kaempferide, which remained at 1.5 A for 80% of the
simulation time, resulted in a mean value equal to
that of galangin (1.43 + 0.31 A). Chloroquine is the
most stable ligand on the ligand movement plot,
showing the most significant conformational devia-
tion. The chloroquine conformation plot fluctuates
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Table 1. Binding site residues comparison before and after molecular dynamics simulation.

No Compound Source Pre-Molecular Dynamic Simulation Post-Molecular Dynamic Simulation
Amino Acids Residue Interaction (A) Amino Acids Residue Interaction (A)
1 Galangin Alpinia 11e270(B); Phe193(B); Hydrophobic 11e270; Thr280; Glu49; Hydrophobic
(CID: 5281616) galanga Leu207(B); Val130(B); interaction Leu198; Leu277; Ala205; interaction
Thr48(B); Leul35(B); GIn200; GIn271;
Glu49(B); GIn200(B); Thr48; Ala50
Leu198(B); Ala205(B);
GIn271(B); Ala50(B)
GIn271(B) Hydrogen GIn200 Hydrogen
bond (2.90) bond (3.18)
Ala50(B) Hydrogen GIn271 Hydrogen
bond (2.88) bond (2.59)
Thr48 Hydrogen
bond (2.72)
Ala50 Hydrogen
bond (3.23)
2 Kaempferide Alpinia 11e270(B); Leu198(B); Hydrophobic GIn200; GIn271; 11e270; Hydrophobic
(CID: 5281666) galanga Leu207(B); Phe193(B); interaction Thr280; Thr48; Glu49; interaction
Thr280(B); Thr48(B); Ala50; Leu277; Ala205
Glu49(B); Leul35(B);
GIn200(B); Ala205(B);
GIn271(B); Ala50(B)
GIn271(B) Hydrogen Ala50 Hydrogen
bond (2.88) bond (3.11)
Ala50(B) Hydrogen
bond (2.83)
3 Chloroquine Antiviral Val97(A); lle113(A); Hydrophobic Ile6; Ala245; Lys246; Hydrophobic
(CID: 2719) drug Arg99(A); Ser72(A); interaction Arg99; Asp154; Asn103; interaction
(control) Thr70(A); Lys247(A); Asp98; Arg2
Asp154(B); Asn103(A);
Asp98(A); Arg2(B);
Ile6(B)
Arg2 Hydrogen
bond (2.86)
Hydrogen
bond (3.18)

between 1.5 and 2 A during the first 250 ps before
stabilizing at 1.5 A for the remainder of the simulation
time, resulting in chloroquine having the most sig-
nificant mean deviation value of the three ligands
studied (1.60 + 0.23 A). Additionally, chloroquine had
the highest maximum value (2.01 A) of all (Figs. 3, 4,
and 5).

The 1000 ps SASA simulation revealed that none
of the three protein-ligand complexes expanded
rapidly over the simulation period. The graphs of
SASA values for the DENV-2 E-galangin and the
DENV-2 E-chloroquine complexes are generally flat
with oscillations around 36500 A% but the graphs of
the DENV-2 E-galangin and E-chloroquine com-
plexes begin to diverge about 700 ps when galangin
hits its maximum SASA value, and chloroquine re-
mains flat. The E5-kaempferide complex has a
similar SASA chart pattern to the other two ligands
for the first 250 ps, but after 250 ps, the SASA
complex value continually displays a decreasing
trend, eventually falling below 36000 A at the end of

the simulation time. However, none of them indi-
cated a significant increase in SASA levels over a
short period.

The Rg values for the DENV-2 E protein's back-
bone atoms were determined and plotted against
simulation time. Throughout the 1000 ps simulation,
the three complexes displayed radius fluctuations in
the range 43.1—44.1 A, and none of them expressed
a horizontal graphic pattern showing the stability of
the Rg value. The three complexes have a mean Rg
value of roughly 43—44 A, with the DENV-2 E-gal-
angin complex having the highest mean value
(43.82 + 0.17 A) and kaempferlde having the lowest
mean value (43.59 + 0.17 A). Based on the observa-
tions, the three complexes' maximum and minimum
Rg values are roughly comparable. Galangin,
kaempferide, and chloroquine have maximum Rg
values of 44.10, 43.92, and 43.95 A, respectively,
whereas galangin, kaempferide, and chloroquine
have minimum Rg values of 43.14, 43.13, and
43.14 A, respectively.
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Fig. 5. (A) SASA plot, (B) Rg plot, (C) intramolecular hydrogen bond plot, and (D) protein-solvent hydrogen bond plot for galangin (red line),
kaempferide (green line), and chloroquine (black line) complexes over a 1000 ps of simulation.

and kaempferide exhibited a more pronounced
pattern of instability after 500 ps, whereas earlier,
the two complexes, particularly DENV-2 E-kaemp-
feride, fluctuated within the 530—540 A range. In the
protein-solvent hydrogen bond diagram, a similar
trend was seen. The DENV-2 E-chloroquine com-
plex exhibited a consistent trend, particularly

between 300 and 700 ps, but the kaempferide and
galangin complex fluctuated between 1450 and
1550 A and lacked a stable visual pattern throughout
the 1000 ps simulation period. Except for galangin,
both complexes exhibited a declining protein-sol-
vent hydrogen bond plot pattern during the course
of the simulation. However, there were no

Galangin — DENV2
Envelope Complex

Kampferide — DENV2
Envelope Complex

Chloroquine — DENV2
Envelope Complex

Fig. 6. Dynamic cross-correlation matrix for each protein-ligand complex. Yellow represents correlated motions, and blue represents anticorrelated

motions.



538 A. Hidayatullah et al. / Karbala International Journal of Modern Science 8 (2022) 531542

significant changes in the two hydrogen bond
graphs associated with the three protein complexes.

The DCCM graphs demonstrate that the three
protein-ligand complexes exhibit dynamic move-
ment patterns that are almost similar. The DCCM
for the E protein alone demonstrates statistically
significant positive correlations within each of the
three domains I, II, and III of the E protein. Domains
II and III exhibit both positive and negative corre-
lations in their atomic fluctuations, but the move-
ments of EDI are only weakly associated with the
motions of EDII and EDIII. EDII and EDIII exhibit
both positive and negative correlations in their
atomic fluctuations. Although the chloroquine
complex is very dynamic, the galangin and kaemp-
feride complexes exhibit a similar degree of dyna-
mism and are either stiffer or less elastic than the
chloroquine complex (see Fig. 6).

4. Discussion

The protein envelope present on the surface of
DENV is one of the critical proteins involved in the
first process of infection with Flaviviruses such as
DENV, as it facilitates receptor recognition and
fusion of the viral membrane with target cells such
as dendritic cells [16,35]. The envelope protein in
mature DENV-2 virions is dimer protein complexes
that lays flat on the viral surface and must undergo
conformational changes to interact with the cell re-
ceptor and enable fusion, referred to as the pre-
fusion stage [36,37]. When mature DENV-2 new
virions are exposed to particular conditions, most
notably a low pH environment, they undergo a
conformational change to a post-fusion state and
initiate the fusion sequences [14,18].

One of the most significant and naturally active
flavonoids is galangin, also known as 3,5,7-trihy-
droxyflavone. It's a polyphenolic substance derived
primarily from Alpinia galanga and Alpinia officina-
rum rhizome [38—40]. Galangin comprises two
benzene rings connected by a C3 aliphatic chain
comprising a heterocyclic pyran ring with a 2,3-
double bond with a 3-hydroxyl group in the C-ring
and 5,7-dihydroxyl groups in the A-ring, but no
hydroxyl group in the B-ring [41—43]. It's been
suggested as an anticancer agent since it suppresses
proliferation, causes apoptosis, promotes autophagy
in carcinoma cells, and is an antioxidant because it's
a potent scavenger of free radicals like singlet oxy-
gen and superoxide anion [44,45].

Kaempferide is a monomethoxyflavone that is the
4'-O-methyl derivative of kaempferol—a flavonol
that belongs to the family of flavonoids with a hy-
droxyl group on carbon 3 of the core oxygen-

containing 6-member ring, and it is abundant in A.
galanga and Kaempferia galanga [39,46—49]. It's also
usually suggested as an anti-inflammatory and
antioxidant [50—52]. Because most studies are
focused on kaempferol, research on kaempferide is
currently limited. According to one research,
kaempferide had a higher affinity for protein than
its unmethylated equivalent [53].

The study of galangin and kaempferide's antiviral
effects on flaviviruses is still in its early stages.
Galangin and kaempferide, according to one of
them, can both behave as entry and translation in-
hibitors of Zika virus (ZIKV) by inhibiting NS2B-
NS3 protease with ECs values of 25.68 + 9.17 uM
and 7.18 + 2.16 uM, respectively. The key benefit is
that they have no cytotoxic impact on the Vero cell
type utilized as a host, even at greater doses [54].
Because DENV-2 is closely linked to ZIKV, with a
virtually comparable entry mechanism [55—57] and
a highly conserved NS2B—NS3 protease across fla-
viviruses, this discovery might indicate that a
similar impact could occur [58,59].

Kaempferide and galangin have lower affinity
values than chloroquine, suggesting that their in-
teractions with DENV-2 E are more stable and that
their likelihood to interact with the target protein is
better than the control [34,60,61]. The docking re-
sults with a negative value reflect a spontaneous
interaction between the ligand and the target pro-
tein when the ligand—protein complex achieves an
equilibrium point at constant pressure and tem-
perature, which is mimicked in the docking process
[61—63].

Galangin retained interaction with kl hairpin
residues but lost contact with the hydrophobic
pocket of the DENV-2 E protein over the simulation
period. Because the hydrophobic pocket acts as a
hinge in the fusion process, the loss of contact with
the hydrophobic pocket residues is considered to
inhibit the conformational transition process from
the prefusion state to the post-fusion state [14,20].
Galangin, on the other hand, retains contact with
the kl hairpin residues, which is the trigger area in
the conformational change process, indicating that
the fusion inhibition mechanism moves to the very
early stage or the initiating step of fusion
[18,20,64,65]. It is predicted that galangin's interac-
tion with kl hairpin causes premature triggering and
prevents fusion in a low pH environment [66]. The
exact inhibitory mechanism is believed to exist in
the DENV-2 E-kaempferide protein complex, as
kaempferide's interaction pattern in simulation is
comparable to galangin. Throughout the simulation
period, chloroquine maintains a lasting contact with
the fusion peptide residues of the DENV-2 E protein
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and is the only chemical that interacts directly with
fusion peptide residues. This contact is considered
to disrupt the DENV fusion process with the target
cells since the fusion peptide acts as the primary
anchor for attaching the DENV virion to the target
cell's membrane when the fusion stage has initiated
[18,20]. If the DENV-host fusion mechanism is
examined chronologically, the process blocked by
galangin and kaempferide happened prior to the
phase stopped by chloroquine, which may have a
little higher likelihood. Combining galangin/
kaempferide potentials with chloroquine via a
complementary therapeutic mechanism, on the
other hand, may offer some redundancy, increasing
the likelihood of fusion inhibition.

The potential energy plots of the three complexes
displayed a remarkably similar stability pattern,
particularly after passing through a time of 50 ps,
indicating that the electrostatic and van der Waals
interactions of the three complexes were in equi-
librium, implying that no abnormalities occurred
during the simulation process [67,68]. The RMSD
value indicates that the kaempferide complex is
more stable than galangin or chloroquine, as
demonstrated by the simulated complex's lowest
mean deviation. The results, however, are not
significantly different from those obtained with the
other two protein-ligand complexes, showing that
the stability of the three protein-ligand complexes
examined remains comparable. Visual confirmation
and the PyMOL's alignment RMSD values, which
are less than 2 A, also suggest a similar result: the
three complexes examined did not undergo signifi-
cant deformation during the simulation process,
indicating that they are generally stable [69,70]. The
RMSF figure revealed no outliers in the domain
residues interacting with the three potent com-
pounds (kl hairpin or fusion peptide) [71—-73].

When the three compounds are examined before
and after the simulation, they appear not jettisoned
from their initial binding pocket; only they seem to
rotate less than 90°. The two-dimensional repre-
sentation likewise reveals comparable results char-
acterized by a high level of conserved residues
throughout the simulation time (>50%). These two
results show that each of the three compounds
tested has occupied its optimal binding location
[69,74]. The movement and conformational changes
observed in the movement and conformational plots
are believed to be generated by each ligand altering
its conformation and location in response to the
dynamics of its binding site during the simulation
process [74—76].

The solvent accessibility surface area is the surface
area of a bimolecular that is accessible to solvent

molecules. In general, protein complexes that are
not sufficiently compact undergo fast unfolding, as
evidenced by a rapid increase in the SASA value
over a short period [77,78]. There were no signs of
denaturation in any of the three complexes exam-
ined. Galangin and chloroquine both have a
reasonably flat graph pattern. However, the chlo-
roquine plot also has a downward trend, while
kaempferide exhibits a steadily declining graph
pattern. The reduced value of SASA, particularly in
the E-kaempferide complex, indicates that it has
shrunk in size relative to the native structure, owing
to the target protein's interaction with kaempferide
[79]. The radius gyration analysis, which quantifies
the protein structure's compactness, indicates that
the kaempferide and chloroquine complexes are
stiffer than the galangin complex since both have a
lower Rg value than galangin [80,81].

Hydrogen bond analysis indicated significant
changes in both values, suggesting that the three
protein-ligand complexes moved continuously over
the simulation time to achieve equilibrium [82,83].
The three complexes had comparable graphs, and
both exhibited intramolecular fluctuation after 500
ps, indicating that the three proteins’ movement
grew more intensive in the second part of the simu-
lation. These motions, however, do not suggest that
the protein complexes have been denatured. The
protein-solvent hydrogen bond plot exhibits a similar
trend similar to the SASA and Rg values plots.
Because the available donor and acceptor atoms are
assigned to create intramolecular hydrogen bonds in
shrunken protein structures, the decreased surface
area also decreases the likelihood of target protein
residues making hydrogen bonds with water [84—86].

The DCCM analysis indicates that all protein-
ligand complexes exhibit correlated motion patterns
almost indistinguishable from one another. Attrib-
utable to its structure, which is dominated by B-
sheets, the highly dynamic E protein is predicted to
be due to its function as a fusion protein, which is
more or less related to its structure. This dynamic is
hypothesized to be caused by the protein's alter-
nating arrangement of key domain residues
[20,87,88]. Given that both the galangin and
kaempferide complexes demonstrate a similar de-
gree of dynamism and are either stiffer or less
elastic than the chloroquine complex, it is reason-
able to predict that both complexes are relatively
more stable compared to chloroquine.

5. Conclusion

Since the envelope protein is a critical component
of the DENV fusion process, we are targeting it with
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two active natural compounds: galangin and
kaempferide. There were fluctuations in galangin
and kaempferide binding sites throughout the
simulated period. Both drugs keep contact with kl
hairpin residues but lose touch with hydrophobic
pockets, but chloroquine has considerably lower
ligand mobility and retains contact with fusion
loops. On the other hand, the two possible com-
pounds have a more stable ligand conformation.
The RMSF simulation demonstrated that the crucial
protein E residue remained stable with changes of
less than 2 A. Additionally, the potential energy,
SASA, hydrogen bond, Rg, and DCCM graphs
demonstrate that the three compounds form a stable
complex with protein E during a 1000 ps simulation,
indicating that the two potential compounds have
the potential to act as DENV-2 E protein fusion in-
hibitors even though chloroquine inhibits distinctly
is related to its interaction domains. Additional
research is necessary to validate this study's pre-
diction and to advance the development of these
compounds as antiviral agents that specifically
target the DENV E protein.
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