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Skin Lesion Segmentation based on U-Shaped Network

Abstract

Skin lesion segmentation is an essential step toward accurate skin lesion diagnosis. The need to
automate Skin lesion segmentation on the one hand, and the challenges it faces, on the other hand, have
made it a growing area of research and focus. Automation of skin lesion segmentation helps reduce the
effort and time needed for diagnosis and treatment and helps make better utilization of available data
and shared experiences. The challenges faced by the automation of skin lesion segmentation can be
broadly defined by (but not limited to); variations in texture, shape, and size for skin lesions and the low
contrast between the lesion and surrounding skin.

The rise of deep learning has significantly improved the semantic segmentation results in medical
imaging. U-Net structure with encoder and decoder approach is one of the most successful deep learning
models for medical image segmentation. This paper introduces two models based on U-shaped
structures: AlexUnet and AlexUnet+.

AlxUnet is a light U-Net model with an encoder based on pre-trained AlexNet on the ImageNet database. It
significant-ly reduces memory consumption and the number of parameters, thus reducing the required
FLOPS by eight times. In Alexunet+, another encoder was added to the AlxUnet structure that used pre-
trained VGG11 on ImageNet. It is al-lowed to aggregate the feature maps obtained from two encoders to
be used in the decoder.

AlxUnet and AlxUnet+ models were evaluated using three publicly available databases provided by the
International Skin Imaging Collaboration, ISIC 2016, ISIC 2017, and ISIC 2018. Sensitivity, specificity,
Jaccard similarity index, and dice similarity were used as performance metrics. Then, obtained structures
were compared with U-Net, and many deep learning segmentation networks that were recently built for
skin lesion segmentation. AlxUnet outperformed U-Net and produced acceptable results compared with
the other networks. AlexUnet+ produced a more robust result and outperformed other networks.
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Deep Learning, Segmentation, skin Lesion, U-Net, Pre-trained
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Abstract

Skin lesion segmentation is an essential step toward accurate skin lesion diagnosis. The need to automate Skin lesion
segmentation on the one hand, and the challenges it faces, on the other hand, have made it a growing area of research
and focus. Automation of skin lesion segmentation helps reduce the effort and time needed for diagnosis and treatment
and helps make better utilization of available data and shared experiences. The challenges faced by the automation of
skin lesion segmentation can be broadly defined by (but not limited to); variations in texture, shape, and size for skin
lesions and the low contrast between the lesion and surrounding skin.

The rise of deep learning has significantly improved the semantic segmentation results in medical imaging. U-Net
structure with encoder and decoder approach is one of the most successful deep learning models for medical image
segmentation. This paper introduces two models based on U-shaped structures: AlexUnet and AlexUnet-.

AlxUnet is a light U-Net model with an encoder based on pre-trained AlexNet on the ImageNet database. It signifi-
cantly reduces memory consumption and the number of parameters, thus reducing the required FLOPS by eight times.
In Alexunet+, another encoder was added to the AlxUnet structure that used pre-trained VGG11 on ImageNet. It is
allowed to aggregate the feature maps obtained from two encoders to be used in the decoder.

AlxUnet and AlxUnet 4+ models were evaluated using three publicly available databases provided by the International
Skin Imaging Collaboration, ISIC 2016, ISIC 2017, and ISIC 2018. Sensitivity, specificity, Jaccard similarity index, and
dice similarity were used as performance metrics. Then, obtained structures were compared with U-Net, and many deep
learning segmentation networks that were recently built for skin lesion segmentation. AlxUnet outperformed U-Net and
produced acceptable results compared with the other networks. AlexUnet + produced a more robust result and out-
performed other networks.

Keywords: Deep learning, Segmentation, Skin lesion, U-net, Pre-trained

1. Introduction Skin lesion segmentation is the primary step for
Computer-aided diagnosis systems [4,5]. Accurate
skin lesion segmentation from surrounding tissues
and distinguishing lesions leads to more accurate
skin lesion classification [1,6]. However, it is still a
challenging process, mainly because skin lesions
vary in colors, sizes, shapes, and texture. Mean-
while, there is low contrast between the lesion and
surrounding tissue or the existence of hair in some
cases, resulting in fuzzy and irregular borders dur-
ing identification and diagnosis. Fig. 1 illustrates the
main challenges of automatic skin lesion segmen-
tation from the ISIC 2017 dataset [7].

I n several countries, skin cancer is one of the most
common types of cancer, and its incidence rate
has risen in recent years [1]. With these rising rates,
it is become more crucial than ever to take pre-
ventive actions to lower the incidence and promote
the early diagnosis abilities of these cancers [2]. An
early diagnosis is essential in increasing survival
rates, even with the most deadly form, melanoma [3]
Computer-aided diagnosis helps in the early diag-
nosing of skin cancer [4].
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Fig. 1. Examples of main challenging cases of skin lesions: (a) low contrast, (b) variation in color, (c) variation in size, and (d) hair existence [7].

Deep learning made tremendous advancements in
medical image processing during the 2000s [8]. The
expression “deep” usually alludes to the number of
hidden layers within the neural net, where each
layer can be viewed as an individual algorithm [9].

The rapid growth in graphical processing units
(GPUs) [10] on the one hand, and the available
medical imaging.

Data sets for training [11], on the other hand, has
led to enabling deep learning to form advanced
techniques in medical image processing [12]. Med-
ical image segmentation based on deep learning has
recently proven successful by outperforming tradi-
tional techniques [13].

Since the U-Net appeared to the public in 2015
[14], it is considered one of the essential structures
of deep learning in medical image segmentation,
where it is the core segmentation structure in most
medical image segmentation procedures and is used
as the primary compression method [15].

U-Net, take its name from the “U" shaped struc-
ture, where it contains two parts; downsampling
part encoder and upsampling part decoder, and
there is a skip connection between them. Skip
connection feeds the output of decoder layers as the
input to corresponding decoder layers. Concatena-
tion is the skip connection that is key to improving
segmentation performance, that allows obtaining
more information from feature maps, but at the
same time, it is considered memory-consuming [14].
This paper presents two end-to-end deep learning
structures that help in reducing memory

consumption for skin lesion segmentation. They are
based on a “U" shaped structure and use pre-
trained decoders: AlxUnet and AlxUnet+.

AlxUnet consists of an encoder based on AlexNet
[16] pre-trained on the ImageNet dataset and cor-
responding decoder. It benefits from the structure of
AlexNet, which has eight layers with a large recep-
tive field within the first and second layers [16]. This
structure allowed AlxUnet to use fewer resources
than U-Net by five times in terms of memory con-
sumption, and by ten times in terms of the number
of needed parameters, in the same time, it out-
performs the U-Net performance in terms of skin
lesion segmentation. Another encoder was added to
the structure in AlexUnet+, which used pre-trained
VGGI11 [17] on ImageNet. We aggregated the
feature maps from two encoders, which enables
obtaining more information from feature maps.
Alexunet + presents better accuracy in skin lesion
segmentation when compared with many networks
based on deep learning, and many variations of U-
Net, as we will discuss later on within this paper.

2. Related works

Automated skin lesion segmentation methods can
be categorized into two main categories: conventional
methods and methods based on deep learning.
Conventional methods like Histogram thresholding
methods [17,18,19], edge-based methods [20], or Un-
supervised clustering methods [21] use low-level
features only to segment lesions [21,22,23]. These
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methods cannot handle nor process the low contrast
and hair existence challenges, so they perform un-
acceptably [24]. Recently, methods based on deep
learning have proven their success in skin lesion
segmentation [25], as they have previously proven
successful in different computer vision problems
[25,26,27]. Its success came from the ability to extract
high-level semantic features from images [28].

Several deep learning approaches for the seg-
mentation of skin lesions were proposed by re-
searchers, with significant contributions. Peng Tang
et al. [5] proposed a U-Net model that utilized
separable convolutional as the main block followed
by a post-processing algorithm filling in the holes
(FITH); separable convolution allows using fewer
parameters with fewer computations resulting in
shorter processing and diagnosis time. The sto-
chastic weight averaging strategy is usually utilized
to get more generalizations.

Manu Goyal et al. [24] presented the ensembles
deep learning method based on MaskR-CNN was
used in instance segmentation, and DeeplabV3+
was used in semantic segmentation, and they used
pre and post-processing to enhance accuracy.

Md. Kamrul Hasan et al. [29] adopted the U-sha-
ped approach with an encoder that mimics the
DenseNet architecture. They use depth-wise sepa-
rable convolution instead of standard convolution to
reduce the number of parameters in their model.

Debesh Jha et al. [30] proposed the DoubleU-Net
model, which integrates two U-Nets to capture more
semantic segmentation. First U-Net uses pre-
trained VGG-19 as the encoder, and the second U-
Net adds to the bottom. They adopted Atrous
Spatial Pyramid Pooling (ASPP) in each U-Net to
capture contextual information that leads to
enhanced segmentation performance.

Baiying Lei et al. [31] presented a generative
adversarial network (GAN), a combination between
two modules; dense convolution U-Net that cap-
tures fine-grained features and dual discrimination
to enhance the reliability of the decision, both are
used together to decide jointly.

Saban Oztiirk and Umut Ozkaya [32], inspired by
a fully convolutional network (FCN) used in se-
mantic segmentation, presented an improved FCN
(iFCN) with two parts encoder, which slowly
downsamples features map and a decoder that use
deconvolution to take the feature maps back to the
actual input image size. They utilized different color
spaces in their network by choosing the most effi-
cient channel in each space for skin lesion seg-
mentation. Tong et al. [33] proposed an improved
U-Net by using three types of attention mecha-
nisms; attention gate, spatial attention, and channel

attention, which allows the model to capture more
contextual information and spatial correlation be-
tween features to improve segmentation
performance.

Lina Liu et al. [34] proposed a model that per-
formed edge prediction as the auxiliary task to
improve the main lesion segmentation task. They
are performed simultaneously where The interme-
diate feature maps of each task are passed into the
subblocks of the other task, guiding the model to
focus on the segmentation task.

Shan and Yan. [35] proposed that spatial and
channel attention network (SCA-Net) improves U-
Net with two attention models that allow the cap-
ture of more contextual information from feature
maps.

S. Chen et al. [36] proposed a more efficient and
deeper U-Net called R2AU-Net, which utilizes
recurrent residual convolutional as a basic block,
and a robust skip connection by attention gets. This
combination leads to obtaining more accurate
segmentation.

Qamar et al. [37] presented a model based on a U-
Shaped structure, which complained DenseNet,
ResNet, and ASPP approaches to capture more
contextual information, and at the same time, allow
the decoder reconstructs fine-grained details.

Rania Ramadan and Salih Aly [38] proposed three
novel U-Net versions, including single, dual, and
triple encoder sub-networks coupled with a single
decoder. Each encoder sub-network is assigned its
own color space. To build a segmented image map,
a channel-wise attention module combines the
learned feature maps from each encoder sub-
network.

Duwei Dai et al. [39] proposed a novel multi-scale
residual network for efficiently obtaining reliable
segments for a variety of skin lesion types. They
used a multi-scale residual encoding and decoding
fusion module that fuses multi-scale features
adaptively.

The proposed methods in this paper share with
many of the methods based on deep learning that
we reviewed earlier in that they are based on the U-
shaped network and build to skin lesion segmen-
tation. For that, comparisons will be made between
them to prove the effectiveness, efficiency, and
feasibility of the network's performance we are
proposing in this paper.

3. Materials and methods

This section will explain our methods and the
databases we used to evaluate our methods with the
Evaluation metrics and implementation details.



496 M. Khalaf, B.N. Dhannoon / Karbala International Journal of Modern Science 8 (2022) 493—502

3.1. Databases

The most common, well-known, and publicly
available three image datasets for Skin Lesion Seg-
mentation were adopted; ISIC_ 2016 [40], ISIC_2017
[7], and ISIC_2018 [41]. These datasets were pro-
vided by the International Skin Imaging Collabo-
ration (ISIC). Those were acquired from various
devices used at prominent clinical centers on a
global scale. Additionally, each image in the data-
sets has ground truth annotation by dermatologists.
They usually contain artifacts such as ink markings,
rulers, air bubbles, and ebony frames, which are
challenging for the segmentation task [21,22,32].
Table 1 summarizes the training and testing size for
the three datasets, with their resolution.

3.2. The proposed methods

Two methods for automatic skin lesion segmen-
tation were proposed; AlexUnet and AlexUnet+.
AlexUnet follows the U-Shaped structure. It consists
of two paths: encoder and decoder with a skip
connection between each layer in the encoder to its
corresponding layer in the decoder, as shown in
Fig. 2.

The first six layers were adopted from AlxNet [16]
in the encoder and built its corresponding decoder.
Encoder weights are initialized from pre-trained
AlxNet on the ImageNet dataset, then fine-tuning
weights using skin lesion datasets.

Each encoder layer includes four layers; convo-
lution (Conv), rectified linear unit (ReLU) activation

Table 1. Datasets information.

function, and max pooling (MP). Each decoder layer
has transposed convolutions (TConv), which double
the feature map size by concatenating it with the
corresponding encoder layer. Afterward, this
concatenation is followed by convolution, batch
normalization (BN), and Relu layers.

The first layer is influential for the performance of
AlexUnet; using a large kernel size (11) in the first
layer allows for a larger effective receptive field,
which is essential in classification and localization
tasks that are needed in semantic segmentation.

At the same time, setting the stride to four in the
convolution of the first layer reduced the resolution
feature map to about a quarter (=25%), thus,
decreasing memory consumption in skip connection
and decreasing the number of parameters needed in
the subsequent layers.

AlexUnet outperforms U-Net and many of its
variations. Although AlexUnet is considered a
lightweight network compared to U-Net, it signifi-
cantly decreases the number of parameters, mem-
ory consumption, and flops, as illustrated in Table 2.

In AlexUnet+, AlexUnet was modified to obtain
better skin lesion segmentation by adding another
coder based on the VGGI11 network.
AlexUnet + contains two encoders that feed into
one decoder. Feature Aggregation (FA) block
(illustrated in Fig. 3) was added to concatenate the
feature maps from two encoders.

In the FA block at first, using 1 x 1 convolution
(Convlxl) to downsample the number of feature
maps from the VGGI11 encoder layer (CY) to
equalize the number of features maps coming from
the AlxNet encoder (CX) layer, then concatenating
these feature maps (C2X), then using 1 x 1 convo-
lution to downsample the number of concatenated
feature maps to (CX). 1 x 1 convolution is used to
reduce dimension, increase the depth of the
network, and allow learnable interactions among

OUTPUT MASK

Dataset ISIC 2016 ISIC 2017 ISIC 2018
Resolution (556 x 679) To (4499 x 6748) Pixels
Training Size 900 2000 2076
Testing Size 379 600 520 channels in feature maps.
==} \[axz Fool , Conv, BN Relu ~¥» Skip Connection == Conv(3.3), BN, Relu, TConv. BN, Relu
—» Con(L,1) =) (onv, BN, Relu
L
&)
<L
=
— 25E
—
-}
o
= >
3 g4 ~g9c 364 256 258 266 25€+256 192+192 £4+84 1

G2 32

Fig. 2. The proposed AlexUnet architecture. Each box represents a multi-channel feature map. The kernels are shown below each box, while the
resolution of kernels and kernel size (k) is shown inside the box (if needed).
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Table 2. The resources used in the proposed networks compared to U-Net.

Model Memory consumption for Number of Number of
Input size (MB): 0.75 FLOPS parameters
U_Net [14] 1008.62 40,160,985,088 17,266,241
AlexUnet 195.63 2,711,067,936 8,759,073
AlexUnet+ 692.18 13,106,794,592 26,111,393
/ \ AlexNet and VGGNet are early convolutional
AlexN neural network models that depend mainly on the
Com | traditional convolution layersDespite their simple
= ] Outputs architecture, they achieve high classification accu-
Conv N =» HWC »  racy, which makes them ideal for our methods. They
1x1 _) Relu can also be useful for determining how pre-training

Relu

\ WGy Y,

Fig. 3. Feature aggregation (FA), AlxN represents the feature map from
the AlexNet encoder, and VGGI11 represents the feature map from the
VGG11 encoder. Hight, width, and number of channels are represented
as H, W, and C, respectively.

Aggregated features from two encoders with
different receptive fields capture more information
that helps enhance the skin lesion segmentation
performance. Encoder weights were initialized from
pre-trained AlexNet and VGGI11 on the ImageNet
dataset, then fine-tuned them using skin lesion
datasets. AlexUnet+ is faster than U-Net because it
needs floating-point operations (flops) and several
parameters, as illustrated in  Table 2.
AlexUnet + structure is illustrated in Fig. 4.

QUTPUT MASK

==} P, Conv. BN.Relu
~»  Skip Comection

=) Conv. BN, Relu

ii 61-61

affects the model's overall performance due to their
simple designs.

3.3. Evaluation metrics

Overlap-based criteria were adopted to assess the
performance of skin lesion segmentation. They are;
Dice Score (DC), Jaccard Similarity (JS), Accuracy
(AC), Sensitivity (SE), and Specificity (SP). Dice
Score and Jaccard index are the primary metrics in
skin lesion segmentation [7]. DC quantifies the
similarity between predicted segmentation results
and ground truth labels by computing the ratio
between the size of their intersection over the
average of their size, which is computed as in
equation (1):

2*TP

PC= 2 1p N 1 FP M

=3 Convi{3,3), BN. Relu.TConv. BN, Relu

G1-128

»
o

INPUT IMAGE
INPUT IMAGE

102-1902

384-3584
_5 L]

255+25G 258 266 128 64 3

ﬂ
—

3 64 182 ce4 258 2566

Fig. 4. An illustration of the proposed architecture AlxUnet+-. Each box represents a multi-channel feature map. The number of channels is shown
below each box. Resolution of the feature map is shown inside the box.
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JS is the intersection of the predicted segmen-
tation results and ground truth regions over their
union, which can be computed as in equation (2):

TP
- - 2
TP 4 FN + FP @)

AC, SE, and SP are used as additional in-
dicators. The formulas for these metrics criteria are:

JS

TP + TN
AC_TP+FP+TN+FN (3)
TN
SP=15 T TN )
TP
SE= TP TN ©)

where TP, FP, TN, and FN represent the number of
pixels in the predicted image that are True Positive,
False Positive, True Negative, and False Negative,
compared with the ground-truth image.

3.4. Implementation details

Our experiments were implemented utilizing the
PyTorch framework [40] in Google's Colaboratory
environment. For the ISIC-2017 and ISIC-2018
training sets, models were trained using batch size
16 for 50 epochs and scaled down the input image's
resolution to 256 x 256 Pixels.

With the ISIC-2016, the same approach was used
with 100 epochs. The Adam optimizer was used
with its default parameters [41]. We started with a
0.001 learning rate and then reduced it if the Dise
score metric stopped improving during seven
epochs. The Generalized Dice Loss function given
here [42] was used because of its suitability for an
imbalanced dataset. During training, data augmen-
tation was used by randomly flipping vertical and
horizontal data.

4. Performance

In this section, the impact of pre-training on the
proposed models' performance will be discussed.
Also the comparison between them and other
models for skin lesion segmentation based on deep
learning.

4.1. Ablation study

An ablation study was performed on the proposed
networks on the training and testing sets for the
ISIC datasets, with pretraining and from scratch
with the same number of epochs and the same

hyperparameter. DS and JS were used for the
evaluation testing set for each dataset because they
are elementary metrics to represent the segmenta-
tion performance. The quantitative results pre-
sented in Table 3 illustrate that the proposed
networks achieved a better score on all datasets with
pretraining. The dice score curves are shown in
Fig. 5, which illustrates the influence of pretraining
on performance. Each curve represents the behavior
of training and testing, with and without pretraining
on each network.

It is noticeable in all curves that fast convergence
occurred in the pretraining model, which is logical
because the low-level feature captured from pre-
training on the ImageNet dataset (containing a
million images) is effective in the learning process.

Pretraining is a simple change that allows for
better performance and enables the networks to
achieve faster convergence. This influence is more
evident with ISIC-2016 because its training set is
smaller than other datasets.

4.2. Comparison with state-of-the-art methods

Proposed methods were compared with other
deep learning methods recently built for skin lesion
segmentation, using the ISIC-2016, ISIC-2017, and
ISIC-2018 test data.

The quantitive results are summarized in Table 4
for ISIC-2016 shows that AlexUnet + outperforms
other.

Methods in all metrics, except for a small ratio in
SE, While AlexUnet outperformed the U-Net,
although it needs remarkably fewer resources than
U-Net, as mentioned in Table 1. AlexUnet + also
outperformed the ASCU-Net, as both are based on
the U-Shaped structure; however, ASCU-Net con-
sists of a more complex design based on the atten-
tion techniques, which are memory consumption
and computational cost.

Table 5 summarizes the performance of the pro-
posed methods with the U-Net and some of the
methods based on deep learning for skin lesion

Table 3. The performance for our networks with/without pretraining on
ImageNet.

DataSet Model DS JS
Pre-trained Scratch Pre-trained Scratch
ISIC-2016 AlexUnet 0.919 0.89 0.8577 0.83
AlexUnet+ 0.94 0.91 0.892 0.85
ISIC-2017 AlexUnet 0.866 0.84 0.78 0.75
AlexUnet+ 0.89 0.872 0.809 0.78
ISIC-2018 AlexUnet 0.923 0.91 0.87 0.852
AlexUnet+ 0.934 0.92 0.88 0.86
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Fig. 5. Dice Score (DS) curves for ISIC datasets (ISIC-2017, ISIC-2016, and ISIC-2018) training on the proposed networks (AlexUnet and AlexUnet+-)
where TR represents the training set, TE represents the testing set, and EP represents the number of epoch.

segmentation that used the ISIC-2017 dataset.
AlexUnet + outperformed the other networks in the
most crucial segmentation metrics, DS and ]JS.
AlexUnet presented an acceptable performance
compared to the remaining networks with more
complex structures. It also outperformed the other
methods of the SP metric.

Table 6 summarizes the performance of the pro-
posed methods with U-Net and other recently

Table 4. Segmentation results compared with deep learning networks
using ISIC-2016 test data.

ISIC-2016 DS JS AC SP SE
U-Net [14] 0.889 0.812 0.943 0.962 0.907
Separable-Unet [5] 0.93 0.892 0.971 0.956 0.947
DAGAN [31] 0.931 0.871 0.960 0.968 0.937
ASCU-Net [33] 0.908 0.845 0.954 0.961 0.927
Ms RED [39] 0.92 0.83 0.96 — —
AlxUnet 0.919 0.858 0.958 0.965 0.93

AlxUnet+ 0.94 0.892 0.972 0.969 0.946

introduced methods based on deep learning for skin
lesion segmentation that used the ISIC-2018 dataset.
Once again, AlexUnet + outperformed other
methods by all metrics in the exception of the SE.
AlexUnet performed well by outperforming many of

Table 5. Segmentation results compared with deep learning networks
using ISIC-2017 test data.

ISIC-2017 DS JS AC SpP SE
U-Net [14] 0.765 0.62 0.91 0.973 0.68
Separable- Unet [5] 0.869 0.792 0.943 0.956 0.895
Ensemble DL [24] 0.871 0.79 0.94 0.95 0.899
DSNet [29] — 0.775 — 0.955 0.875
DAGAN [31] 0.859 0.771 0.935 0.976 0.835
iFCN [32] 0.886 0.783 0.953 0.98 0.854
ASCU-Net [33] 0.830 0.742 0.926 0.965 0.825
DL_AT [34] 0.871 0.795 0.943 0.965 0.888
TICU-Net [38] 0.853 0.748 0.931 — —
Ms RED [39] 0.86 0.78 0.94 — —
AlxUnet 0.866 0.78 0.94 0.98 0.845
AlxUnet+ 0.89 0.809 0.95 0.975 0.895
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Table 6. Segmentation results compared with deep learning networks
using ISIC-2018 test data.

ISIC-2018 DS JS AC SP SE
U-Net [14] 0.86 0.90 0.91 0.96 0.85
DAGAN [31] 0.885 0.824 0.92 0.91 0.953
DoubleU-Net [30] — 0.878 — — 0.861
Sca_net [35] 0.929 — — — 0.873
IBA-U-Net [42] 0.872 0.829 0.976 0.944 0.931
Dense En-De [37] 0.90 0.833 0.969 0.97 0.965
ASCU-Net [33] 0.830 0.825 0.965 0.926 0.742
R2AU-Net [36] 0.866 0.821 0.969 0.928 0.896
Ms RED [39] 0.89 0.83 0.96 0.90 0.91
AlxUnet 0.923 0.92 0.97 0.96 0.87
AlxUnet+ 0.934 0.94 0.98 0.97 0.88

these methods, although it is considered a light
network.

The quantitative results in results in Tables 4—6
show the effectiveness of the AlexUnet and
AlexUnet + structures at skin lesion segmentation
in three.

ISIC datasets. AlexUnet depends on merging
large and small kernels to extract high-level

ISIC-2017 ISIC-2016

ISIC-2018

Fig. 6. Segmentation Results of some examples of skin lesions from
ISIC-2016, ISIC-2017, and ISIC-2018 test set that are produced by
AlexUnet(blue line), AlexUnet+(green line) compared with ground-
truth mask(red line).

semantic and low-level features. Their combination
aids in semantic segmentation accuracy. AlexUnet +
used the benefits of the AlexUnet structure and
added another encoder to strengthen the encoder
features before feeding to the decoder.

Figure 6 illustrates some qualitative examples of
the performance of the proposed Networks in ISIC-
2016, ISIC-2017, and ISIC-2018. It demonstrates
their ability to overcome challenges found in each
dataset, such as hair existence, dark corner artifacts,
and low contrast.

5. Conclusion

The diagnosis is greatly aided by accurate seg-
mentation of skin lesions. AlexUnet and AlexUnet+,
two end-to-end deep learning networks for skin
lesion segmentation, have been suggested and
implemented in this research. Both used a U-shaped
structure and used the ImageNet dataset to pre-
train their encoders. AlexUnet is a light network that
uses the AlexNet encoder. Another encoder from
the VGG11 network was incorporated (to AlexUnet)
to boost the fusion of multi-scale features in
AlexUnet+. ISIC-2016, ISIC-2017, and ISIC-2018 are
three well-known demanding datasets that were
used to evaluate the performance of our networks.
AlexUnet provided an acceptable outcome and
outperformed many more difficult deep learning
models, while AlexUnet + outperformed other
state-of-the-art models, according to the findings.
To improve semantic segmentation, our methods
rely on a combination of large kernel size and multi-
scale feature fusion. Furthermore, these approaches
can be improved using fine-tuning weights rather
than starting from scratch. We believe that this ev-
idence will be useful in additional medical image
segmentation tasks in the future.
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