Tapioca starch in the sol-gel synthesis of cobalt ferrites with divalent cation substitutions

Anuchit Hunyek  
Program of General Education - Science (Physics), Faculty of Liberal Arts, Rajamangala University of Technology Rattanakosin,

Chitnarong Sirisathitkul  
School of Science and Center of Excellence in Functional Materials and Nanotechnology, Walailak University

Krit Koyvanich  
Department of Physics, Prince of Songkla University, 5610230001@email.psu.ac.th

Follow this and additional works at: https://kijoms.uokerbala.edu.iq/home

Part of the Biology Commons, Chemistry Commons, Computer Sciences Commons, and the Physics Commons

Recommended Citation
Hunyek, Anuchit; Sirisathitkul, Chitnarong; and Koyvanich, Krit (2022) "Tapioca starch in the sol-gel synthesis of cobalt ferrites with divalent cation substitutions," Karbala International Journal of Modern Science: Vol. 8 : Iss. 3 , Article 10.  
Available at: https://doi.org/10.33640/2405-609X.3250

This Research Paper is brought to you for free and open access by Karbala International Journal of Modern Science. It has been accepted for inclusion in Karbala International Journal of Modern Science by an authorized editor of Karbala International Journal of Modern Science.
Tapioca starch in the sol-gel synthesis of cobalt ferrites with divalent cation substitutions

Abstract
An aqueous solution of tapioca starch was successfully used as a chelating agent in the sol-gel synthesis of Co0.7Me0.3Fe2O4, where Me denotes Co, Mn, Cu, Ni, or Zn. The hysteresis loops of all sintered ferrites revealed ferrimagnetic properties. The saturation magnetization was reduced in Co0.7Cu0.3Fe2O4 and Co0.7Ni0.3Fe2O4 because of the ion substitutions with smaller magnetic moments. Interestingly, Co0.7Cu0.3Fe2O4 exhibited the highest saturation magnetization and the lowest coercive field. This result demonstrates the value addition of local agricultural products in controlling nanoparticle formation during sol-gel synthesis.

Keywords
Cobalt ferrite; Nanoparticles; Sol-gel reaction; Tapioca starch; Ion substitution

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
RESEARCH PAPER

Tapioca Starch in the Sol–gel Synthesis of Cobalt Ferrites with Divalent Cation Substitutions

Anuchit Hunyeka, Chitnarong Sirisathitkul, Krit Koyvanich

Abstract

An aqueous solution of tapioca starch was successfully used as a chelating agent in the sol–gel synthesis of Co0.7Me0.3Fe2O4, where Me denotes Co, Mn, Cu, Ni, or Zn. The hysteresis loops of all sintered ferrites revealed ferromagnetic properties. The saturation magnetization was reduced in Co0.7Cu0.3Fe2O4 and Co0.7Ni0.3Fe2O4 because of the ion substitutions with smaller magnetic moments. Interestingly, Co0.7Cu0.3Fe2O4 exhibited the highest saturation magnetization and the lowest coercive field. This result demonstrates the value addition of local agricultural products in controlling nanoparticle formation during sol–gel synthesis.

Keywords: Cobalt ferrite, Nanoparticles, Sol–gel reaction, Tapioca starch, Ion substitution

1. Introduction

The versatility of cobalt ferrite (CoFe2O4) has been demonstrated in electromagnetic, environmental, and biomedical applications [1–3]. It belongs to the class of spinel ferrites denoted as AB2O4, where A2+ is a divalent cation (such as Co2+, Fe2+, Mn2+, Ni2+, Cu2+, and Zn2+) and trivalent B3+ is an Fe3+ ion. The cubic close-packed structure arranges 32 oxide anions (O2−) in a unit cell with 8 tetrahedral (Atet) and 16 octahedral (Boct) occupied sites. Zinc ferrite (ZnFe2O4) has a typical spinel structure with all divalent cations (A2+) on the Atet-site and trivalent cations (B3+) on the Boct-sites [4]. The inverse spinel is a configuration with divalent cations (A2+) on the Boc-t-sites and evenly distributed trivalent cations (B3+) between the Atet-site and Boct-site as observed in CoFe2O4: [Fe3+:Co2+]:Fe2−octO4 and nickel ferrite (NiFe2O4): [Fe3+:Ni2+]:Fe2−octO4 [5]. The different magnetic moments of the cations distributed at the Atet-site and Boct-site give particular characteristics to the ferrites. Variations in divalent or trivalent cations tend to alter their magnetic and electric properties.

Microemulsion [6], microwave-assisted synthesis [7], and polymerized complex methods [8] are among the various techniques available for preparing nanoparticles. Chemical co-precipitation and sol–gel syntheses use aqueous solution mixing as a facile route for mass production. The sol–gel method is beneficial for formulating ferrite thin films [9] and nanocomposites [10], as well as substituting other metal or alkaline ions in ferrites [11]. Precursors decompose in situ nanoparticle formation during the gel reaction. The chelating agent effectively controlled the growth of crystals during nanoparticle formation and was conveniently removed during the thermal treatment phase. Therefore, the molecular homogeneity of single-phase nanoparticles can be controlled [12].

Conventional chemical uses, including oleic and citric acids as surfactants in the sol–gel synthesis, are not environmentally friendly. The chemicals have been replaced and reduced in several green
For CoFe₂O₄ synthesis, bioorganic substances are convenient for temperature control [15], and effective with other additives in the sol–gel reaction [16]. Ion substitution in CoFe₂O₄ modifies the magnetic characteristics via preferential site occupancy and particle size, such that the materials are suitable for sensing or biomedical applications [17]. The introduction of a transition metal with a smaller ionic radius, such as Ni²⁺, decreases the coercive field to a value applicable for high-density data storage [18].

The sol–gel method in this study utilizes tapioca starch to synthesize pristine CoFe₂O₄ and Co₀.₇Me₀.₃Fe₂O₄, where Me denotes ion substitution by zinc (Zn), nickel (Ni), copper (Cu), and manganese (Mn). Tapioca starch is abundant in several regions of the world. As demonstrated in [19–21], its utilization for controlling nanoparticle formation is highly advantageous. It is anticipated that structural and magnetic parameters of ferrites obtained from this tapioca starch-assisted sol–gel synthesis will stimulate the replacement of toxic chemicals with this environmentally benign chelating agent in commercial processes, which also adds value to the local tapioca industry.

2. Materials and methods

2.1. Synthesis

Tapioca starch was slowly added to stirring distilled water (15% weight/volume) and kept at 70–80 °C until its viscosity was significantly increased. Iron nitrate (Fe(NO₃)₃·9H₂O) and cobalt nitrate (Co(NO₃)₂·6H₂O) powders were mixed with a solution of tapioca starch in a w/v ratio of 2:136. Carbohydrates in the solution were broken down into several glucose molecules and acted as chelating agents in the nanoparticle synthesis, as schematically shown in Fig. 1. To substitute ions, Co(NO₃)₂·6H₂O and Fe(NO₃)₃·6H₂O were mixed with one of the following precursors: zinc nitrate (Zn(NO₃)₂·6H₂O), nickel nitrate (Ni(NO₃)₂·6H₂O), copper nitrate (Cu(NO₃)₂·3H₂O), or manganese nitrate (Mn(NO₃)₂·6H₂O). The mixed powder was dissolved in an aqueous solution of tapioca starch. The solution was stirred at 80 °C until it became a gel. Finally, all the sol–gel-derived products were sintered at 800 °C for 4 h to enhance their crystallinity [22].

2.2. Characterization

The decomposition and oxidation states of the chelating agent were studied using thermogravimetric analysis (TGA; PerkinElmer TGA7) in the range of 100–1000 °C to determine the appropriate thermal treatment conditions for the sol–gel derived products. Functional groups in the sintered ferrites were detected by Fourier-transform infrared spectroscopy (FT-IR; PerkinElmer LR 64912C) from 400 to 4000 cm⁻¹ at a scanning rate of 40 steps/min. Morphology analysis was performed using field-emission scanning electron microscopy (FE-SEM; Carl Zeiss Model Auriga). The average particle sizes were obtained from the micrographs.

The crystallographic structures of the sintered ferrites were identified by powder X-ray diffractometry (XRD; Rigaku TTRAXIII) using a Cu Kα X-ray of 1.54058 Å. The 2θ angle in the measurement was varied from 10 to 70° with a rotating step of 0.02°/s. The lattice constant (a) was determined from the XRD data as follows:

\[
a = d_{hlk} \sqrt{h^2 + k^2 + l^2},
\]

where d and (h, k, l) denote the interplanar distance and Miller index, respectively [23]. The Nelson–Riley plot of the calculated values of a for different phases is plotted against the error function \( f(\theta) \) in Eq. (2) [24], corrected by the lattice constant a.

\[
f(\theta) = \frac{1}{2} \left( \frac{\cos^2 \theta}{\sin^2 \theta} - \frac{\cos^2 \theta}{\theta} \right),
\]
Eqs. (3)–(6) were used to calculate the unit cell volume \((V)\), X-ray density \((d_x)\), dislocation density \((\delta)\), and hopping lengths in the tetrahedral \((L_A)\) and octahedral sites \((L_B)\) [25].

\[
V = a^3
\]  
(3)

\[
d_x = 8M_N^2
\]  
(4)

\[
\delta = \frac{1}{D^2}
\]  
(5)

\[
L_A = a\sqrt{3}/4; \quad L_B = a\sqrt{2}/4
\]  
(6)

where \(M\) denotes the atomic weight and \(N\) is Avogadro's number \((6.022 \times 10^{23} \text{ mol}^{-1})\). The crystallite size \((D)\) was estimated using Eq. (7) [26]:

\[
D = \frac{K\lambda}{\beta \cos \theta}
\]  
(7)

where \(K\), \(\lambda\), \(\beta\), and \(\theta\) denote the shape factor \((0.89)\), X-ray wavelength, full width at the half maximum, and diffraction angle, respectively.

In addition to the \(D\), the lattice strain and defects were influential in the XRD patterns. The Williamson–Hall model is a simplified integral breadth method that separates the contributions from diffraction line broadening. The full width at half maximum of a peak in radians \((\beta_{hkl})\) can be expressed as a summation of the contributions from peak broadening by size \((\beta_s)\) and strain \((\beta_D)\) in Eq. (8) [27].

\[
\beta_{hkl} = \beta_s + \beta_D
\]  
(8)

The Williamson–Hall model assumes uniform strains in all the crystallographic directions. \(\beta_{hkl}\) and \(\theta\) are related according to Eq. (9).

\[
\beta_{hkl} \cdot \cos \theta = 4\varepsilon \sin \theta + \frac{K\lambda}{D}
\]  
(9)

The third model, known as the size–strain plot method, is primarily used to account for the isotropic nature of the crystal structure. In this model, the broadening line is non-uniform, and the radiant wavelength regulates the strain size. The profiles of \(D\) and size-strain are calibrated using Lorentzian and Gaussian functions, respectively. \(D\) and the \(\epsilon\) parameters are related as shown in Eq. (10).

\[
(d_{hkl} \beta_{hkl} \cos \theta)^2 = \frac{K}{D^2} d_{hkl} \beta_{hkl} \cos \theta + \frac{\epsilon^2}{4}
\]  
(10)

Vibrating sample magnetometry characterizes the magnetic properties of sintered ferrites. An applied magnetic field \((H)\) of up to 10 kOe was scanned at a speed of 10 s/point to trace hysteresis loops at 80 points/loop. Each loop exhibits the coercive field \((H_c)\) and remanent magnetization \((M_r)\) with the saturation magnetization \((M_s)\) approximated using Eq. (11). From these parameters, the magnetocrystalline anisotropy field \((H_a)\), anisotropy constant \((K_i)\), demagnetizing field \((H_d)\), crystalline magnetic moment \((\mu_{obs})\), and squareness were determined using Eqs. 12–16 [28].

\[
M = M_s \left(1 - \frac{A}{H} - \frac{B}{H^2}\right) + \chi H
\]  
(11)

\[
B = H^2/15
\]  
(12)

\[
K_i = \mu_0 M_s \sqrt{105 - \frac{B}{8}}
\]  
(13)

\[
H_e = 0.48 \sqrt{H_d - H_c}
\]  
(14)

\[
\mu_{obs} = M \cdot M_s / 5585
\]  
(15)

squareness = \(M_r / M_s\) \hspace{1cm} (16)

where \(A\), \(B\), and \(\chi\) are the variables that influence the sample heterogeneity, magnetocrystalline anisotropy, and domain spontaneous behavior, respectively.

3. Results and discussion

3.1. Thermal stability

Based on the TGA curve of pristine \(\text{CoFe}_2\text{O}_4\) (Fig. 2), the decomposition of the dry gel comprises three states. The first significant weight loss from 2 to 9% between 200 and 400 °C corresponds to the removal of physisorbed water molecules and the complex breakdown. The combustion of the hydroxyl groups in the dry gel releases \(\text{CO}_2\), \(\text{H}_2\text{O}\), and

![Fig. 2. TGA and DTG curves of the pristine \(\text{CoFe}_2\text{O}_4\).](image)
residues. The combustion of organic compounds occurs in an oxidizing environment [29]. The second weight loss of approximately 10–13% from 420 to 520 °C is owing to the OH group dehydration, forming semi-organic carbon materials and metal oxides [30]. The largest weight reduction from 520 to above 600 °C signifies precursor decomposition and the formation of spinel ferrites.

The third weight loss corresponds to a derivative weight approximately −6%/min in the DTG curve, as shown in Fig. 2. This sharp peak at 576 °C is dependent on the type of material and starch in the sol–gel synthesis because it occurs at a higher temperature than those reported for ZnO synthesis using tapioca starch [20] and the CoFe2O4 synthesis using sago starch [14]. Above 650 °C, the DTG curve exhibited an insignificant weight change, suggesting that the carbonaceous precursors completely decomposed, and the spinel ferrite phase was completely formed. Therefore, a higher temperature of 800 °C was selected for sintering sol–gel-derived products with ion substitutions to enhance ferrite crystallinity.

3.2. FT-IR spectra

The FT-IR spectrum of each sintered ferrite in Fig. 3 shows the adsorption bands of the three major components. Corresponding to the moisture in the samples, a broad absorption peak at 3446 cm−1 indicates the O–H bending in adsorbed water molecules, whereas a small band at approximately 1632 cm−1 is in the O–H stretching region [31]. The second component is related to the residues of the chelating agent. The triple peaks at approximately 2852, 2918, and 2963 cm−1 are ascribed to the anti-symmetric and symmetric stretching of CH2— and the boundary stretching of C–H, respectively [32,33]. Finally, the sharp peak at 590 cm−1 corresponds to the (Fe–O) vibration in the tetrahedral A-site. In contrast, the absorption at 420 cm−1 with lower intensity indicates metallic bonds in the octahedral B-site [34]. Furthermore, the absorption peak at 588 cm−1 observed exclusively in pristine CoFe2O4 corresponds to the stretching of Fe–O bonds in the ferric oxyhydroxide (α-FeO(OH)) phase [35].

3.3. Morphology

The SEM micrograph in Fig. 4 reveals nonuniform particles with irregular shapes. The grain size was approximately 20 nm. However, the particles tend to agglomerate into bulky aggregates because of magnetic attraction.

3.4. Crystallographic structure and parameters

The XRD patterns of the sintered ferrites in Fig. 5 exhibit a major characteristic peak corresponding to the (311) crystallographic plane. Other diffractions were from the (220), (222), (400), (422), (511), and (440) planes. These XRD peaks signify cubic spinel CoFe2O4 (JCPDS card no 22–1086) of the space group Fd3m [36]. In addition, pristine CoFe2O4 in Fig. 4a exhibits diffraction from the (202) plane. This small XRD peak agrees with the Fe–O stretching in the FT-IR spectra of the tetrahedrally structured α-FeO(OH) phase (JCPDS card no 22–0713) [37]. In contrast, the ion substitutions in Fig. 4b–e did not lead to an impurity phase.
The corrected lattice constant $a$ was determined by extrapolating the function to zero. The strains within the grains are indicated by the change in $a$, as shown in Fig. 6. The corrected lattice ($a_{\text{co}}$) parameter agreed with our previously uncorrected results. The increase in $a_{\text{co}}$ corresponds to the positive slope of the plot between $a$ and $f(\theta)$ for Co$_{0.7}$Mn$_{0.3}$Fe$_2$O$_4$ and Co$_{0.7}$Zn$_{0.3}$Fe$_2$O$_4$. In these cases, Co$^{2+}$ ions of 0.70 Å in radius are substituted by larger ions, that is, Mn$^{2+}$ (0.83 Å) or Zn$^{2+}$ (0.74 Å) [38]. However, the $a_{\text{co}}$ decreased when smaller ions of Cu$^{2+}$ (0.73 Å) and Ni$^{2+}$ (0.69 Å) replaced Co$^{2+}$. Thus, the slope of $a$ versus $f(\theta)$ became negative for Co$_{0.7}$Cu$_{0.3}$Fe$_2$O$_4$ and Co$_{0.7}$Ni$_{0.3}$Fe$_2$O$_4$.

Table 1 lists the increased crystallographic parameters owing to ion substitutions. Variations in the calculated values from Eqs. (3)–(6) are related to the substitution of ions of different sizes within the CoFe$_2$O$_4$ crystal [39]. The $a_{\text{co}}$, $V$, $L_A$, and $L_B$ parameters are ranked based on the ionic radius, that is, from Ni$^{2+}$ (0.69 Å), Cu$^{2+}$ (0.73 Å), and Mn$^{2+}$ (0.80 Å), to Zn$^{2+}$ (0.83 Å) [40]. The $d_x$ and $\delta$ parameters, which are dependent on $M$ and $D$, are also influenced by other factors.

### 3.5. Crystallite size and microstrain

Following the Scherrer equation in Eq. (7), $\cos \theta$ is plotted versus $1/\beta$ on the $x$-axis in Fig. 7a. $D$ was then derived using the slope of the linear least-squares fit. The extrapolation and slope of the fitted line in Fig. 7b can be used to estimate $D$ and $\epsilon$ based on the Williamson–Hall model in Eq. (9). For the size-strain model in Eq. (10), the term $(d_{hkl} \cdot \beta_{hkl} \cos \theta)^2$ is plotted versus $d_{hkl} \beta_{hkl} \cos \theta$ in Fig. 7c. The slope represented the $D$ parameter and the $y$-intercept gives the $\epsilon$.

Table 2 compares the results from the Scherrer, Williamson–Hall, and size–strain plots. The $D$ value obtained from the size-strain model was significantly smaller than those from the other two models. The highest $D$ obtained for CoFe$_2$O$_4$ contrasts the others. According to the Scherrer and Williamson–Hall models, CoFe$_2$O$_4$ and Co$_{0.7}$Zn$_{0.3}$Fe$_2$O$_4$ have substantially smaller $D$ values. The Williamson–Hall method, providing information on

| Table 1. Crystallographic parameters of Co$_{0.7}$Me$_{0.3}$Fe$_2$O$_4$ samples. Co denotes the pristine CoFe$_2$O$_4$. |
|--------------------------|-----------------|----------------|----------------|----------------|----------------|
| Parameter               | $Me$ substitution | Co  | Mn  | Cu  | Ni  | Zn  |
| $a$ (Å)                 |                 | 8.360 | 8.374 | 8.379 | 8.374 | 8.391 |
| $a_{\text{co}}$ (Å)     |                 | 8.337 | 8.380 | 8.376 | 8.361 | 8.401 |
| $V$ (Å$^3$)             |                 | 583.74 | 588.47 | 587.61 | 584.43 | 592.86 |
| $d_x$ (gm/cm$^3$)       |                 | 5.336 | 5.273 | 5.332 | 5.306 | 5.318 |
| $\delta$ ($\times 10^{14}$ line/m$^2$) |     | 3.513 | 3.596 | 3.518 | 3.551 | 3.536 |
| $L_A$                   |                 | 3.619 | 3.629 | 3.627 | 3.620 | 3.638 |
| $L_B$                   |                 | 2.955 | 2.963 | 2.961 | 2.956 | 2.970 |
both D and $\epsilon$, suggests that the strains are higher in the case of smaller crystallites. The results do not agree with the size-strain model, with no correlation between D and $\epsilon$.

3.6. Magnetic properties

The pristine CoFe$_2$O$_4$ and Co$_{0.7}$Me$_{0.3}$Fe$_2$O$_4$ samples exhibit ferrimagnetic hysteresis loops, as shown in Fig. 8. A significant difference is observed in the case of Zn doping. The Co$_{0.7}$Zn$_{0.3}$Fe$_2$O$_4$ sample exhibited characteristics of soft ferrites, as observed from the narrowest loop in Fig. 8. The magnetic parameters of all samples shown in Table 3 can be compared to those of ion-substituted CoFe$_2$O$_4$ compiled in a review article by Mmelesi et al. [1]. Large $M_s$ and moderate $H_c$ values by Zn substitution have also been reported in the literature using different co-precipitation and solid-state methods. Other substitutions using this tapioca starch sol–gel synthesis led to higher $M_s$ values than those typically obtained in the literature. Compared to our previous study using sago starch with different ratios [14], the $M_s$ values of the pristine samples were comparable at approximately 70 emu/g.

![Fig. 7. (a) Scherrer, (b) Williamson–Hall, and (c) size–strain plots for Co$_{0.7}$Me$_{0.3}$Fe$_2$O$_4$ samples. Co denotes the pristine CoFe$_2$O$_4$.](image)

![Fig. 8. Hysteresis loops of Co$_{0.7}$Me$_{0.3}$Fe$_2$O$_4$ samples. Co denotes the pristine CoFe$_2$O$_4$.](image)

<table>
<thead>
<tr>
<th>Me substitution</th>
<th>Co</th>
<th>Mn</th>
<th>Cu</th>
<th>Ni</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_s$ (emu/g)</td>
<td>72.61</td>
<td>72.46</td>
<td>64.98</td>
<td>62.02</td>
<td>83.36</td>
</tr>
<tr>
<td>$M_r$ (emu/g)</td>
<td>25.85</td>
<td>32.15</td>
<td>26.45</td>
<td>28.70</td>
<td>17.51</td>
</tr>
<tr>
<td>Squareness</td>
<td>0.356</td>
<td>0.4437</td>
<td>0.4070</td>
<td>0.4628</td>
<td>0.2101</td>
</tr>
<tr>
<td>$H_c$ (Oe)</td>
<td>1187</td>
<td>1630</td>
<td>796.1</td>
<td>1003</td>
<td>182.1</td>
</tr>
<tr>
<td>$H_d$ (Oe)</td>
<td>1884</td>
<td>1936</td>
<td>960.8</td>
<td>476.8</td>
<td>2154</td>
</tr>
<tr>
<td>$\mu_{obs}$</td>
<td>2451</td>
<td>3373</td>
<td>1646</td>
<td>2083</td>
<td>357.4</td>
</tr>
<tr>
<td>$k_1^2$ (x 10$^3$ erg/cm$^3$)</td>
<td>22.05</td>
<td>22.72</td>
<td>12.57</td>
<td>6.54</td>
<td>21.96</td>
</tr>
</tbody>
</table>

![Table 2. Crystallite size (D) and effective strain ($\epsilon$) for Co$_{0.7}$Me$_{0.3}$Fe$_2$O$_4$ samples, derived from Scherrer, Williamson–Hall (W–H), and size–strain (SS) plots. Co denotes the pristine CoFe$_2$O$_4$.](image)

![Table 3. Magnetic parameters of Co$_{0.7}$Me$_{0.3}$Fe$_2$O$_4$ samples. Co denotes the pristine CoFe$_2$O$_4$.](image)
significant differences are the enhanced $H_e$ and the reduced $M_s$ in Table 3.

The $M_s$ values of CoFe$_2$O$_4$ and Co$_{0.7}$Mn$_{0.3}$Fe$_2$O$_4$ were greater than those of Co$_{0.7}$Ni$_{0.3}$Fe$_2$O$_4$ and Co$_{0.7}$Cu$_{0.3}$Fe$_2$O$_4$, and these results were consistent with those reported by Balakrishnan et al. [41] and Sanpo et al. [42]. By incorporating Co$^{2+}$ (3μ) or Mn$^{2+}$ (5μ) into the ferrite structure, a larger magnetic moment is incorporated at saturation. $M_s$ is less than 65 emu/g in the case of a lower μ parameter from Cu$^{2+}$ (μ) (d$^{10}$) or Ni$^{2+}$ (2μ) (d$^3$) in the crystals. Interestingly, doping with nonmagnetic Zn led to the highest $M_s$ in Table 3. The substitution of magnetic Co$^{2+}$ (μ) by Zn$^{2+}$ (0μ) likely forces Co$^{2+}$ into the Atet-site of the inverse spinel structure. Substantial magnetization then arises from the change in superexchange interactions between the Atet-site and the Btet-site [43]. At the lowest $M_s$, the Co$_{0.7}$Zn$_{0.3}$Fe$_2$O$_4$ sample exhibited the lowest squareness, as shown in Table 3. The lowest $H_e$ and μ$_{obs}$ values also corresponded to soft ferrite characteristics.

Table 3 summarizes the parameters calculated from Eqs. 12–16. The $K_1$ and μ$_{obs}$ values exhibit a similar trend to those of $M_s$, attaining the maximum in CoFe$_2$O$_4$ and Co$_{0.7}$Mn$_{0.3}$Fe$_2$O$_4$. A smaller μ parameter from either Cu or Ni substitutions reduces $K_1$ and μ$_{obs}$ values. Although Cu$^{2+}$ has a smaller μ parameter than Ni$^{2+}$, the crystallites in Co$_{0.7}$Cu$_{0.3}$Fe$_2$O$_4$ are more likely to orient in a preferential direction. $H_e$ is the magnetic field required in the reverse direction to randomize the magnetic moments, whereas the $H_d$ indicates the total magnetic field in a region within the magnetic material. The variations in $H_e$ and $H_d$ in Table 3 can be partially explained using the magnetic moment interaction principle [44]. $H_d$ is directly related to the number of μ occupied, that is, Mn$^{2+}$ (5μ), Co$^{2+}$ (3μ), Ni$^{2+}$ (2μ), Cu$^{2+}$ (μ), and Zn (0μ). In contrast, $H_e$ is significantly influenced by the particle size and microstructure.

4. Conclusions

Divalent ion substitution in sol–gel-derived Co$_{0.7}$Mn$_{0.3}$Fe$_2$O$_4$ was achieved using an aqueous solution of tapioca starch as a chelating agent. After sintering at 800 °C for 4 h, the cubic spinel CoFe$_2$O$_4$ phase without an impurity phase was confirmed by the XRD and FT-IR spectra when Me is Mn, Cu, Ni, or Zn. In addition to suppressing the minor α-FeO(OH) phase, substitution by ions of different sizes modified the lattice parameters according to the Nelson–Riley plots. The Scherrer, Williamson–Hall, and size-strain models were fitted to the XRD data to estimate the crystallite size and microstrain. The Williamson–Hall model yielded smaller D values and higher values for CoFe$_2$O$_4$ and Co$_{0.7}$Zn$_{0.3}$Fe$_2$O$_4$. The magnetic properties derived from the ferrimagnetic hysteresis loops are sensitive to ion substitutions. Co$_{0.7}$Ni$_{0.3}$Fe$_2$O$_4$ and Co$_{0.7}$Cu$_{0.3}$Fe$_2$O$_4$ exhibited $M_s$ values below 65 emu/g. The substitution by Zn$^{2+}$ substantially increased $M_s$ and reduced $H_e$. Such soft ferrite characteristics are likely attributed to the relocation of Co$^{2+}$ to the Atet-site after Zn$^{2+}$ is introduced into the inverse spinel structure.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

This study is funded by the National Science and Technology Development Agency (NSTDA, Grant no. P-18-51764) and Rajamangala University of Technology Rattanakosin (Grant no. FDA–CO–62-8904-TH). VSM at Kasetsart University was supervised by Dr. Pongsakorn Jantaratana. We would like to thank Editage (www.editage.com) for English language editing.

References


embedded in SiO₂ matrix obtained by an innovative sol-gel route, Nanomaterials. 10 (2020) 580, https://doi.org/10.3390/nano10030580.


