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Abstract

Image forgery detection has become an emerging research area due to the increasing number of forged images
circulating on the internet and other social media, which leads to legal and social issues. Image forgery detection
includes the classification of an image as forged or authentic and as well as localizing the forgery within the image. In
this paper, we propose a Regression Deep Learning Neural Network (RDLNN) based image forgery detection followed
by Modified Otsu Thresholding (MOT) algorithm to detect the forged region. The proposed model comprises five steps
that are preprocessing, image decomposition, feature extraction, classification and block matching. In the pre-
processing step, the RGB images are converted to YCbCr color format. Then, the images are decomposed using the new
Polar Dyadic Wavelet Transform (PDyWT), followed by the extraction of important features. The classification phase
called RDLNN effectively classifies the normal image and the forged image. For localization of the forgery, the forged
image is divided into a number of blocks, and then Genetic Three Step Search (GTSS) algorithm is exploited to
identify the dissimilar blocks. To get the exact forged region in the image, the dissimilar blocks are analyzed by the
Modified Otsu Thresholding (MOT) algorithm. The proposed algorithm is compared with widely used image forgery
detection algorithms. The results show that the proposed method improves the forgery detection accuracy and pre-
cision by at least 6.04% and 3.77%, respectively, as compared to the already existent techniques such as ANFIS, KNN,
ANN, and SVM. Moreover, the training time of the proposed network is lower by at least 64.3% than the above
existing techniques.

Keywords: Image forgery detection, Image forensics, Image decomposition, Regression deep learning neural network,
Polar dyadic wavelet transform, Genetic Three Step Search algorithm (GTSS), Modified Otsu Thresholding (MOT)
algorithm

1. Introduction

R ecently, there has been a multi-fold increase
in sharing of digital images over the internet

for various purposes. As a reasonable number of
multimedia tools are available [1], anyone with little
knowledge about image editing can easily alter
images using these tools [2], which leads to image
forgery developing legal and social issues. In
photography, the widespread presence of these
forged images destroys integrity and threatens na-
tional security, commerce, media, etc. As a result,
image forensics has evolved to regain trust in

photography [3,4], and thus image forgery detection
(IFD) is an important area to authenticate the im-
ages circulating or available on the internet. Image
can tamper with different techniques such as copy-
move, image splicing, and retouching [5]. In the
Copy-move forgery technique, a small image
segment is copied and pasted at a different location
in the same image [6,7]. In image splicing, a certain
part is selected from an image and then pasted into
another suitable image [8]. Image retouching is a
methodology in which some information in an
image is removed, and that part is smoothened
using filters along with the properties in the
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neighborhood. The images are tempered in such a
way that a human eye cannot identify the forgery
[9].
In order to detect the image forgery, preprocess-

ing, Feature Extraction (FE), and classification are
performed in series [10]. The input data is processed
into a structured format in the preprocessing stage.
After that, the images are decomposed into feature
vectors [11], and important significant features are
extracted from the decomposed features. With the
extracted features, the forged images are differen-
tiated efficiently using a classifier [12,13].

1.1. Motivation

A large number of algorithms have been proposed
recently; however, many of the algorithms are tar-
geted for copy-move type of forgery, such as the
blind copy-move image forgery detection approach
that utilizes the Undecimated Dyadic Wavelet
Transform (DyWT) [14]. The experiment's results
focus on copy-move forgery only. We introduced
(Polar DyWT) which was more efficient. Similarly,
ANFIS [15] identifies the forgery in the case of
splicing only, and this classifier still needs to be
explored for further research.
Moreover, the complexity of the proposed algo-

rithms is still large. In low processing devices and
real-time situations, complexity matters greatly and
needs to be reduced. Therefore, there is still a need
to research and explore this area to improve image
forgery detection (IFD) for low-processing devices.

1.2. Contribution

The following are the primary implications of this
paper: First, we developed an efficient feature
extraction method based on the novel Polar Dyadic
Wavelet Transform (PDyWT). The image size in
DyWT remains constant at different levels. To in-
crease the performance of the DyWT approach, we
included the polar form in this DyWT. Second, this
study developed a new regression DLNN-based
image forgery detection method. The classifier is
trained to recognize forged or authentic images and
also identify the forgery types (copy move, spliced).
Accuracy and training time have both improved.
Ultimately, we proposed the GTSS (genetic three-
step search) algorithm. This method distinguishes
between similar and dissimilar blocks. Finally, using
the Modified Otsu Binarization approach, which
properly displays the forged regions, the non-
similar blocks (forged regions) are clearly discov-
ered. The results show that the proposed method

has improved the performance over already existing
algorithms by at least 64.3%.
The rest of the paper is organized as follows:

Section 2 provides the literature review; Section 3
gives the proposed methodology of RDLNN-based
image forgery detection and localization of the
forged region using the MOT method; Section 4 il-
lustrates the results and discussion of the proposed
method based on performance metrics; finally,
Section 5 concludes the paper.

2. Related works

Several image forgery detection algorithms have
been proposed in the recent decade. This section
provides a brief overview of existing approaches.
The methodologies mostly used in forgery detection
are characterized into two domains: intrusive and
non-intrusive [16e18]. In the intrusive method, also
known as the non-blind method, the scope is
limited because it requires a certain quantity of
digital information to be embedded in the original
image [19]. In the non-intrusive technique, also
called the blind method, embedded information is
not needed. The already available IFD techniques
[20,21] have limitations like high complexity while
using a larger size of feature vectors. In an improved
IFD system, the limitations are handled using
several methods such as Convolution Neural
Network (CNN) [22] and Artificial Neural Network
(ANN) [23]. Some of the methods only establish the
effectiveness in splicing forgery but cannot expose
all types of image forgery.
Sondos Fadl. [27] established inter-frame forg-

eries, namely detection system frame deletion,
frame in [24]. the Discrete Wavelet Transform
(DWT) based decomposition is exploited. The forg-
ery detection speed relies on the position of the
copy-move. The detection process should be
repeated into smaller blocks to locate the region of
the copy-move if the copy-move is localized be-
tween two blocks.
Some research papers propose the use Scale-

Invariant Feature Transform (SIFT) methods for
copy-move forgery detection [25]. However, the
SIFT techniques have high complexity in forgery
detection and localization.
K Kunj Bihari Meena. [26] presented a novel copy-

IFD technique regarding the Tetrolet transform.
This was the first time Tetrolet was used in the
image forgery detection field. The Tetrolet trans-
form is then used to derive four low-pass co-
efficients and twelve high-pass coefficients from
each block. The results displayed that in this
method, the forged portions in the images were
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detected and localized precisely in the copied re-
gions. However, the image preserving authenticity
was a major complication in this technique. When
changing the averaging filter from 3 to 7, the per-
formance metric reduces. The proposed technique
cannot detect forgery beyond the scaling range of
[80%e135%] and also failed to detect spliced
forgery.
Insertion, and frame duplication, by 2D-CNN of

spatiotemporal information. The fusion aimed at
deep automatic FE (Feature Extraction) and
Gaussian RBF (Radial Base Function) Multi-Class
Support Vector Machine (RBF-MSVM) was
employed for the classification procedure. The
technique efficiently detected the entire inter-frame
forgeries in forged videos, even after post-process-
ing operations, namely Gaussian noise, brightness
modifications, Gaussian blurring, and compression.
However, the forgery detection is time hungry
because of the deployment of large-size feature
vectors.
Khizar Hayat. [28] proffered a forgery detection

technique based on the Discrete Wavelet Transform
(DWT) and the Discrete Cosine Transform (DCT)
for feature reduction. The results exhibited that the
technique surpassed the other modern methods
with respect to accuracy rates. But its usability is
restricted if the copy-move where localized between
two blocks. Similarly, if the duplicated region is
significantly resized or rotated, the approach pro-
duces unsatisfactory results.
Sreenivasu Tinnathi. [29] produced the Copy-

Move Forgery Detection (CMFD) method regarding
the adaptive segmentation and the hybrid FE
method. The proficiency of the CMFD method was
enhanced, and the computational complexity was
minimized by the partition of the tampered image
into non-overlapped segments. The method capa-
bility was enhanced by using HWHT (Hybrid
Wavelet Hadamard Transform) to take out the
segment features and attain a strong result by
implementing geometrical deviations within the
image. However, the drawbacks of this technique
were high computational complexity and the diffi-
culty in identifying the shape region.
Bin Xiao [30] introduced a splicing forgery detec-

tion technique using two methods: Coarse-to-
Refined CNN (C2RNet) and diluted adaptive clus-
tering. The experiment's results revealed that the
detection method attained the best outcome even
under different attack conditions compared to the
novel splicing forgery detection techniques. How-
ever, only a single tampered region of an image was
focused on in this technique; hence, the post-pro-
cessing method was restricted.

Ghulam Muhammad. [14] deployed a blind copy-
move image forgery detection approach that utilized
the Undecimated Dyadic Wavelet Transform
(DyWT). The experiment's results showed that, in
comparison with other techniques, this technique is
more capable with the use of discrete wavelet
transform DWT and the LL1 or HH1 sub-bands
only. The method's efficiency in copy-move image
forgery alone was proved, and it had not identified
all the types of the image forgery.
To address these challenges, the presented work

established RDLNN-based Image Forgery Detection
and the identification of a forged region using the
MOT technique. The novelty of this work is to
identify the exact forged region in a forged image
and reduce the computational complexity.

3. Materials and methods

The probability of image forgery has been
increased with the improvement of high-resolution
digital cameras along with photo editing software
and their enhanced features. In forensics investiga-
tion and numerous other fields, an image is
considered legal evidence, so spotting image
manipulation is significant. Hence, an RDLNN-
based IFD and forgery region detection using an
MOT algorithm is introduced in this method.
The proposed method contains five steps: pre-

processing, decomposition, feature extraction,
detection, and localization. In the beginning, the
publicly available input data are preprocessed,
wherein the image's color is converted into YCbCr
mode. Therefore, the image can be recognized by
the machine easily. After that, the PDyWT is
employed for decomposing the preprocessed image.
The significant features are extracted from the
decomposed images, and these features are input-
ted into the classifier called RDLNN. Now, the
classifier differentiates between the forged and
original image more efficiently. When the image is
identified as a forged image, it is partitioned into a
number of blocks. Then, using the Genetic Three
Step Search (GTSS) approach, the block matching
function is executed for every block to detect similar
and dissimilar blocks. The dissimilar blocks are
evaluated using the MOT algorithm, and the forged
region of an image is detected more precisely.
Figure 1 presents the block diagram of the proposed
technique.

3.1. Preprocessing

First, the inputted images are directed into the
preprocessing step. In this step, the input data is
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converted into a structured format after processing.
The following expression represents the pre-
processing function.

d¼dp
�
Rpx

� ð1Þ

wherein d implies the preprocessing function's
output; Rpx specifies the input data; dp signifies the
preprocessing. In the present work, the input color
image is converted into YCbCr color mode in the
preprocessing step. In YCbCr format, Y implies the
luma components, Cb signifies the blue-difference
chroma components, and Cr indicates the red-dif-
ference chroma components. The color image's
conversion as the YCbCr color mode function is
arithmetically equated as,

cr¼2Yא
�
Rpx

� ð2Þ

wherein crא implies the conversion function's result
of the color image as YCbCr color mode and 2Y
signifies the YCbCr color conversion function.

3.2. Decomposition

The decomposition phase is performed after pre-
processing. The new PDyWT separates the complex
image into individual components. In DyWT, the
image size remains the same at a disparate level. It
is decomposed into ‘40 sub-images at each level,
labeled as LL: The upper left quadrant; HL: The
lower left; LH: the upper right blocks of an image;
and HH: The lower right quadrant. Most data are
concentrated in the LL sub-image, which is
considered the image approximation. Merely partial
data concerning an image is rendered by the DyWT.
The polar form (P) is merged with DyWT to enhance
its performance. Therefore, a large amount of in-
formation and coordinate values are rendered by
the PDyWT via analyzing the complete image. The
PDyWT steps and their following equation are given
as: Presume d as the image to be decomposed, kðZÞ
signifies the wavelet function, vðZÞ implies shifted
through a translation time via the polar coordinates
c1 and c2. An image PDyWT can well be gauged as

Fig. 1. The block diagram for the proposed methodology.
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v2
�
c1;c2¼g* cos q Ic1

�¼ 1ffiffiffiffiffi
c1

p
ð∞

�∞

kðZÞv*
�
Z�c2

c1

�
dt ð3Þ

wherein v*ðZÞ signifies the complex conjugate of
vðZÞ, which is compressed or expanded upon c1.
The polar coordinates are mathematically repre-
sented by

c1¼g*cosq ð4Þ

c2¼c*sinq ð5Þ
wherein, c1 and c2 signifies the polar coordinates,
which renders the required data and the coordinate
values centered on sinq and cosq.

3.3. Feature extraction

The Feature Extraction (FE) is carried out subse-
quent to the Image Decomposition (ID). As for the
decomposed image, the best suitable and informa-
tive features are extracted. Furthermore, the
redundant data is reduced. In the proposed work,
the vital features, say Pearson's correlation, Speeded
Up Robust Feature (SURF), edge, color histogram,
homogeneity, with variance features, are extracted.
The FE process is expressed as

Gt
ex¼Gt

exfv2ðc1;c2Þg ð6Þ
Here, v2 ðc1;c2Þ signifies the decomposed

image; Gt
ex implies the FE function given by

Gt
ex¼

h
Gt

sf;G
t
ed;G

t
pc;G

t
ch;G

t
ho;G

t
va

i
ð7Þ

wherein Gt
sf signifies the SURF Gt

ed implies the edge
feature; Gt

pc signifies the Pearson's correlation; Gt
ch

implies the color histogram; Gt
ho implies homoge-

neity; the variance is implied as Gt
va.

3.4. Detection using classifier

The extracted features extracted from the
decomposed images are inputted to the RDLNN
classifier, which identifies whether the inputted
image is authentic or forged. The three layers are
comprised of the Deep Learning Neural Network
(DLNN), namely the Input Layer (IL), Hidden Layer
(HL), and Output Layer (OL). The inputted data is
acquired by the IL and passed into the classifier. The
HL is also named as a dense layer. The dense layer
is accountable for executing the function of adding
the product of the inputted value and the weight
vector of every input node linked to it. OL is
accountable for producing the classifier's outcome.

But, the Activation Function (AF) doesn't actively
support the multi-layers in the DLNN's HL. The
performance degradation is exhibited by the AF in
the case of large inputs offered into the classifier. A
chance of offering irrelevant results exists. To
manage that, the Regression activation (R) function
is utilized in the DLNN. Therefore, better outputs
are effectively provided by the RDLNN with no
error. Figure 2 exhibits the DNN's general structure:
The steps that are incorporated in the RDLNN are
enlisted below:

Step 1: The image's features are offered as the
input to the classifier in an initial step, and the
corresponding weight values are presented as:

Gi¼fG1;G2;G3;G4; :::::;Gng ð8Þ

li¼fl1;l2;l3;l4; ::::;l5g ð9Þ
wherein Gi signifies the inputs of the classifier and
li indicates the weight values.

Step 2: The outcome from the IL is offered to the
HL. Herein, the multiplication of the provided in-
puts with the weight vectors is done. After that, the
bias vectors are chosen arbitrarily and summed up
together. The IL is mathematically indicated as:

wi¼
Xn

i¼1
Gili þ bi ð10Þ

Step 3: The HL's outcome is executed, and so is
the AF. The HL outcome's arithmetical illustration is
produced as,

4i¼ f
	X

wiliþbi



ð11Þ

wherein f ð:Þ signifies the AF.

Fig. 2. : General structure of the DNN.
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Step 4: In the work proposed, the regression AF is
utilized that effectively supports the classifier's
multi-layers and offers the ideal result without any
error. The regression AF is formulated as,

f ð~IrÞ¼bi þ
XM

f¼1

	
ð4iÞfþ1�ð4iÞf



:j
	
ðliÞfþ1; ðliÞf




ð12Þ
wherein bi signifies the bias function; fi indicates
the HL; li symbolizes the weight value; j indicates
the kernel function of the weight value.

Step 5: The three steps mentioned above are
executed for every stage in RDLNN. Finally, the
output unit is computed by adding up every weight
of the input features.

Qi¼ fa
	X

4iliþbi



ð13Þ

wherein the output unit is signified as Qi, the HL's
weights are signified as li, fi indicates the layer's
value that precedes the OL, and f a signifies the
SoftMax AF.

Step 6: Finally, the classifier's outcome is con-
trasted with the target output value. The error value
is the variation betwixt these ‘20 values. The error
value is mathematically specified as:

Er ¼Ai �Qi ð14Þ
wherein Er symbolizes the error value, Ai signifies
the target output values, and Qi indicates the clas-
sifier's current output value. The model offers the
precise value of the error value Er ¼ 0. The back-
propagation is done by updating the weights if the
error value Ers0. Finally, two forms of output are
offered by the classifier's output; one is the normal
image, and the other is the forged image.

3.5. Block matching

After detecting the classifier's outcomeas the forged
image, it is inputted to the blockmatching function to
discover the exact forged region of an image. Usually,
the forged image encompasses ‘20 classes:

� Copy-move image
� Splicing

The forged areas are detected by dividing them
into manifold blocks. Next, GTSS performs the
block matching function on the divided blocks.
Generally, the three-step search block matching al-
gorithm uses the Sum of Absolute Differences
(SAD). It is costly and computationally intricate to

evaluate the SAD. Furthermore, the block matching
procedure is believed to be the utmost consuming
operation. The proposed work utilizes the genetic
algorithm (GA) in combination with the Three Step
Search (TSS) algorithm (called GTSS) to avoid the
enumeration of numerous search locations. There-
fore, similar and non-similar blocks are detected by
the GTSS. The GTSS's algorithmic steps are:

Step 1: The equivalent block of the current frame's
block should be found in the reference frame. Then,
the search window around it should be defined.
Generally, the number of steps that are necessarily
aimed at the provided search window 6 is rendered
by

[¼ �
log 2ð6þ1Þ� ð15Þ

Step 2: The step size vsz is defined. The distance
betwixt pixels in a search space for nth a step is
mathematically written as:

vszðnÞ¼2[�n ð16Þ

Step 3: Next, the SAD value is enumerated
aimed at a diverse number of blocks, including the
central block. In general, a large number of SAD
values are produced by the TSS, which in turn
brings about high computational intricacy. The ge-
netic algorithm is utilized to deal with that, which
aids in an effectual assortment of SAD values.

Step 4: Initialize the number of SAD values xa,
which are signified as:

xa¼fx1;x2;x3; ::::; xng ð17Þ

Step 5: The fitness is assessed aimed at every
SAD value. Next, the fitness f can well be calculated
as the Mean Absolute Difference (MAD), which is
mathematically signified as,

Mad¼ 1
mu

Xm
i¼1

Xu
j¼1

jvsði; jÞ�vsþ1ði; jÞj ð18Þ

wherein vs signifies the original block under
consideration vsþ1 implies the block identified at the
destination frame subsequent to transformation and
ðm;uÞ implies the block's dimensions.

Step 6: The fitness value is set with a certain level of
threshold THid. If it lies within the threshold value, it
is regarded as the finest SAD value, or else the itera-
tion recurs until the best SAD value is obtained.

Step 7: For crossover aco estimation, the SADvalues
selected for crossover are taken into the next gener-
ation after swapping one or more arbitrary values.
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Step 8: The SAD values that are chosen for mu-
tation ama are swapped with uniformly distributed
arbitrary values aimed at the centroid, angle, scale,
shear, and squeeze. Until the best SAD value is
found, the crossover along with the mutation pro-
cess recurs.

Step 9: The block encompassing the optimal SAD
value is taken as the best-matched block that can be
utilized as the Centre block. Next, half the step size
is pondered, and the genetic algorithm gauges the
SAD values. Then, the block encompassing the
optimal SAD is selected as the best match, which is
employed as the Centre block aimed at the subse-
quent step. Until a step size of ‘10 is attained, this
iteration continues by updating the best SAD values
as the Centre block. Thus, the GTSS algorithm
easily identifies similar blocks and non-similar
blocks.

3.6. Pseudocode of the GTSS algorithm

The GTSS algorithm pseudocode is explicated in
Algorithm 1. The non-similar blocks as of the block
matching function are inputted into the identifica-
tion stage. Here, the non-similar blocks that signify
the image's forged region can be clearly identified
by utilizing the MOT methodology. Generally, the
Otsu Thresholding (OT) method examines the total
image; however, a few pixels are left uncovered.
Aiming to resolve the issue, the proposed method-
ology utilizes a MOT wherein the image's X, Y, and
Z-axis are examined and cover the entire pixels in-
side the image. Therefore, the MOT methodology
efficiently partitions the non-similar and similar
patches. The processes engaged in the MOT meth-
odology are explicated in brief as follows:

� Generally, OT methodology suggests that the
image comprises just two entities, the fore-
ground and then the background. Otsu fixes the
threshold aimed at decrementing the class dis-
tributions' overlapping.

� Normally, Otsu's methodology partitions the
image as two regions, i.e., light and dark regions
that are signified as F1 and F2 articulated as:

F1¼f0;1;2; :::::; thcg ð19Þ

F2¼fth; thþ1; :::::; [d�1; [dg ð20Þ

wherein th signifies the threshold value and implies
the image's maximal grey level at instance 256.

Algorithm 1. Pseudocode of the GTSS algorithm.

The optimal th is defined by decrementing the
weighted group variances' summation, wherein the
weights are computed as of the corresponding
groups' possibility. The histogram probability § ðiÞ
of the observed grey value.
i ¼ 1; 2; 3; :::;M is equated as,

§ðiÞ¼nfða1;a2Þjimgða1;a2Þ ¼ ig
ðA1;A2Þ ð21Þ

wherein the index aimed at an image's row and
column is denoted as a1 and a2, correspondingly.

� The weight ubðthÞ, geometric mean vbðthÞ, and
variance s2bðthÞ of the class F1 comprising
(0 to th) intensity value range are arithmetically
equated as,

ubðthÞ¼
Xth

i¼1
§ðiÞ ð22Þ

vbðthÞ¼
Pth

i¼1i*§ðiÞ
ubðtÞ ð23Þ

s2
bðthÞ¼

Ptk
i¼1ði� vbðthÞÞ2*§ðiÞ

ubðthÞ ð24Þ

The weight ugðthÞ, geometric mean vgðthÞ, and
variance s2gðthÞ of a class F2 comprising ðth þ1toIÞ
intensity value ranges are arithmetically articulated
as:
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ugðthÞ¼
Xtk

i¼1
§ðiÞ ð25Þ

vgðthÞ¼
Ptk

i¼1i)§ðiÞ
ugðthÞ ð26Þ

s2
gðthÞ¼

Pth
i¼1

�
i� vgðthÞ

�2
)rðiÞ

ugðthÞ ð27Þ

s2
u¼ubðthÞ)s2

bðthÞ þugðthÞ)s2
gðthÞ ð28Þ

� The total variance can be attained via summa-
rizing the within-class and between-class vari-
ance, which is equated as,

s2
Y ¼s2

uðthÞ þ s2
bðthÞ ð29Þ

herein s2
Y implies the image's total variance, which

doesn't rely on the threshold. Hence, the MOT
methodology precisely detects an image's forged
regions.

4. Results and discussion

The proposed method's experimental analysis is
presented here. To state its effectiveness, the pro-
posed technique's performance analysis and
comparative analysis are executed. The proposed
IFD system is applied in MATLAB. The input im-
ages are taken from a publicly accessible dataset,
Institute of Automation Chinese Academy of Sci-
ence CASIAv2 (https://ieeexplore.ieee.org/.) [31].
The following performance metrics are used to
compare the efficacy of the proposed technique:
sensitivity, specificity, accuracy, precision, recall, F-
Measure, False-Negative Rate (FNR), False-Positive
Rate (FPR), Matthews Correlation Coefficient
(MCC), and training time.
The proposed RDLNN's performance analysis is

compared with different existent techniques, like
ANFIS, KNN, ANN, and SVM, to state its effec-
tiveness. Table 1 exhibits the proposed RDLNN's
performance analysis concerning different perfor-
mance metrics, namely sensitivity, specificity, and
accuracy. The sensitivity at the rate of 94.57%,

specificity of 97.83%, and 96.2% accuracy are ob-
tained by the proposed RDLNN. The sensitivity at
an average of 84.92%, specificity at 63.58% average,
and accuracy at 73.06% average are obtained by
existent techniques, like ANFIS, KNN, ANN, and
SVM, which are comparatively low when analo-
gized to the proposed RDLNN. Figure 3 depicts the
graphical illustration of Table 1. The proposed
RDLNN is relatively examined with different exist-
ing techniques like ANFIS, KNN, ANN, and SVM.
From the comparative study, it is obvious that the
proposed technique outperforms the other top-
notch methods by yielding the maximal rate of
sensitivity of 94.57%, specificity of 97.83%, and ac-
curacy of 96.2%, which is comparatively higher
when contrasted to the prevailing techniques.
Therefore, the normal image and the forged image
are efficiently distinguished by the proposed
RDLNN with no misclassification error.
Table 2 tabulates the proposed RDLNN's perfor-

mance analysis with different existing techniques
concerning the precision, recall, and F-Measure.
The number of positive class predictions of the
design is quantified by precision and recall, and
both precision and recall values are balanced by the
F-Measure. Thus, the model's robustness is signified
by the higher value of precision, recall, and F-
Measure. In the proposed architecture, the precision
of 97.75%, recall of 94.57%, and F-Measure of 96.13%

Table 1. Performance analysis of proposed RDLNN based on sensitivity
specificity and accuracy.

Performance metrics (%)/
Techniques

Sensitivity Specificity Accuracy

Proposed - RDLNN 94.57 97.83 96.2
ANFIS [15] 85.71 94.57 90.16
KNN [32] 79.35 67.39 73.37
ANN [33] 98.55 31.52 60.25
SVM [32] 76.09 60.87 68.48

Fig. 3. Comparative analysis of proposed RDLNN based on sensitivity,
specificity, and accuracy.

Table 2. Performance analysis of proposed RDLNN based on precision,
recall, and F-Measure.

Performance metrics (%)/
Techniques

Precision Recall F-Measure

Proposed - RDLNN 97.75 94.57 96.13
ANFIS 93.98 85.71 89.66
KNN 70.87 79.35 74.87
ANN 51.91 98.55 68
SVM 66.04 76.09 70.71
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are obtained. In already existing techniques ANFIS,
KNN, ANN, and SVM, the precision ranges be-
tween 66.04% and 93.98%, Recall ranges between
85.71% and 76.09%, and F-Measure values range
between 68% and 89.66% are attained by the pre-
vailing techniques. The proposed RDLNN is
showing better performance as compared to existing
techniques. Figure 4 offers a clear view of tabulation
2. The figure also illustrates the edge in the preci-
sion, recall, and F-Measure values of the proposed
RDLNN over the other techniques.
The Performance of the proposed RDLNN in

terms of FPR, FNR and MCC is shown in Table 3.
The work's reliability is revealed by the lower value
of FPR and FNR rates. As per the statement, less
FPR and FNR values are attained by the proposed
RDLNN when analogized to the existent works. The
FPR at the rate of 2.17% and FNR at the rate of 5.43%
are attained by the proposed work, while the exist-
ing works, like ANFIS, KNN, ANN, and SVM, attain
an FPR value that ranges between 1.45 and 68.48%.
Moreover, the work proposed is also assessed con-
cerning the MCC metric. In contrast to the FPR and
FNR rates, the model's effectiveness is signified by
the higher value of MCC. Herein, the proposed
RDLNN's MCC value is 92.44%, but the MCC value
that overall ranges between 37.39% and 80.63% are
attained by the existing techniques. Thus, the pro-
posed RDLNN is a less error-prone model and
provides more accurate results with less

misprediction. The proposed RDLNN's graphical
analysis with diverse existent techniques, namely
ANFIS, KNN, ANN, and SVM, is exhibited in Fig. 5.
The proposed design's efficacy is exhibited by the

comparative study by examining the false prediction
values. The false prediction is decremented by the
technique proposed, and the classification rate is
improvised by evading misclassification and staying
effective against the prevailing methods. Hence, the
existing techniques are outperformed by the pro-
posed RDLNN by attaining low false prediction
values and higher MCC scores.
The total training time consumed by the proposed

RDLNN technique, along with different existent
techniques like ANFIS, KNN, ANN, and SVM, is
exhibited in Table 4. The proposed method attained
the training time of 0.6711 s, while the training time
ranges between 1.881 seconds and 41.703 s are
attained by the existent techniques like ANFIS,
KNN ANN, and SVM. Hence, the proposed tech-
nique takes less time to finish the training of the
network faster than the existing methodologies.
Figure 6 depicts the comparative examination of the
training time taken by the RDLNN classifier and
other prevailing techniques, like ANFIS, KNN,
ANN, and SVM. It is understood from the graph
that 0.671 s is taken by the proposed RDLNN while
about 1.881 s, 3.873 s, 7.285 s, and 41.70 s corre-
spondingly are required by the existing techniques,
i.e., ANFIS, KNN, ANN, and SVM, aimed at training

Fig. 4. Comparative analysis of proposed RDLNN based on precision,
recall, and F-Measure.

Table 3. Performance analysis of proposed RDLNN based on FPR, FNR,
and MCC.

Performance metrics (%)/Techniques FPR FNR MCC

Proposed - RDNN 2.17 5.43 92.44
ANFIS 5.43 14.29 80.63
KNN 32.61 20.65 47.08
ANN 68.48 1.45 38.22
SVM 39.13 23.91 37.39

Fig. 5. Comparative analysis of proposed RDLNN based on FPR, FNR,
and MCC.

Table 4. Performance analysis of proposed RDLNN based on Based on
Training Time.

Training time (sec)/Techniques Training Time

Proposed - RDLNN 0.671198
ANFIS 1.881727
KNN 3.873886
ANN 7.285279
SVM 41.70318

604 A.H. Saber et al. / Karbala International Journal of Modern Science 8 (2022) 596e606



the data. Thus, the classification process is
completed by the proposed RDLNN as rapidly as
possible compared to the existing works.

5. Conclusions

The RDLNN-based Image Forgery Detection has
been proposed in this paper. It discovers the forged
region utilizing the MOT methodology. The tech-
nique engages numerous operations, like pre-
processing, image decomposition, feature extraction,
identification, and forged image block matching to
detect the forged region of the image. After that, the
work's end result is examined, wherein the perfor-
mance examination and the comparative assessment
of the proposed and existent methodologies are
executed regarding a few performance metrics
aimed at validating the proposed methodology's ef-
ficacy. The developed methodology efficiently de-
tects the forged image in diverse conditions. The
publicly prevalent datasets are employed in the ex-
amination wherein the RDLNN proposed stands
with a higher accuracy rate as compared to the
existing techniques. Specifically, the proposed
RDLNN-based image forgery detection identifies the
forged region with 96.2% accuracy, which is at least
6.04% higher than the accuracy reported by the
already existing state-of-the-art image forgery tech-
niques such as ANFIS and KNN.
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