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Abstract

One gram of TiO2 nanoparticles, size of 30e50 nm and 20 mL of 3M of NaOH as the suspension were utilized in a
hydrothermal process using three homemade reactors of different surface areas but of the same capacity to synthesise
titanium sub-oxide Ti6O11. X-ray diffraction, Raman spectroscopy, and field-emission scanning electron microscopy (FE-
SEM) were employed to characterise the samples. When the temperature was raised to 363 K (90 �C) for 6 h and the
surface area changed, X-ray diffraction revealed the development of sub-oxide titanium (Ti6O11) with a triclinic Magn�eli
phase from TiO2 nanoparticles. FE-SEM revealed consistent hierarchical structures with grass-like planar geometries. In
titanium, a new phase has been discovered.
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1. Introduction

P roducing partially oxidised titanium dioxide by
the hydrothermal method has become a topic of

interest in recent years. The method is used in
various applications due to the unique features of
the nanostructures produced.
In the 1950s, Magn�eli solved the structure of

TinO2n-1. With the exception that sharing occurs in
each octahedron due to Ti reduction and the
resulting oxygen vacancies in TinO2n-1, which is
identical to the edge-shared TiO6 octahedra chain
structure [1,2]. The titanium suboxides known as
Magn�eli phases have the general formula TinO2n-1

(n is an integer between 4 and 10) [3,4].
TinO2n-1 is a highly conductive oxide with unique

physical, chemical, and optical properties. Due to its
small bandgap, it could be used in photocatalysis,
photovoltaics, fuel cells, data storage, and energy
conversion devices [5,6]. Various methods,
including RF induction thermal plasma, laser
chemical vapor deposition, photo electrochemical
water splitting (preparation requires 1000 �C) and

hydrothermal method, are used to synthesise
Magn�eli phases. The titaniumeoxygen system is
used in several applications and plays an important
part in the research of a material's non-stoichiom-
etry owing to its remarkable conductivity and
extreme visible light absorptivity [7e10]. A Magn�eli
phase has been used as a counter electrode in solar
cells and has been proven to have a higher short-
circuit current density than that of Pt. The phase is
also corrosion-resistant [11,12].
The physical and chemical properties of TiO2 are

influenced by crystal phase, particle size, and par-
ticle shape [13e15]. TiO2 occurs in three crystalline
phases: rutile, brookite, and anatase. The rutile
phase is thermodynamically stable, whereas
brookite and anatase are not [16]. Rutile TiO2 is also
more active in photochemical applications than
anatase TiO2 according to various observations in
the literature [11,17].
Controlling the crystallization, size, and shape of

nanostructured TiO2 are critical for producing ma-
terials with desirable properties [18,19].
Although a direct correlation between surface and

physicochemical properties is not always
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achievable, crystal structure, surface condition, and
size distribution have all been found to influence
TiO2 activity [20,21].
Raman spectroscopy is a powerful technique for

exploring the structural characteristics of nano-
particles. It provides critical information on surface
morphology and the impacts of the finite size of
nanoparticles. Particle size reduction, causing the rise
in the surface to volume ratio, can be detected from
changes in Raman spectra, including the appearance
of new bands and the vanishing or broadening of
existing bands. Campbell and Fauchet showed that
grain size effects cause substantial changes and
broadening of the Raman spectrum [22,23].

2. Experimental

2.1. Materials and methods

Rutile titanium dioxide Nano TiO2 Powder (Pur-
chased from Hongwu international Group) with
purity 99.983%; Particle size 30e50 nm has high
stable corrosion resistance. NaOH was purchased
from Sigma Aldrich with a purity of 98%.

2.2. Setup the different autoclave reactors

Three stainless steel reactors A, B, and C of
100 mL capacity with dimensions [diameter: height]:
A (55 mm: 130 mm), B (65 mm: 100 mm), and C

(75 mm: 80 mm) as shown in Fig. 1 were designed
and fabricated in our laboratory.
Each reactor consists of an inner Teflon autoclave

positioned inside a stainless steel (Type 304) cylinder
that can be tightly closed with a screwed cover. The
cylinder acts as a furnace because it is surrounded
externally by a 3000 W heater and is supplied with a
thermocouple for temperature control. The stainless
steel autoclave is the basic component of the reactors
that contain a Teflon autoclave and upper and lower
gasket seals. All are surrounded by a heater.

2.3. Preparation of Ti6O11 by hydrothermal method

Figure 2 shows the steps of the hydrothermal
process; One gram of rutile TiO2 nanoparticles (NPs)
was added to 20 mL of 3 M NaOH at room tem-
perature. The mixture was stirred continuously until
its color changed to white, a process that required
20 min at the most. The white suspension (20 mL)
was poured inside each autoclave reactor and heated
to a temperature of 363 K for 6 h to prepare the
nano-titanium sub-oxide Magn�eli phase.
The reaction products in the autoclave reactors

were washed several times with ethanol and
distilled water, dried for 30 min, and filtered by a
Büchner funnel using filter paper (pore
size ¼ 200 nm). Finally, the product was heated at
523 K for 1 h to increase homogeneity and remove
any residual organic materials.

Fig. 1. Schematic diagram showing the dimensions of the three autoclave reactors.
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The structural properties of the prepared samples
were studied by X-ray diffraction (XRD) (Analytical
X’ Pert Pro, United Kingdom) and Raman spec-
troscopy (HORIBA XploRA PLUS, Japan). In addi-
tion, the surface morphology of the samples was
studied using a field-emission scanning electron

microscope (EBSD Instrument: ZEISS SIGMA VP,
Germany).

3. Results and discussion

Figure 3 shows the XRD patterns of the products
from the three reactors, A, B, and C. The patterns are

Fig. 2. Hydrothermal system a: controller device. b: Autoclave Reactor Chamber.

Fig. 3. XRD pattern for the TiO2 NPs after restructured by hydrothermal at 90 �C for 6 h using different cells diameters of (A) 55 mm, (B) 65 mm and
(C) 75 mm.
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consistent with the JCPDS card number: 96-100-8196.
Notably, the diffractograms of the products of re-
actors A and B contain peaks related to the crystal
planes of the rutile andMagn�eli phases, while that of
reactor C contains peaks related to a Magn�eli phase
only. Thus, the production of sub-oxide titaniumwith
theMagneli phasewas specific to autoclave reactor C.
The phase was confirmed by Raman spectroscopy.
The different surface areas of the reactors resulted

in different crystal sizes of their products. It is

believed that the difference in the surface area of the
reactors is the reason for the growth of a new phase
of the product of reactor C due to the increase in the
speed of movement of suspended particles during
the reaction inside the reactor by increasing the
surface area of the liquid. Moreover, applying heat
and pressure to the titanium suspension in the re-
actors caused the formation of titanium and oxygen
imbalance ratios, resulting in the formation of the
different phases. . Modelling and synthesis of
Magn�eli phases in ordered titanium oxide nano-
tubes with preserved morphology.
Stabilized Magn�eli phases are materials charac-

terized by high corrosion resistance in acidic and
basic solutions. They possess high electrical con-
ductivity and electrochemical stability [24].
A comparison of the Raman spectra of rutile tita-

nium dioxide with those of the samples from the
three reactors revealed that the reaction product in
reactor A (T4) had prominent Raman lines at 244,
416, and 621 cm�1, comparable to those of the rutile
phase, as illustrated in Fig. 4. All the Raman lines
were identical to the rutile stripes except for the one

Fig. 4. Raman scattering for the TiO2 NPs after restructured by hy-
drothermal at 90 OC for 6 h using different cells diameters of (T4)
55 mm, (T5) 65 mm and (T6) 75 mm.

Fig. 5. FE- SEM images two size of the ending result prepared by hydrothermal method using different reactor A, B and C of hierarchical
nanostructures.
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at 868 cm�1, a result of bending vibration of
OeTieO in rutile TiO2. The shift of the position of
Raman lines is due to a decrease in the ratio of ox-
ygen, indicating the presence of titanium sub-oxide.
Thus, these results confirmed the formation of tita-
nium sub-oxide with the Magn�eli phase (Ti6O11

triclinic). Therefore, the dimensions of autoclave
reactor C (T6) are optimal for forming Magn�eli
phase Ti6O11 triclinic.
The absence of these Raman lines in the spectra

related to autoclave reactors C (T6) and B (T5) in-
dicates a decrease in the ratios of oxygen bonds with
the titanium, which can lead to the formation of the
Magneli phase. These results agree with those of
Parker and Siegel [25].
The FE-SEM images in Fig. 5 show the topography

and morphology of Ti6O11 with the Magn�eli phase,
the chemical product of the reactions in reactors A,
B, and C. They exhibit uniform hierarchical nano-
structures with other morphology types, such as
planar grass-like shapes.
The products (Ti6O11) with hierarchical nano-

structures have many important applications such
as organic degradation, coatings, and supports for
the Pt catalysts in solar cells and in various elec-
tronic and optoelectronic devices. Titanium sub-
oxides are expected to become important materials
in the future [10] because of their excellent con-
ductivity and excellent absorption of visible light.
Hierarchical Ti6O11 nanostructures are also very
important in various applications because of their
huge surface area to volume ratio [26,27].
The minimum crystal size of the products was 53,

24, and 47 nm for reactors A, B, and C, respectively,
as clearly observed in the FE-SEM images in Fig. 5.,
its clearly observed by FE-SEM in Fig. 5.

4. Conclusions

The varying dimensions or surface areas of the
reactors resulted in different heat distributions and
pressures inside the reactors, causing varied reaction
products. Sub-oxide titanium, Ti6O11, with a Magn�eli
phase exhibiting hierarchical nanostructures, was
formed in reactor C as a result of the reformation of
oxygen bonds (TieO) of rutile TiO2 in the reactor.
The innovative approach led to producing a Magn�eli
phase using a hydrothermal method at a low tem-
perature (90 �C). In contrast, other methods require
high temperatures (1000 �C) to form the phase.
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