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Reyonaldo L.A. Wardana a, Fakhri Muhammad a

a Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa, Jalan Jenderal Sudirman km.3, Cilegon, Indonesia
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Abstract

The aims of this study were to characterize the urea-loaded chitosan microspheres and determine the release kinetic
constants and diffusion coefficients. An emulsion cross-linking method was used to prepare the urea-loaded chitosan
microspheres. Urea was dissolved in a solution of chitosan then put into vegetable oil and stirred to form an emulsion.
Glutaraldehyde saturated toluene (GST) was added into the emulsion dropwise while continuously stirring for the
solidification process. Chitosan microspheres filled with urea were washed, dried, and then analyzed. Characterization
of the urea-loaded chitosan microspheres was conducted using a scanning electron microscope (SEM), Raman spec-
troscopy, X-ray diffraction, and particle size distribution. The cumulative release analysis was used to determine the
amount of urea released from the chitosan microspheres and determine the release kinetic constants and diffusion
coefficients. The chitosan microspheres had a good spherical geometry with a smooth surface and crystallinity of
95.5e98.18%. They had a diameter in the range of 125.31e153.65 mm and a cumulative release value in the range of
38.22e48.06%. Based on the kinetic analysis, the best kinetic models were models of Korsmeyer-Peppas, Peppas-Sahlin,
and simple power law with the burst effect resulting in the highest R2 of 0.99. The diffusion coefficient obtained was in
the range of 5.439 £ 10¡11 - 7.512 £ 10¡11 cm2/s.

Keywords: Chitosan, Cumulative release, Diffusion, Emulsion cross-linking, Release kinetics

1. Introduction

A griculture is one of the most critical sectors
for Indonesia and is one of the pillars of the

country's life. The agricultural sector provides pri-
mary needs and improves the Indonesian economy.
The continuous population growth gives a great
challenge for the agricultural sector to produce
efficient and sustainable products. The main con-
tributors to increase in agricultural productivity are
fertilizers [1,2,3].

One of the largest fertilizers used in Indonesia is
urea because it is not only cheap but also has a high
nitrogen content (about 46%) and is easy to handle
[4,5,6]. However, it should be noted that urea is
easily soluble in water, and only 30e35% of its nu-
trients are absorbed by the plants. The unabsorbed
nutrients (nitrogen) will be dispersed by rainfall,
irrigation, and water flow causing excess nitrogen in
the environment [7,8], which contribute to envi-
ronmental pollution through nitrate contamination
of soil and surface water. Furthermore, it leads to
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various issues, including eutrophication of ecosys-
tems, degradation of downstream water quality,
development of photochemical smog, increase in
global concentrations of greenhouse gases, and
disruption of food chains in ecosystems [4,9].
One solution to overcome the low efficiency of

nutrient absorption from conventional urea and the
high accumulation of unabsorbed urea contents in
the environment is the controlled release urea fer-
tilizer. This type of fertilizer can control nutrient
loss, increase the efficiency of nutrient use, and
reduce fertilizer procurement costs as well as the
risk of environmental pollution [1,10,11]. Various
methods have been developed to produce the
controlled release fertilizers, one of them is the
coated or trapped fertilizers with natural polymers
(biopolymers). Natural materials, which have been
developed using various methods, which can be
used as the trapping or wrapping materials for the
fertilizers are chitosan, alginate, starch, cellulose,
lignin, biochar, and polydopamine [12]. Chitosan is
one of the most natural polymers widely used as a
microcapsule wall material because of its biode-
gradable and biocompatible properties.
Controlled release urea fertilizer is very useful for

agriculture. One of the advantages of this technol-
ogy is that it is more economical and environmen-
tally friendly compared to the conventional
fertilizers, but its use is still limited. The potential
for the controlled release urea fertilizer is enormous
and can be realized only by solving the problems of
its development, production, and application [13].
The production of the controlled release urea fer-
tilizer needs to be continuously developed to get the
right method with a low production cost. The
emulsion crosslinking method can be considered for
the manufacture of the controlled release urea fer-
tilizer because it is simple and very useful for liquid
or solid materials.
Several researchers have investigated the chitosan

as a carrier for controlling the fertilizer release
[4,14,15,16]. Modification of the chitosan was carried
out to increase the effectiveness of nutrient ab-
sorption by controlling fertilizer release, increase
the value of eco-activity, and reduce the production
costs. Modification of chitosan by emulsification and
cross-linking methods using genipin as a cross-
linking agent and then application of that in forming
the urea-loaded chitosan microspheres (matrix)
were reported by a previous study [4]. In that study,
the cumulative release value was in the range of
70e90% for seven days. Genipin is a natural and
non-toxic cross-linking agent, but the price of the
material is very high [17]. The controlled release
potassium nitrate fertilizer was prepared using the

chitosan-starch cross-linked with sodium tripoly-
phosphate (TPP) [18]. The results showed that the
cumulative release reached 95% for 14 days using
100% chitosan. When the chitosan/starch ratios
were 30/70 and 20/80, the cumulative release
reached 73% and 80%, respectively. Nevertheless,
the use of TPP as a cross-linking agent is disad-
vantageous due to the possible lack of mechanical
stability and the risk of system dissolution, due to
swelling which was very sensitive to pH [19,20].
Modification of chitosan by combining it with

inorganic materials aims to increase the physical
and retained nutritional capacity, for examples,
chitosan has been combined with montmorillonite
to form microspheres [21] and combined with clay
and paraffin wax for hydro-soluble diammonium
phosphate fertilizer [22]. The fertilizer resulted in a
cumulative release of less than 40% for 30 days.
Meanwhile, urea coating with sepiolite-chitosan
nanocomposite could achieve a cumulative release
of 65% for the same period [22].
The current study aimed to continue our previous

study. In the previous study, the urea-loaded chi-
tosan microspheres were prepared at different ra-
tios of the dispersed and continuous phases and at
different stirring speeds. Chitosan microspheres
had diameters from 153.66 ± 26.35 to
179.39 ± 34.95 mm. Although not uniform, the size of
the chitosan microspheres showed a good spherical
geometry. The urea release mechanism from chito-
san microspheres was anomaly behavior (non-
Fickian kinetics) with a cumulative release of
32.38e37.69% [23]. The diffusion coefficient calcu-
lated using the reservoir systems with a non-con-
stant activity source equation was from 1.180 � 10�14

to 1.433 � 10�14 cm2/s [24].
The emulsion crosslinking method is a simple and

versatile method. One of the influential parameters
in the synthesis of chitosan microspheres is the
concentration of chitosan. The rigidity/density of the
microcapsule wall directly affects the amount of
urea released. The release rate is very important to
study because the release rate of the controlled
release fertilizers is designed in a synchronized
pattern to meet the changing nutritional needs of
plants. Mathematical models such as release kinetic
models are very useful for studying the release
systems more deeply. The mathematical models are
expected to be able to predict the cumulative release
profiles as a function of time accurately and result in
some important physical parameter values such as
diffusion coefficient, thereby providing a better
understanding of the topic being studied. The chi-
tosan microspheres characterization analysis will
strengthen the mathematical modeling data. The
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combination of the experimental and calculated
data is very important for the optimization of the
formula process before it was applied on the com-
mercial scale in the future.
The preparation of chitosan microspheres as a

urea carrier with the difference in the concentration
of chitosan and the initial weight of urea loaded in
chitosan microspheres needs to be carried out.
Therefore, the goal of this study was to study the
characteristics of the chitosan microsphere struc-
tural properties such as the particle size distribu-
tion, morphology, structure of molecules, and
crystalline and amorphous structures. Furthermore,
mathematical modeling was conducted to simulate
the urea release profile from the chitosan micro-
spheres by determining the release kinetic constant
and diffusion coefficient values.

2. Material and methods

2.1. Materials

Preparation of the chitosan microspheres filled
with urea used the following materials: urea (pro-
duced by PT Pupuk Sriwidjaja), glutaraldehyde
(25% aqueous solution, from Merck), acetic acid
(glacial) (purity of 100%, from Merck), toluene
(technical grade, purity of 95%, from CV. Tri Jaya
Dinamika), chitosan (with a degree of deacetylation
of 87.2% and a viscosity of 37.10 cps, from PT.
Biotech Surindo), vegetable oil (from PT Sarwana
Nusantara), chemicals such as petroleum ether and
n-hexane (technical grade, from CV. Labora).

2.2. Chitosan microspheres preparation using the
emulsion cross-linking technique

Our previous studies reported that the urea-
loaded chitosan microsphere was produced using
the emulsion cross-linking technique [23]. The chi-
tosan as much as 4% w/v was dissolved in a 2% (v/v)
acetic acid solution to form a chitosan solution. After
that, urea fertilizer as much as 2.5 g was put into
50 mL of chitosan solution and then stirred until
dissolved completely. Then, the solution was put
into 400 mL of palm oil. The mixture was stirred
using a homogenizer at 10,000 rpm for 1 h to form
an emulsion. Furthermore, the glutaraldehyde
saturated toluene (GST) solution as a cross-linker
was added into the emulsion dropwise. After the
GST addition was complete, the mixture continued
to be stirred for 15 min, followed by the addition of
2 mL of 25% aqueous solution of glutaraldehyde
before being stirred again for 2 h. The chitosan
microspheres were separated (using a centrifuge),

filtered, washed (using petroleum ether and hex-
ane), and dried at 65 �C. The urea-loaded chitosan
microspheres were analyzed to determine yield,
water absorbency, and characterization of urea fer-
tilizer microcapsules.

2.3. Characterization of the chitosan microspheres
containing urea fertilizer

2.3.1. Morphological analysis using scanning electron
microscopy (SEM)
Chitosan microspheres filled with urea were

analyzed for their morphology using a SEM (model
of JSM-6510 L A, from JEOL Ltd., Japan). In the
process, chitosan microspheres were coated with
platinum. Secondary electron resolution was 3.0 nm
(accelerating voltage of 30 kV, high vacuum mode)
and backscattered electron resolution was 4.0 nm
(accelerating voltage of 30 kV, low vacuum mode).
The voltage acceleration ranged from 0.5 to 30 kV.

2.3.2. Analysis of Raman spectroscopy
Analysis of the interaction between functional

groups of chitosan and glutaraldehyde cross-linked
chitosan was observed using a LabRAM HR Evo-
lution Raman spectroscopy (Horiba Scientific,
Japan) with a laser wavelength of 785 nm and the
objective lens of 100�.

2.3.3. X-ray diffraction analysis
The crystal of chitosan microspheres was analyzed

using powder X-ray diffraction (XRD, Shimadzu
7000 Maxima-X). Samples were analyzed using Cu-
Kalpha radiation, and the scan rate was 2�/min at 2q
from 2� to 90� with a step size of 0.02�.

2.3.4. Particle size distribution analysis
Analysis of particle distribution was carried out by

measuring the diameter of chitosan microspheres
using a digital microscope. Calibration of the
diameter determination was done by determining
the correction factor, namely comparing the actual
size using a calliper with the size of a digital mi-
croscope. The size of the digital photo microspheres
was multiplied by a correction factor to obtain the
accurate diameter. The diameter of the micro-
spheres was determined using fitted Gaussian
functions.

2.4. Mathematical models for urea release

2.4.1. Determination of the cumulative release
The cumulative release was determined from the

amount of urea released from the chitosan micro-
spheres with the following steps. Firstly, at
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atmospheric temperature, 0.2 g of urea-loaded chi-
tosan microsphere was immersed in 50 mL of water
for 1, 3, 7, 14, 21, and 30 days. Then, the urea con-
centration in the medium release (water) was
analyzed using a Nessler's reagent spectrophotom-
etry method.

2.4.2. Release kinetics model
The release kinetics of chitosan microspheres was

determined using equations (1)e(5) [24,25].
1. Higuchi model

Mt

M∞
¼kHt1=2 ð1Þ

2. Korsmeyer-Peppas model

Mt

M∞
¼kK�Ptn ð2Þ

3. Peppas-Sahlin model

Mt

M∞
¼k1tm þ k2t2m ð3Þ

4. Modified hyperbola formula

Mt

M∞
¼ at
1þ bt

ð4Þ

5. Modification of power law with the burst effect

Mt

M∞
¼ktn þ b ð5Þ

where Mt
M∞

is the cumulative release of urea, kH, kK�P,
(k1 and k2), a, and b are release kinetic constants, n is
release mechanism, m is the diffusional exponent,
and t is release time.

2.4.3. The determination of the diffusion coefficient
The diffusion coefficient was determined using

the reservoir systems with non-constant activity
sources, monolithic solutions [26], and equations of
diffusion in the reservoir system [27].
1. Equations for reservoir systems with non-con-

stant activity sources

Mt

M∞
¼1� exp

 
� 3R0DKt
R2
i R0 �R3

i

!
ð6Þ

2. Equations for monolithic solutions

Mt

M∞
¼6
�

Dt
pR2

�1=2

� 3Dt
R2

ð7Þ

3. Equations of diffusion in the reservoir system [27]

CAw¼ CA0�
1þ Vm

Vw

Hl
Hd

��Vm

Vw

Hl

Hd
þexp

�
�Am

D
d

�
Hd

Vm
þHl

Vw

�
t
�	

ð8Þ
The wall thickness was determined using

equation (9)

d¼
d
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rurea

rchitþrureað1x�1Þ3
q �

2
ð9Þ

The nitrogen (urea) concentration obtained in
the release medium was used to determine the cu-
mulative release through equations (10) and (11)
[28].

3. Results and discussion

The urea-loaded chitosan microspheres were
prepared using the emulsion cross-linking method.
The basic principle of the method was a cross-link-
ing reaction between the aldehyde group of glutar-
aldehyde saturated toluene (GST) and the amine of
chitosan. The process began with forming emulsion
droplets between a chitosan solution containing urea
in the vegetable oil (water in oil), followed by slowly
dripped GST to cross-link. As a result, it would
gradually harden to form chitosan microspheres.

3.1. Characterization of urea-loaded chitosan
microspheres

A digital microscope was used to determine the
particle size of chitosan microspheres as a control of

Amount of nitrogen release¼ concentration � dissolution bath volume � dilution factor
1000

ð10Þ

Cumulative release ð%Þ¼ Volume of sample withdrawn ðmLÞ
Bath volume

� Pð1� tÞ þPt ð11Þ
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the urea release. The particle size distribution of the
chitosan microspheres at various chitosan solution
concentrations is shown in Fig. 1. The particle size
histogram of chitosan microspheres was equipped
with Gaussian curve fitting.
The Fig. 1 shows that the diameter of chitosan mi-

crospheres prepared with 2% (w/v) chitosan solution
was 70e220 mm with an average diameter of
138.86 mm. Meanwhile, the chitosan microspheres
prepared with 3% and 4% (w/v) chitosan solution had
a diameter in the range of 100e220 mm (with an
average diameter of 148.35 mm) and that in the range
of 100e230 mm (with an average diameter of
153.65 mm), respectively. Furthermore, the particle
size of the chitosanmicrosphereswas calculatedusing
the Gaussian normal distribution function equation
[29]. The results demonstrated that the average size of
chitosan microspheres prepared with 2% (w/v) chi-
tosan solution was 125.31 mm, and those prepared
with 3% and 4% (w/v) chitosan solution had an
average size of 141.53 mmand 145.03 mm, respectively.
The preparation of the chitosan microspheres as a

carrier for the release of urea was conducted using
the emulsion cross-linking method. An essential
step of this method was the formation of the emul-
sion droplets. The urea was coated with the chitosan

solution on the droplet. An increase in the chitosan
concentration enhanced the thickness of the emul-
sion droplet layer and increased the droplet diam-
eter. The high viscosity of the chitosan solution
contributed to a coarser emulsion with large drop-
lets. After the addition of a cross-linker, chitosan
microspheres with a large diameter were formed.
Similar results have been reported by previous
studies [30,31]. The increase in the diameter of the
chitosan microspheres was caused by agglomera-
tion or aggregation due to interactions between
unstable droplets, causing the diameter of the mi-
crospheres to become larger [32,33] The increase in
the chitosan concentration produced a large size of
the microspheres because the intermolecular in-
teractions between chitosan molecules became
stronger with the shorter distance. This condition
caused the chitosan molecules to become entangled
and when cross-linked with glutaraldehyde would
form single large particles [34,35].

3.1.1. Cross-linking reaction obtained from FT-Raman
spectroscopy
Raman spectroscopy provides information about

the structure of molecules containing ethylene
bonds. Analysis of the cross-linking reaction

Fig. 1. The particle size distribution of chitosan microspheres was affected by differences in the concentration of the chitosan solution. The particle size
distribution was determined by a digital microscope for the concentration of chitosan solution: [A] 2% (w/v), [B] 3% (w/v), and [C] 4% (w/v). All
samples together with fitted Gaussian functions.
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between chitosan and glutaraldehyde in the chito-
san microsphere is shown in Fig. 2.
The Fig. 2A shows Raman spectra for chitosan

with the following results. The peak for the CeH
stretching vibration appeared at 2886 cm�1. The
peak at 1667 cm�1 correspondedto the C]O (amide
I) stretching vibration. The peak for the NeH
(amide II) stretching vibration appeared at
1592 cm�1. The cross-linking reaction between the
chitosan and the glutaraldehyde is shown in Fig. 2B.
Glutaraldehyde (aldehyde group) reacted to chito-
san (amine group) to form a stable imine bond
called Schiff base. Aldol condensation/polymeriza-
tion reaction forming an oligomeric product with a
group of aldehydes, which the chitosan amine
group catalyzed, reacted to other adjacent amine
groups. The conjugate system with adjacent ethyl-
enic (C]C) double bonds was formed by cross-
linking aldol condensed glutaraldehyde oligomers
with multiple branched imine bonds [36]. Analysis
of Raman spectra for chitosan cross-linked with
glutaraldehyde in Fig. 2B showed four double bonds
stretching: (1) the peak at 1712 cm�1 was assigned to
the carbonyl stretch (C ¼ O), (2) the C]N stretch
occurred at the peak at 1653 cm�1 but in unconju-
gated form, (3) the peak at 1633 cm�1 was assigned
to the Schiff base (C]N stretch), forming the con-
jugate system with an adjacent ethylenic double
bond, and (4) the peak at 1591 cm�1 was assigned to
the C]C stretch. This peak confirmed the formation
of aldol-condensed oligomers [36].

3.1.2. Characterization of crystallinity using X-ray
diffraction (XRD)
XRD analysis is intended to identify crystalline

and amorphous structures in a material. XRD dif-
fractograms of pure chitosan and chitosan micro-
spheres containing urea are shown in Figs. 3 and 4.
In this study, the diffraction for urea-loaded chi-

tosan microsphere prepared with a chitosan con-
centration of 4% (w/v) had crystalline peaks at
22.63�, 25.01�, 29.65�, 32.00�, 35.85�, 37.52�, 41.17�,
41.95�, 49.75�, and 55.19�. Whereas, the crystalline

Fig. 2. FT-Raman spectra of (A) chitosan and (B) chitosan microspheres. Chitosan was cross-linked with glutaraldehyde saturated toluene.

Fig. 3. XRD analysis diffractogram graph for urea loaded chitosan
microsphere prepared with chitosan solution concentration of [A] 4%
(w/v) and [B] 2% (w/v).
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peak for urea-loaded chitosan microspheres pre-
pared with 2% (w/v) chitosan concentration was at
22.18�, 24.52�, 29.24�, 31.56�, 35.4�, 37.02�, 41.48�,
49.44�, and 54.84�, as well as a relatively higher in-
tensity. This abundance of energy at the 2q position
can be observed when the x-rays pass through the
crystal [38].
The Fig. 4 shows that the pure chitosan used in

this study had two crystalline diffraction peaks at

the 2q which were 10.12� and 19.89�. A previous
study [37] reported relatively similar results which
were 9.89� and 19.93�.
From Fig. 3, using a peak and base analyzer, the

crystalline percentage of urea-loaded chitosan mi-
crospheres prepared with 4% (w/v) and 2% (w/v)
chitosan concentrations was 98.18% and 95.5%. The
crystallinity of chitosan microspheres affected the
release rate of urea because the monomer compo-
sition regulated the crystallinity and affected the
flexibility, swelling, solubility, and degradation
rates. High crystallinity levels caused the release
rate to be lower or reduced [39].

3.1.3. Scanning electron microscope (SEM)
The shape and surface morphology of chitosan

microspheres containing urea were analyzed using
a scanning electron microscope (SEM) and the re-
sults are shown in Fig. 5.
The Fig. 5 shows that the chitosan microspheres

had a good spherical geometry with a smooth sur-
face. The chitosan microspheres without urea had a
smoother surface than the chitosan microspheres
filled with urea. The geometric shape of chitosan
microspheres was perfectly spherical due to the
uniform and slow cross-linking of the droplet sur-
face [30]. The chitosan microsphere morphology in

Fig. 5. SEM image for chitosan microspheres filled with and without urea. [A] urea-loaded chitosan microspheres with a magnification of 500�, [B]
SEM-EDX analysis for urea-loaded chitosan microspheres, [C] chitosan microsphere without urea with 200� magnification, and [D] chitosan
microsphere without urea with 500� magnification.

Fig. 4. XRD analysis diffractogram graph for pure chitosan.
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this study was similar to that in the previous studies
in which the chitosan microspheres also produced a
good spherical geometry. Moreover, the SEM-EDX
analysis showed that the largest components of the
chitosan microspheres were oxygen (20.93%) and
carbon (75.39%) [30] because the materials used
were chitosan and glutaraldehyde, which mainly
contained carbon and oxygen. Meanwhile, other
components with low composition were impurities
that come from raw materials [23].

3.2. Cumulative release analysis

The Figs. 6 and 7 show the cumulative release
based on the changes in the ratio of urea weight to
the chitosan solution volume and the changes in the
chitosan solution concentration. The changes in the

chitosan concentration and the amount of urea filled
in the chitosan microspheres affected the amount of
urea released from the microspheres because it was
related to the density of the microcapsule wall
material.
The urea release rate value was determined by

analyzing the nitrogen released from the chitosan
microspheres. The nitrogen release was monitored
for up to 30 days. The Fig. 6 shows the profiles of
cumulative nitrogen release from the 1st to the 30th
day of immersion time at the difference in the initial
urea weight loaded in chitosan microspheres.
Analysis of nitrogen release from the chitosan mi-
crospheres for 24 h of immersion resulted in almost
the same cumulative release. The chitosan micro-
spheres with an initial urea weight of 2.5, 5, and 10 g
produced a cumulative release of 22.78, 22.69, and
22.93% respectively. The low nitrogen release was
caused by the diffusion barrier of the hydrophobic
chitosan layer. After immersion for 3e14 days, there
were no significant differences in nitrogen release
from the chitosan microspheres. The chitosan mi-
crospheres with initial urea weight of 2.5, 5, and 10 g
produced cumulative nitrogen release of 28.9, 31.74,
and 34.95% respectively. However, after 30 days,
there was a significant difference in cumulative ni-
trogen release in which the chitosan microspheres
with an initial urea weight of 10 g urea resulted in
48.06%, while those with an initial weight of 2.5 and
5 g resulted in only 35.68 and 38.3% respectively.
The increase in nitrogen release likely resulted

from the amount of urea in the chitosan micro-
spheres. The significant difference in the amount of
nitrogen released from the chitosan microspheres
filled with 10 g of urea was probably due to a large
amount of urea not being adsorbed and attached to
the chitosan microspheres. When the amount of
urea filled into the chitosan microspheres was
lower, the walls of the chitosan microspheres
became thicker. The thickening of the matrix wall
slowed the urea dissolution rate due to a longer
diffusion pattern [40].
The Fig. 7 shows the behavior of nitrogen released

from the chitosan microspheres with the difference
in the chitosan solution concentration. It can be seen
that there was a difference in the percentage of cu-
mulative release from the beginning to the end of
the immersion time. From the 1st to the 3rd day, no
significant difference was observed because the
percentage of cumulative release was relatively the
same. From the 7th to the 30th day, however, the
percentage of cumulative release was significantly
different. The chitosan microspheres prepared with
2% (w/v) chitosan concentration produced the
highest cumulative release of 47.21%, while those

Fig. 7. Fig. 6. Effect of the difference in chitosan solution concentration
on the cumulative nitrogen release.

Fig. 6. Cumulative nitrogen release based on changes in the ratio of the
initial urea weight to the chitosan solution volume.
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prepared with 4% (w/v) chitosan concentration
produced the lowest cumulative release of 38.22%.
The chitosan solution was a microcapsule wall ma-
terial for encapsulating urea. This coating process
occurred in the emulsion process where urea was
coated with a chitosan solution, followed by the
addition of GST as a cross-linker for the solidifica-
tion process.
The chitosan concentration affected the size of the

emulsion droplet diameter, which directly influ-
enced the diameter of the chitosan microspheres.
An increase in the chitosan solution concentration
increased the solution viscosity and caused the
microsphere wall thicker, thereby lowering the cu-
mulative nitrogen release. Furthermore, an increase
in the chitosan solution concentration resulted in a
more rigid microsphere wall, which was responsible
for lowering the rate of urea diffusion from the
microsphere core to the outside.

3.3. Release kinetics

The cumulative urea release from the chitosan
microspheres was modeled using the Higuchi,
Korsmeyer-Peppas, Peppas-Sahlin, Modified hy-
perbola formula, and Modification of power law
with the burst effect models in which their equa-
tions were shown in equations (1)e(5). The release
kinetic analysis was conducted using the experi-
mental data at the variation of the chitosan solution
concentration because this factor affected the
pattern and amount of urea released from the chi-
tosan microspheres. The Table 1 and Fig. 7 show the
results of the release kinetic constants and the
comparison between experimental data and calcu-
lated data using the release kinetic models.
The Table 1 shows the kinetic constant values from

each release kinetic model. The Higuchi model
described the diffusivity constant which was appli-
cable to release without significant swelling when
the microspheres were in contact with water. Pep-
pas-Sahlin model and Simple power law with the
burst effect had kinetic constants of m and n
respectively to explain the release mechanism. The
Table 1 shows that the n value in Korsmeyer-Peppas
model was 0.157e0.242, while the m value in Pep-
pas-Sahlin model was 0.118e0.142. The two release
kinetic models produced a high R2 value which was
0.99. The constant values of the two models indicated
that the release mechanism occurred by diffusion
without swelling. Fickian diffusion was characterized
by a high rate of solvent diffusion into the interior of
the matrix and a low rate of polymer relaxation.
The Table 1 shows that all the release kinetic

models had high R2 values which were 0.89e0.99,

and the highest R2 value (0.99) was obtained from
the Korsmeyer-Peppas, Peppas-Sahlin, and Simple
power law with the burst effect models. Based on
the n value of the Korsmeyer-Peppas model and the
m value of the Peppas-Sahlin model, the urea
release mechanism from the chitosan microspheres
can be categorized as a Fickian diffusion mechanism
due to the value of n < 0.43.
Application of the simple power law with the

burst effect model for chitosan microspheres pre-
pared with 2% and 4% (w/v) chitosan concentrations
resulted in the value of n < 0.5, in which the
mechanism of urea release was categorized as the
Fickian diffusion mechanism, while that for chitosan
microspheres prepared with 3% (w/v) chitosan
concentration resulted in the value of n in the range
of 0.5 < n < 1, which suggested the case II transport,
which was purely controlled relaxation [41]. The two
release kinetics models (the Korsmeyer-Peppas and
Peppas-Sahlin) showed that the urea release
occurred through diffusion.

3.4. Determination of the diffusion coefficient

The diffusion coefficient was calculated using the
three different models which were shown in equa-
tions (6)e(8). The equation (6) (for reservoir systems
with non-constant activity sources) was used to
determine the diffusion coefficient under perfect
sink conditions in the surrounding bulk fluid based
on the Fick's law. Urea concentration at the inner
membrane surface decreased with time. The equa-
tion (7) was used to determine the diffusion coeffi-
cient under a monolithic system because urea was
molecularly dispersed in the matrix forming. After
the penetration of water into the system, urea dis-
solved completely in a rapid manner. The equation
(7) was based on Fick's second law of diffusion for
spherical geometry [26].
Similarly, equation (8) was an equation based on

the Fick's law. The system assumed that the urea in
the core was covered by a chitosan membrane with
a certain thickness. Another assumption was that
the wall thickness was much lower than the diam-
eter of the microspheres; therefore, the mass trans-
fer of two solideliquid phases was approximated by
a mathematical model through a slab. The com-
parison of the three equations was used to deter-
mine which system was appropriate for this study
based on the highest R2 value which showed a good
fitting.
The diffusion coefficient was calculated using the

three mathematical models, which resulted in
different values (Table 2 and Fig. 8). Model of
Reservoir systems with non-constant activity
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sources produced smaller diffusion coefficient
values than models of Monolithic solutions and
Diffusion in the reservoir system. This was because,
in the model of reservoir systems with non-constant
activity sources, urea was located in the core of the
microspheres and then diffused out through the
surrounding membrane with a spherical shape.

The model of monolithic solutions showed that
urea was molecularly dispersed in the matrix, so the
urea was easily dissolved after the release medium
diffused into the microspheres. Meanwhile, the
model of diffusion in the reservoir system produced
the highest diffusion coefficient values of all models
because the model was approached with a slab

Table 1. Kinetic constant values of various release kinetic models.

Chitosan concentration (% w/v) Higuchi Korsmeyer-Peppas Peppas-Sahlin

kH R2 KK-P n R2 k1 k2 m R2

2 9.875 0.95 20.449 0.242 0.99 7.905 12.777 0.143 0.99
3 8.791 0.92 21.091 0.188 0.99 15.267 5.890 0.142 0.99
4 8.113 0.89 21.168 0.157 0.99 15.121 6.086 0.118 0.99

Chitosan concentration (% w/v) Modified hyperbola formula Simple power law with the burst effect

a b R2 k b n R2

2 25.877 0.570 0.97 5.909 16.131 0.494 0.99
3 38.349 1.012 0.97 2.625 20.244 0.616 0.99
4 47.181 1.381 0.97 19.867 1.314 0.165 0.99

Table 2. Diffusion coefficient calculated by some mathematical models.

No Model Diffusion coefficient (cm2/sec)

2% (w/v) chitosan 3% (w/v) chitosan 4% (w/v) chitosan

1 Reservoir systems with non-constant activity sources 1.169 � 10�14 1.228 � 10�14 1.144 � 10�14

2 Monolithic solutions 9.275 � 10�14 9.376 � 10�14 7.352 � 10�14

3 Diffusion in the reservoir system 7.512 � 10�11 5.718 � 10�11 5.439 � 10�11

Fig. 8. Calculation results of cumulative release using various release kinetic models and compared with the experimental data at chitosan con-
centration of: [A] 2% (w/v), [B] 3% (w/v), and [C] 4% (w/v).
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system. Diffusion across the membrane was affected
by the membrane permeability and related to the
thickness of the microcapsule wall.
The Table 2 shows that the diffusion coefficient

values of chitosan microspheres prepared with 4%
(w/v) chitosan concentration was lower than those
with 3% (w/v) and 2% (w/v) chitosan concentrations.
This was due to the higher wall thickness and more
rigidity, resulting in lower urea release. The Table 2
shows that an increase in the chitosan concentration
decreased the diffusion coefficient value. The lower
the diffusion coefficient value, the stiffer the
microsphere walls would be. The diffusion coeffi-
cient affected the cumulative urea release from the
chitosan microspheres, in which an increase in the
diffusion coefficient increased the cumulative urea
release.
The Fig. 9 compares the experimental data with

the calculated data obtained from some models. The
best fitting was obtained from the model of diffusion
in the reservoir system with a high R2 value of
0.86e0.98, which was higher than that in the model
of reservoir systems with non-constant activity
sources (R2 value of 0.7e0.88) and model of mono-
lithic solutions (R2 value of 0.82e0.95). Based on the
fitting results, the pattern of urea release from

chitosan microspheres was the diffusion in the
reservoir system model.

4. Conclusions

In this study, chitosan microspheres prepared
using the cross-linking emulsion method were
characterized to be applied to control the urea
release. The chitosan microspheres containing urea
showed a smooth surface, which means that the
microspheres had a well-rounded geometry. The
interaction of the chitosan functional group (amine
group) with the glutaraldehyde (aldehyde) to form a
stable imine group (Schiff base) indicated that a
cross-linking reaction occurred. An increase in the
chitosan concentration increased the crystalline
content and decreased the cumulative urea release.
Based on the kinetic analysis, the urea release from
the chitosan microspheres followed the Fickian
diffusion mechanism, and the models with the best
fitting were Korsmeyer-Peppas, Peppas-Sahlin, and
Simple power law with the burst effect models. An
increase in the chitosan concentration decreased the
diffusion coefficient, which means that the released
urea was lower. The model to determine the diffu-
sion coefficient with the best fitting was the model of

Fig. 9. Cumulative release comparison of experimental data and calculation using several models based on changes in chitosan concentration: [A] 2%
(w/v), [B] 3% (w/v), and 4% (w/v).
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diffusion in the reservoir system with a high R2 of
0.86e0.98. The diffusion coefficient value obtained
from the model was in the range of 5.439 � 10�11

-7.512 � 10�11 cm2/s.
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Appendix. List of symbols

Mt
M∞

Cumulative release of urea (%)
kH, kK�P (k1 and k2), a, and b Release kinetics constants
n Release mechanism
m The diffusional exponent
t Release time (hours)
R0 The outer radius (mm)
Ri The inner radius (mm)
K The partition coefficient
CAw Nitrogen (Urea) concentration in water [ppm]
CA0 nitial concentration of nitrogen (urea) [ppm]
Vm Total volume of nitrogen in microcapsule [cm3]
Hl Equilibrium constant in phase I
Hd Equilibrium constant in phase II
Vw Total volume of water [cm3]
Am Total surface area of microcapsule [mm]
D The diffusion coefficient

h
cm2

sec

i
d Thickness of microcapsule wall [mm]
rurea Urea density

� g
cm3

�
rchit Chitosan density

� g
cm3

�
x Fraction
Pð1 � tÞ Percentage release previous to ‘t’
Pt Percentage release at time t
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