
(2926 cm�1) belonging to the Methine (CH), the
appearance of a band at (2370 cm�1) belonging to
the Carbon dioxide (CO2), the appearance of a band
at (2330 cm�1) belonging to (C� N), the appearance
of a band at of (1647 cm�1) belongs to the azome-
thine (C¼N), the appearance of a band at
(1390 cm�1) belonging to the Carbon monoxide
(CeO), the appearance of a band at (1147 cm�1) that
belongs to (CeN), the appearance of a band at

(1037 cm�1) belongs to (CeF). When studying the
infrared (FT-IR) spectrum of copper chloride
(CuCl2), it showed a band at (2350 cm�1) belonging
to the Carbon dioxide (CO2) and a band at
(1750 cm�1) belonging to (C¼O). An appearance of a
band at (1390 cm�1) belonging to (CeO) the
appearance of a band at (798 cm�1) belonging to
copper chloride (CueCl). Then when studying the
infrared (FTIR) spectrum of the nanocomposite

Fig. 11. FTIR analysis Strawberry extract, Cucl2, and Cu NPs.

Fig. 12. Energy gap of CuOx NPs prepared by green synthesis (CuCl2 and strawberry leaves): (A) Immediately after preparing, (B) After a month.
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prepared by green synthesis (Cu NPs), it showed a
band at of (3445 cm�1) belonging to (OH), and a
band at (2750 cm�1) belonging to (CeH), and it
showed a band at (2420 cm�1) belonging to the
Carbon dioxide (CO2), the appearance of a band at
(1639 cm�1) belonging to (C¼N), the appearance of a
band at (1520 cm�1) belongs to (C¼N), the appear-
ance of a band at (1384 cm�1) belonging to (CeO),
the appearance of a band at (1047 cm�1) belongs to
(CeF), the appearance of a band at (830 cm�1)
belonging to copper chloride (CueCl), the appear-
ance of a band at (688 cm�1) belonging to copper

oxide (CueO), and the appearance of a band at
(418 cm�1) belonging to the copper oxide (CueO).
The presence of atmospheric water during anal-

ysis may have caused (HeOeH) bending and
(�OH) stretching vibrations, which are responsible
for the peak in the spectrum that was seen between
(3300 and 3400 cm�1) [22,23].

3.7. Energy gap (Eg)

As we have shown in the XRD analysis, which
showed us the composition of the prepared Cu NPs,

Fig. 13. Antibacterial activity of Cu NPs (a) S. aureus, (b) Pseudomonas aeruginosa.

Fig. 14. Chart to compare the activity of copper nanoparticles against the bacterial species under study.
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the energy gap (Eg) of the oxides was calculated as
in Fig. 12 and using the equation below [24]:

Eg (eV) ¼ 1240 / lg (nm). (2)
where lg represents the absorption edge, which is
determined by dividing the tangent of the absorp-
tion curve in half and the abscissa coordinate [25].
However, after the first 7 h of preparation, we found
that Eg presented a fluctuating value of (2.32 eV). Eg
has been shown to rise with time and after a month
the measurements revealed that it had increased to
(2.4 eV). SEM examinations indicate that this in-
crease is due to the produced particles' regular
shape at this wavelength.

3.8. Antibacterial activity

The activity of copper nanoparticles manufactured
by the green synthesis method was tested in
inhibiting the growth of bacterial species (S. aureus
and P. aeruginosa) isolated from COVID-19 patients.
It was noted that the highest inhibition zone was for
the concentration of (1 mM) against S. aureus with a
diameter of (22 mm), while it was with a diameter of
(12 mm) against P. aeruginosa. Then the inhibition
areas were graded according to the concentrations
used against the bacterial species studied [26], as
seen in Fig. 13.

It was found that Gram-positive bacteria were
more sensitive to Cu NPs than Gram-negative bac-
teria. This result may be related to differences in the
chemical composition of bacteria cell walls [27]. The
average diameters of the bacteria-inhibiting regions
were determined as shown in Fig. 14.
It is not yet clear if the cell death was caused by a

single mechanism or a combination of events, one
of which could be resulting from the interaction of
Cu NPs with bacterial cell walls and the concur-
rent permeation of Cu ions into bacterial cells [28].
Furthermore, the electrostatic attraction between
the positive charge of NPs and the negative charge
of bacterial cell surfaces often causes NPs' anti-
bacterial activity [29]. The latest finding, similar to
other research, indicates that NPs produced DNA
and mitochondrial damage, which in turn caused
cell death. This is because NPs are toxic to bacteria
on a cellular level. This adds to the increasing
amount of information about the potential effects
of NPs [30]. By producing ROS on the surface of
NPs, which attach to the surface and kill bacteria
by electrostatic forces. The potential inhibition
process can be explained. Experimental conditions
during NPs synthesis, such as temperature and
pH, have a role in many of the results [31]. The
morphology and size distribution of NPs are
determined by the material concentration, The

Fig. 15. Effect of Copper nanoparticles on (HeP-2) and (WRL68).
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diverse sizes and forms of metal NPs exhibit
various degrees of cytotoxicity, which is consistent
with the earlier results [32].
Additionally, the authors hypothesized that the

excessive ROS production by NPs causes direct
DNA damage, triggering necrosis and then
apoptosis [33,34]. The smaller the size, the greater
the effectiveness due to the rapid ability to enter
into the cells. This leads to distribution and diffusion
within the tissues, deeper penetration, better
cellular uptake, and increased toxic effects on cells
[35].

3.9. Effect of Cu NPs concentrations on cancerous
and normal cell lines

The effect of copper nanoparticles synthesis from
strawberry leaf extract on the normal line of liver
cells (WRL-68) and the cancer cell line of human
epidermis Larynx Carcinoma (HeP-2) was tested by
using five concentrations of Cu NPs (0.1, 0.25, 0.50,
0.80, and 1 mM) for (24 h) at a temperature (37 �C).
Three replicates for each concentration, along with
the control sample that wasn't treated, were made to
allow for comparison. In Fig. 15, the findings of the
present investigation depict the inhibition rate for
copper nanoparticles at a concentration of 50%
which is (44.081%) for the (HeP-2) cancer line, As
can also be seen in Fig. 16.
While the copper nanoparticles showed that the

inhibition rate at the 50% concentration was
(5.997%) for the normal line (WRL-68), As can be
seen in Fig. 17.
As we notice in Figs. 16 and 17, the percentage of

inhibition of cell lines increases with increasing
concentration [36]. In response to the nanomaterial,
the survival time of the cancer cells was reduced,
and the characteristics of NPs such as the size of the
nanomaterial exceeding (60 nm) plays a significant
role in penetrating into cells in addition to the sur-
face charge and functional aggregates [37]. The
smaller the size was, the greater the effect which is
due to the rapid ability to enter into the cells. This
leads to easier and faster distribution and diffusion
within the tissues, deeper penetration, better
cellular uptake, and increased toxic effects on cells
[35]. Moreover, it was also noted that (Hep-2) cells
were more inhibited than (WRL-68). It has been
noticed earlier that the (Hep-2) cancer cells were
more sensitive to copper nanoparticles synthesized
by the green synthesis method from strawberry leaf
extract compared to the normal WRL-68 cells
because the level of (glycolipids and glycopeptides)
that had increased significantly in the cell wall of
cancer cells compared to normal cells. These
substances act as special receptors while copper
nanoparticles can interfere with genes responsible
for the cell cycle and cause damage to the genetic
material of the cancer cell by inducing programmed
death [38]. Ions of nanomaterials, including the
resulting copper nanoparticles, can interact with
some large biomolecules such as enzymes, DNA
and RNA, inducing oxidation and causing damage
to mitochondria [39]. Also, copper nanoparticles
affect the biofilm of the cancer cell, inhibiting the
respiratory chain and stopping energy production,
adenosine triphosphate (ATP) [40]. Likewise, the
effect on the cancerous line compared to the natural

Fig. 16. The percentage of growth inhibition of (HeP-2) cells according
to the concentrations used.

Fig. 17. The percentage of growth inhibition of (WRL-68) cells ac-
cording to the concentrations used.
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one is due to the selectivity of some metabolic
properties possessed by cancer cells and their
absence in normal cells, such as the metabolic na-
ture, the nature, and shape of the receptors on the
surface of the cancer cells and the ability to bind to
different compounds [41].

4. Conclusions

Through this work, it was noticed that the green
synthesis method using strawberry leaf extract is
one of the highly efficient methods for synthesizing
nanoparticles. The first evidence for the synthesis of
copper nanoparticles was the color change of the
mixture consisting of the plant extract and copper
chloride salts with a concentration of (2 mM)
through every passing hour of the 7 h of preparation
on the first day. SEM, UV, AFM, XRD, and FTIR
tests proved that the prepared material was Cu NPs.
The medical applications included testing the high
growth-inhibiting activity of Cu NPs gainst S. aureus
and P. aeruginosa isolated from COVID-19 patients.
Also, the good effect of copper nanoparticles on
(HEP-2) cancerous cell lines was observed and
compared to its effects on the normal non-tumor
cell lines (WRL-68), which provides a promising
insight into the treatment of cancerous diseases.
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