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Abstract

Regular monitoring of physical activities such as walking, jogging, sitting, and standing will help reduce the risk of
many diseases like cardiovascular complications, obesity, and diabetes. Recently, much research shows that the effective
development of Human Activity Recognition (HAR) will help in monitoring the physical activities of people and aid in
human healthcare. In this concern, deep learning models with a novel automated hyperparameter generator are pro-
posed and implemented to predict human activities such as walking, jogging, walking upstairs, walking downstairs,
sitting, and standing more precisely and robustly. Conventional HAR systems are unable to manage real-time changes in
the surrounding infrastructure. Improved HAR approaches overcome this constraint by integrating multiple sensing
modalities. These multiple sensors can produce accurate information, leading to a better perception of activity recog-
nition. The proposed approach uses sensor-level fusion to integrate gyroscope and accelerometer sensors. The analysis is
carried out using the widely accepted benchmark UCI-HAR dataset. Based on several performance evaluation experi-
ments, the classification accuracy of long short-term memory (LSTM), convolutional neural network (CNN), and deep
neural network (DNN) classifiers is reported to be 96%, 92%, and 93%, respectively. Compared to state-of-the-art deep
learning models, the proposed method gives better results.

Keywords: Accelerometer, Deep learning, Gyroscope, Human activity recognition, Sensor level fusion

1. Introduction

H uman activity recognition has become a very
active research topic because of its widespread

applications across various regions such as health-
care, smart homes, safety systems, transportation
mode identification, sports, gaming, disability
assistance, and humanecomputer interaction [1e3].
HAR can analyze military actions, identify vehicle
driving activities, and help in fall detection and
prevention [4]. It is employed in indoor and outdoor
surveillance cameras to detect suspicious behavior
and activities in airports, public transportation, and
correctional facilities.

Prolonged sitting and lack of physical activity
result in severe health issues like depression, obesity,
diabetes, poor metabolism, and cardiovascular dis-
orders. HAR can continuously monitor the everyday
physical activities of subjects and analyze them. It
can recognize human behavior by tracking various
physical actions, namely, walking, running, sitting,
sleeping, standing, driving, jogging, and abnormal
activities based on the series of measurements
captured by sensors [2,5,6].
Sensor-based and vision-based are two primary

methods to gather human activity data [7]. Com-
puter vision-based data can be collected using
cameras, while, the sensor-based data acquisition
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approach is further classified into three groups
based on how the sensor is deployed. These groups
include wearable, object-tagged (device-bound),
and dense sensing (device-free) methods [5,8].
Vision-based methods are more expensive,
whereas, wearable sensor-based methods such as

wristbands, wristwatches, smartphones, and smart
glasses are more efficient and cheaper for capturing
human activity data. Wearable sensor-based sys-
tems consist of built-in sensors such as an acceler-
ometer, gyroscope, and GPS to continuously
monitor real-time human activity. The accelerom-
eter measures the linear acceleration of physical
activity, whereas the gyroscope measures its
angular velocity [1,9].
The combination of both accelerometer and gy-

roscope sensors often improves activity monitoring.
According to recent studies, the multimodal data
formed by integrating accelerometer and gyroscope
signals increases HAR accuracy and is more reliable
than using each signal alone [1,10]. The data inte-
gration technique helps in the assimilation of a va-
riety of datasets from various domains to infer
particular and precise knowledge [11]. Data inte-
gration of both sensors is paramount to measure
multiple perspectives and get accurate object
orientation, position, and velocity. This research
approach collects standard HAR data (accelerom-
eter and gyroscope sensors) from a publicly avail-
able benchmark UCI-HAR machine-learning
repository [12].

1.1. Problem description and motivation

Presently, activity recognition plays a significant
role in various healthcare services and applications.

Fig. 1. Human activity recognition architecture.

Fig. 2. Sensor level fusion using deep learning.
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For example, from daily life assistance promoting
healthy behavior modifications to professional
medical analysis such as fall detection and heart
failure detection. As populations age, interpreting
and tracking human activity with many sensor fu-
sions will lead to better health outcomes and lower
costs. The presence of individual criminals poses a
significant danger to autonomous systems world-
wide, making sensor fusion more crucial than ever.
Eldercare and supported living, postural recogni-
tion, security and surveillance, athlete and first-
responder status, and localization and navigation
help for the disabled, are some examples of appli-
cations of wearable and ambient-sensor fusion for
human activities.

1.2. Author's contribution

This activity recognition work integrates acceler-
ometer and gyroscope signals using sensor-level
fusion to generate accurate multimodal data.
Sensor-level fusion combines raw signals from
multiple sensors. Deep learning models with a
novel automated hyperparameter generator are
proposed and implemented to predict six human
activities: walking, jogging, walking upstairs,
walking downstairs, sitting, and standing. The work
compares the effectiveness of deep learning models
such as DNN, CNN, and LSTM. Machine learning
models such as XGBoost, Logistic Regression, and
SGD classifiers are also compared, and results are
tabulated.

1.3. Organization of the paper

The remainder of this work is organized into
different sections. Section II describes the literature
review on HAR using data fusion techniques and
different sensors; Section III details the proposed
approach; Section IV explains performance evalua-
tion; Section V explores experiments and results;
and Section VI depicts the conclusion and future
work.

2. Literature review

This section surveys existing methodologies for
activity recognition using data integration
techniques.
Challa et al. [13] identified HAR as an important

area of research in human behavior analysis and
healthcare services. Sensor-based and video-based
systems are used for activity classification. A hybrid
CNN e BiLSTMmodel is used for classification with
an accuracy of 96%. Jain et al. [14] described HAR as
a pattern recognition task. Its framework consists of
four phases: data collection, data preprocessing,
feature extraction, and activity classification. Y.
Wang et al. [15] demonstrated that the combination
of two or more sensors for activity recognition ach-
ieves the best accuracy compared to a single sensor
alone. Ambient and wearable sensors, namely an
accelerometer, gyroscope, barometer, magnetom-
eter, temperature, and altitude, are integrated to
predict the activities of older people. The data has
been collected from 21 participants performing 17
different activities. However, the model was
designed only for older people who live alone.
Mitchell Webber and Raul Fernandez Rojas [1]
compared the different data integration levels for
multi-sensor activity details to find an optimal level

Table 1. Comparison of DL models with training epoch of 50.

Optimizers Model Name Precision Recall F1-Score Accuracy

Adam LSTM 95 95 95 96
DNN 89 91 90 91
Single-headed
CNN

88 89 88 88

Multi-headed
CNN

92 93 93 93

SGD LSTM 78 72 73 82
DNN 77 70 71 81
Single-headed
CNN

79 78 79 79

Multi-headed
CNN

91 91 91 91

Rmsprop LSTM 95 95 95 97
DNN 89 86 87 89
Single-headed
CNN

89 89 88 89

Multi-headed
CNN

91 91 91 91

Table 2. Comparison of DL models with training epoch of 100.

Optimizers Model Name Precision Recall F1-Score Accuracy

Adam LSTM 96 95 95 96
DNN 91 94 92 93
Single-headed
CNN

92 92 91 91

Multi-headed
CNN

92 92 92 92

SGD LSTM 82 76 78 85
DNN 77 72 72 81
Single-headed
CNN

85 85 85 85

Multi-headed
CNN

91 92 91 91

Rmsprop LSTM 95 96 95 96
DNN 92 90 90 92
Single-headed
CNN

90 90 90 90

Multi-headed
CNN

93 93 93 93
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of data fusion. They fused gyroscope and acceler-
ometer sensors by using a data processing pipeline
at sensor fusion, feature fusion, and decision fusion
steps. K-nearest neighbor, support vector machine,
and decision tree classifier, are used to classify the
public human activity dataset. The limitation of this
work is the reduced efficiency while using HAR on
mobile devices. M. Ehatisham-Ul-Haq et al. [8] used

multimodal feature level integration to recognize
the human activity. By combining publicly available
multiple sensors of 27 different activity types, they
achieved 97.6% accuracy. The data were classified
using a support vector machine and K nearest
neighbor. However, the method uses pre-
segmented actions, which are not practical. Huynh-
The et al. [16] employed a deep convolutional neural

Fig. 3. Activities performed by 36 participants.

Fig. 4. Number of samples by activity.
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network to derive multi-scale spatiotemporal sig-
nals and sensor-level correlations of an activity
image with an accuracy of 96%.
X. Zhou et al. [2] developed a multisensory-based

data fusion framework using context sensors, on-
body sensors, and personal profile data. LSTM and
deep Q-network are designed to improve the
learning ability. N. S. Ghosh et al. [3] gathered six
types of activity data from 30 volunteers ranging in
age from 19 to 48 years. Random forest classifier,
logistic regression, and logistic regression CV are
used to classify the data. M. Muaaz et al. [4] pre-
sented a multimodal HAR system to classify
physical actions with the use of Wi-Fi as well as
wearable sensors. Feature-level fusion is
employed. G. Ascioglu and Y. Senol [7] collected
accelerometers and gyroscope sensors from 60
participants to recognize 13 different physical

activities. The datasets were fed into convolutional
neural networks, LSTM, and convolutional LSTM
neural networks. Tianqi L. V. et al. [17] presented
an activity recognition system using multimodal
sensor data and the LSTM technique. A. Jain and
V. Kanhangad [18] proposed an approach for ac-
tivity classification by fusing accelerometers and
gyroscope sensors. Data is fused using feature and
score level fusion, with feature level fusion out-
performing score level fusion. Support vector ma-
chine and k-nearest neighbor were employed on
the public UCI-HAR data set. Sebastian Münzner
et al. [19] showed that the prediction accuracy of
CNN models is enhanced using sensor-specific
normalization techniques. Henry Friday Nweke
et al. [20] summarized various data fusion tech-
niques and many classifier systems for physical
activity recognition.

Fig. 5. Comparison of training and validation accuracy of different deep learning models (a) LSTM (b) DNN (c) CNN1D (d) CNN3D concerning
adam optimizer for epoch 50.
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Z. Chen et al. [21] collected 3D acceleration and
gyroscope data to identify six human activities.
Artificial neural networks, support vector machines,
extreme learning machines, random forests, and
LSTM were considered for activity recognition.
Wearable sensor-based recognition systems can use
deep learning networks such as convolutional neu-
ral networks to achieve better performance [22].
Long short-term memory networks are used to solve
temporal dependency issues. Nowadays, their ap-
plications are widely used in activity recognition
[23,24]. M. M. Hossain Shuvo et al. [25] employed a
random forest classifier on accelerometer and gy-
roscope sensors to identify static and moving ac-
tivities. S. K. Bashar et al. [26] gathered smartphone
sensor recordings for activity classification. They
employed neighborhood component analysis
feature selection methods. Still, other hybrid feature
selection methods need to be explored [27]. K. Chen
et al. [28] presented a semi-supervised deep model
to recognize imbalanced human activity using
multimodal wearable sensor data. Gorji et al. [29]

detected walking, sitting, and standing activities
using a two-stage classifier. Still, more sophisticated
human activities need to be detected. Semwal, V. B.
et al. [30] defined gait analysis as the study of
human locomotion Semwal, V. B. et al. [31] pro-
posed gait-based person identification. SVM, ANN,
and XGBoost algorithms are used to classify the
data. P. Patil. et al. [32] employed ELM, KNN, SVM,
and LMP algorithms for human gait classification.
The performance of ELM was good, with an accu-
racy of 93.54%. Gupta A. et al. [33] applied ELM,
SVM, KNN, and PCA algorithms for human gait
classification. Semwal, V. B. et al. [34] applied
human gait patterns to recognize human walking
activities. A combination of deep and ensemble
learning models is used for classification. Dua et al.
[35,36] used CNN and GRU hybrid model for ac-
tivity recognition. The model is validated using
three public activity datasets viz. PAMAP2, WISDM,
and UCI. Bijalwan et al. [37] proposed an activity
recognition model to identify seven different activ-
ities. The dataset includes accelerometer, gyroscope,

Fig. 6. Comparison of training and validation accuracy of different deep learning models (a) LSTM (b) DNN (c) CNN1D (d) CNN3D to adam
optimizer for epoch 100.
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and magnetometer sensors. Data are classified using
deep learning models.
Due to various health concerns and tremendous

applications, HAR is vital, and the research is
underway. A few methods are proposed for
various activity recognition applications using data
fusion techniques. Some of the methods used a
single dataset for activity recognition. These
methods have limitations such as reduced effi-
ciency and extended computational complexity. In
this paper, we employ sensor-level fusion of
accelerometer and gyroscope sensors for human
activity recognition, which gives greater efficiency.
Deep learning models such as DNN, CNN and
LSTM are compared to identify the high accuracy
model.

3. Proposed approach

The proposed method contains five primary
stages, namely: collecting data from different sensor
signals, data integration, data preprocessing and
feature extraction, building deep learning models,

and classifying human activities. Fig. 1 depicts the
architecture of the proposed work.

3.1. Collecting data from different sensor signals

Collecting data from different sensor signals is
the primary and paramount phase of gathering
desired sensor data for human activity recognition.
Accelerometer and gyroscope sensors are used to
identify human activity. In the training phase, the
data whose classification results are already known
is used, and in the testing phase, the performances
of the machine learning models are observed. The
training phase HAR sensors data has been gath-
ered from publicly available standard UCI - HAR
machine learning repository [12]. This benchmark
data considered a triaxial accelerometer within a
smartphone to record linear acceleration along the
X, Y, and Z axes, and a 3D gyroscope to measure
angular velocity. Six physical activities, namely
walking, sitting, standing, walking upstairs,
walking downstairs, and jogging, are recorded

Fig. 7. Comparison of training and validation accuracy of different deep learning models (a) LSTM (b) DNN (c) CNN1D (d) CNN3D for SGD
optimizer for epoch 50.
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using 36 participants at a sampling rate of 50 Hz.
Each participant wore a smartphone around the
waist to perform these activities. The sensor data
app installed on the smartphone gathers acceler-
ometer and gyroscope data at a sample rate of
50 Hz, which is then preprocessed and used in the
classification stage.

3.2. Data integration from different sources

Data from various sources can be merged in the
data integration phase to produce more accurate
and valuable information than a single source alone
could provide. The individual dataset may not pro-
duce proper activity recognition results; hence, both
accelerometer and gyroscope sensors are fused
using sensor-level fusion [1]. Sensor fusion in-
tegrates data derived from different modalities to
obtain accurate information, which wouldn't be
possible when these data sets are used individually.
Fusion is applied to the raw data to combine
different data sets to produce enhanced data [38,39].

Sensor-level fusion has various advantages, such as
robustness, more confidence, less ambiguity, and
reduced uncertainty. In sensor fusion, the deep
learning architecture integrates data at various
stages. This method of fusion separates the data
from different sensors and integrates it with a fully
connected layer succeeding the convolutional layer
[19]. This process allows an independent sensor-
specific pipeline to meet the necessities of each
method. Since the data integration is happening at
the sensor level, it combines raw information that
can account for inter- and intra-class and facilitates
decision-making based on the fused raw informa-
tion. Fig. 2 depicts sensor-level fusion using deep
learning.

3.3. Data pre-processing

Smartphone and wearable sensor signals are
often continuous time series. These sensors record
activity data in a time series manner. The method
of identifying human activity begins with the

Fig. 8. Comparison of training and validation accuracy of different deep learning models (a) LSTM (b) DNN (c) CNN1D (d) CNN3D for SGD
optimizer for epoch 100.
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creation of segments from the sensor data. WISDM
and UCI-HAR are the datasets utilized in the
proposed work. The data preprocessing phase
handles missing values in the dataset. This phase
eliminates or filters out undesirable and noisy data
to obtain an easier and more understandable
model. In the beginning, all the null values from
the datasets are dropped. Then accelerometer and
gyroscope sensors are combined into a single data
frame using sensor-level data fusion. Various fea-
tures from accelerometer and gyroscope sensors
are extracted and the dataset has been split into a
train: test ratio of 80:20. The sensor data has been
standardized to have a zero mean and unity stan-
dard deviation using the minemax normalization
technique [40]. The main purpose of the minemax
normalization method is to normalize the data.
The minemax normalization is shown in equation
(1).

y¼x� averageðxÞ
maxðxÞ �min ðxÞ ð1Þ

where, x is the original value and y is the normal-
ized value.

3.4. Building deep learning models and
optimization of hyperparameters

Deep learning models such as CNN, LSTM, and
DNN and machine learning models such as logistic
regression, SGD, and XGBoost are used to classify
the data. Deep learning models' hyperparameter
values are optimized to get better results.

3.4.1. Convolutional Neural Network (CNN)
CNN is a type of feed-forward neural network

consisting of 20e30 layers. It can be applied to
extract data from the images by using various hid-
den layers [41]. The different layers in CNN are
convolution, relu, pooling, and fully connected
layers. The image is sent through a convolutional
layer first and later passed through activation
functions such as the sigmoid and relu. The for-
mulas for the sigmoid and the relu functions are
given in equations (2) and (3), respectively.

sðxÞ¼1= ð1þ e�xÞ ð2Þ

where, s(x) is the sigmoid function, which exists
between 0 and 1, and e is Euler's number.

Fig. 9. Comparison of training and validation accuracy of different deep learning models (a) LSTM (b) DNN (c) CNN1D (d) CNN3D for RMSPROP
optimizer for epoch 50.
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f ðxÞ¼max ð0;xÞ ð3Þ

where, x denotes the input. The function directly
returns the input value or the value 0, if the input is
0 or less.
Single-headed CNN: It is a sequential model. It

consists of two input layers and uses a convolutional
1D network with a relu activation function, one
pooling layer, and two dense layers. One of the
dense layers has a rectified linear unit activation
function, and another has a softmax activation
function for multi-label classification.
Multi-headed model: In the multi-headed model,

every head uses a kernel of a different size to read
input time steps. For instance, a three-headed CNN
can have 3, 5, and 11 kernel sizes to read the infor-
mation at three resolutions using the relu activation
function. A fully linked layer translates and

combines the three head interpretations in order to
make a prediction.

3.4.2. Long short-term memory (LSTM)
The recurrent neural network has a special type

called LSTM to determine long-duration de-
pendencies. It recalls previous events and discovers
patterns over time. LSTMs can be used for efficient
machine interpretation, feedback connections, and
language processing. LSTM consists of a cell to
recollect random time interval data and three gates
called input, output, and forget gates to control data
flow to and from the cell.

3.4.3. Deep neural network (DNN)
DNN is an important type of artificial neural

network. In between the input and output layers,
different layers will be present. DNNs are typically

Fig. 10. Comparison of training and validation accuracy of different deep learning models (a) LSTM (b) DNN (c) CNN1D (d) CNN3D for RMSPROP
optimizer for epoch 100.
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feed-forward networks. The data flow direction is
from the input to the output layer but not backward.
A one-way link with a forward direction is present
between various layers.

3.4.4. Logistic regression
Logistic regression is a type of supervised learning

technique. It can predict the target variable's prob-
ability and calculate the binary (yes/no) probabili-
ties of the events occurring.

3.4.5. Stochastic gradient descent classifier (SGD)
SGD classifier is a general neural network opti-

mization algorithm that minimizes the cost function.
It is used for the optimization of linear support
vector machines and logistic regression. This algo-
rithm can be used to optimize linear classifiers such
as logistic regression and linear support vector
machines. It uses a simple network to calculate the
gradient.

3.4.6. Extreme Gradient Boosting (XGBoost)
Extreme Gradient Boosting is a very effective and

powerful tree-based algorithm that applies the
gradient boosting framework. It includes parame-
ters for missing values, cross-validation, and regu-
larization, as well as a scikit-learn compatible API,
user-defined objective functions, and tree parame-
ters. It makes use of ensemble principles and is a
sequential technique. It provides better prediction
accuracy by integrating a group of weak learners.

Algorithm for generating optimal hyperparameter
values for Deep Learning (DL) techniques:

To obtain better accuracy, tunable parameters,
namely the optimizer and epoch values, have been
varied, and the results are tabulated. The proposed
method is detailed in Algorithm1. This novel algo-
rithm generates optimal hyperparameter values for
various deep learning models. Evaluation metrics
such as accuracy, precision, recall, and F1 score have
been used to examine the reliability of human ac-
tivity recognition models.

4. Performance evaluation and discussion

Various deep learning model evaluation metrics
such as accuracy, precision, recall, and F1 score are
used to examine the reliability of human activity
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recognition models. Accuracy is calculated as the
percentage of correctly classified points out of all the
test set points. In order to evaluate the classification
model and have a general understanding of it, ac-
curacy is used.
Precision: It is the ratio of true positives and the

sum of true positives and false positives as depicted
in equation (4)

Precision¼ TP
TPþ FP

ð4Þ

where, TP denotes true positives, and FP denotes
false positives.
Recall: It is defined as the ratio of true positives

and the sum of true positives and false negatives as
depicted in equation (5)

Recall¼ TP
TPþ FN

ð5Þ

where, TP denotes true positives, and FN stands for
false negatives.
F1-Score: F1-Score is the harmonic mean of pre-

cision and recall that provides the combined result
of both precision and recall together and its formula
is given in equation (6)

F1�measure ¼ 2*
Precision*Recall
PrecisionþRecall

ð6Þ
The outcomes of all the classifier models in

terms of precision, recall, and F1-score are shown in
Tables 1 and 2. It is evident that LSTM outperforms
other classifiers.

5. Experiments and results

Implementation is carried out using the Python
language, and experiments are performed on deep
learning models. These experiments are conducted
in a Jupyter notebook using the standard UCI-HAR
dataset. The dataset is analyzed using exploratory
data analysis.
Fig. 3 depicts the graph drawn to show the six ac-

tivities done by 36 participants, ranging in age from
23 to 58 years. The X-axis represents the total number
of participants, and the Y-axis represents the activity
sample count for each individual participant.
Fig. 4 depicts the number of samples for individ-

ual activities such as walking, jogging, walking up-
stairs, walking downstairs, sitting, and standing for
overall participants.
As shown in Fig. 5(a), as in the case of the LSTM

model, when the training epoch is set to 50, there is
a decrease in training loss and validation loss,
enhancing the accuracy of the model. The graph in

Fig. 5(b) displays the loss and accuracy of the DNN
model. Here we can observe that the validation loss
is increasing as a result of declining validation ac-
curacy. It is evident that the training loss is
declining, which results in an improvement in
training accuracy. Fig. 5(c) and (d) and show
CNN1D and CNN3D graphs. There is a steep in-
crease in training accuracy and a sharp fall in
training loss here until training epoch 30, after
which there is a slight variance in either metric.
From this, we can observe that the LSTM model
outperforms other models, considering the adam
optimizer with an accuracy of 96%. The adam opti-
mizer uses weighted momentum, faster conver-
gence, and individual learning rates for greater
efficiency.
As shown in Fig. 6(a), for the LSTM model, when

the training epoch was set to 100, there is a decrease
in training loss and validation loss, resulting in an
increase in model accuracy up to epoch 50.
Following that, it can be shown that both training
accuracy and validation accuracy remain un-
changed. The graph in Fig. 6(b) displays the accu-
racy and loss of the DNN model. Even if the data
validation loss is growing in this case, the accuracy
of the validation after epoch 20 remains unchanged.
After epoch 20 iterations, the training accuracy is
steady and the training loss is dropping. The
CNN1D and CNN3D graphs are shown in Fig. 6(c)
and (d). It can be seen that at training epoch 30,
there is a steep decrease in training loss and an in-
crease in training accuracy, followed by a period of
slight variation in training loss and accuracy. It leads
to the conclusion that the LSTM model outperforms
other models with an accuracy of 96%.
For the SGD optimizer and training epoch value

of 50, Fig. 7 compares the training accuracy and
validation accuracy of LSTM, DNN, CNN1D, and
CNN3D, respectively. Rather than selecting from
the entire dataset, the SGD optimizer randomly
chooses data in batches and in a generalized form.
As a result, it can be shown that training and vali-
dation accuracy have not improved much even
while the validation loss and training loss are
declining. The multi-headed CNN outperformed
the other models with 91% accuracy.
For the SGD optimizer and training epoch value

of 100, Fig. 8 compares the training accuracy and
validation accuracy of LSTM, DNN, CNN1D, and
CNN3D, respectively. SGD optimizer randomly se-
lects the data in batches and in a generalized form
rather than choosing the entire dataset. As a result,
it is noted that training and validation accuracy have
not significantly improved despite a decrease in
validation loss and training loss. Comparatively
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speaking, the LSTM model outperforms CNN1D
and DNN. CNN3D outperforms the LSTM model
with an accuracy rate of 91% at epoch 100.
For the RMSPROP optimizer and training epoch

values of 50 and 100, Figs. 9 and 10 compare the
training accuracy and validation accuracy of LSTM,
DNN, CNN1D, and CNN3D. RMSPROP is an
extension of the RPPROP optimizer. Large datasets
are ideally suited for RMSPROP, which also speeds
up the optimization process by reducing the num-
ber of function evaluations. Human activity predic-
tion is challenging due to variations in the attributes
of sensors such as accelerometers and gyroscopes.
The RMSPROP adapts to the changes in the pa-
rameters very quickly and requires less tuning. The
graph depicts that LSTM outperforms DNN,
CNN1D, and CNN3D with greater training
accuracy.
For the training epoch value of 50, Table 1 com-

pares deep learning models like LSTM, DNN, sin-
gle-headed CNN, and multi-headed CNN with
optimizers like ADAM, SGD, and RMSPROP. By
varying the optimizers and maintaining a constant
epoch value of 50 and a training test ratio of 80:20,
various performance metrics are evaluated and
tabulated for the deep learning models built. This
clearly shows that the LSTM model performs better
than other models. Since LSTM is based on recur-
rent networks, the data is divided into small batches

and given to a recurring model of the layers that
allows them to retain the information. It is also
capable of learning long-term dependencies in data.

Table 3. Comparison of DL models for individual activity with epoch 50
and ADAM optimizer.

Optimizers Human
Activity

Model Name Precision Recall F1-Score

Adam Walking LSTM 0.9 0.84 0.86
DNN 0.72 0.75 0.73
CNN1D 0.96 0.93 0.94
CNN3D 0.98 0.95 0.97

Jogging LSTM 0.99 0.98 0.99
DNN 0.98 0.97 0.98
CNN1D 0.87 0.88 0.87
CNN3D 0.93 0.95 0.97

Upstairs LSTM 1 0.99 0.99
DNN 1 1 1
CNN1D 0.85 1 0.91
CNN3D 0.9 0.99 0.94

Downstairs LSTM 0.98 0.99 0.99
DNN 0.99 1 1
CNN1D 0.75 0.85 0.8
CNN3D 0.84 0.82 0.83

Sitting LSTM 0.86 0.92 0.89
DNN 0.68 0.83 0.75
CNN1D 0.89 0.71 0.79
CNN3D 0.89 0.86 0.87

Standing LSTM 0.98 98 0.98
DNN 0.95 0.89 0.92
CNN1D 1 0.95 0.97
CNN3D 1 1 1

Table 4. Comparison of DL models for individual activity with training
epoch of 50 and SGD optimizer.

Optimizers Human
Activity

Model Name Precision Recall F1-Score

SGD Walking LSTM 0.55 0.19 0.28
DNN 0.55 0.12 0.2
CNN1D 0.64 0.77 0.7
CNN3D 0.99 0.98 0.98

Jogging LSTM 0.96 0.98 0.97
DNN 0.94 0.97 0.96
CNN1D 0.65 0.67 0.66
CNN3D 0.86 0.93 0.9

Upstairs LSTM 0.99 0.84 0.91
DNN 0.97 0.91 0.94
CNN1D 0.78 0.7 0.74
CNN3D 0.93 0.98 0.96

Downstairs LSTM 0.86 0.99 0.92
DNN 0.95 0.98 0.97
CNN1D 0.87 0.73 0.8
CNN3D 0.89 0.72 0.8

Sitting LSTM 0.55 0.33 0.41
DNN 0.46 0.29 0.36
CNN1D 0.81 0.87 0.84
CNN3D 0.81 0.9 0.85

Standing LSTM 0.78 0.97 0.86
DNN 0.75 0.95 0.84
CNN1D 1 0.95 0.97
CNN3D 1 0.95 0.97

Table 5. Comparison of DL models for individual activity with training
epoch of 50 and RMSPROP optimizer.

Optimizers Human
Activity

Model Name Precision Recall F1-Score

Rmsprop Walking LSTM 0.91 0.87 0.89
DNN 0.83 0.48 0.61
CNN1D 0.98 0.9 0.94
CNN3D 0.91 0.97 0.94

Jogging LSTM 0.99 0.99 0.99
DNN 0.98 0.98 0.98
CNN1D 0.86 0.92 0.89
CNN3D 0.9 0.88 0.89

Upstairs LSTM 1 0.99 0.99
DNN 1 1 1
CNN1D 0.84 0.99 0.91
CNN3D 0.94 0.97 0.95

Downstairs LSTM 0.98 0.99 0.98
DNN 0.99 1 0.99
CNN1D 0.88 0.67 0.76
CNN3D 0.84 0.88 0.86

Sitting LSTM 0.87 0.91 0.89
DNN 0.65 0.77 0.7
CNN1D 0.78 0.9 0.83
CNN3D 0.92 0.84 0.88

Standing LSTM 0.98 0.98 0.98
DNN 0.89 0.93 0.91
CNN1D 1 0.95 0.97
CNN3D 0.99 0.95 0.97

118 B.U. Patil et al. / Karbala International Journal of Modern Science 9 (2023) 106e121



Table 2 compares deep learning models such as
LSTM, DNN, single-headed CNN, and multi-
headed CNN with optimizers like ADAM, SGD, and
RMSPROP for the training epoch value of 100. The
table shows the evaluation of the models by varying
the optimizers and keeping a constant epoch value
of 100 and a training test ratio of 80:20. Performance
metrics such as precision, recall, f1-score, and ac-
curacy are measured and tabulated. For both
ADAM and RMSPROP, the LSTM model gives 96%
accuracy because both optimizers converge fast and
require less tuning of parameters.
Table 3 compares precision, recall, and F1-score

values for individual human activities such as
walking, jogging, walking upstairs, walking down-
stairs, sitting, and standing with different optimizers
to understand how DL models perform each activity.
Tables 3e5 depict the comparison of precision,

recall, and F1-score values with a train-to-test ratio of
80:20 for each human activity such as walking,
jogging, walking upstairs, walking downstairs,
sitting, and standing with different optimizers to
understand how DL models perform for each
different activity.
Table 6 shows the different ML models such as

logistic regression, XGBoost, and SGDClassifier re-
sults compared using precision, recall, F1-score, and
accuracy with a train-to-test ratio of 80:20.
From the results, it is observed that our proposed

algorithm with optimal hyperparameter values
gives better performance than the state-of-the-art
models. The model performs well on the UCI-HAR

benchmark dataset. The performance of the current
study is compared to the results of state-of-the-art
approaches. Table 7 provides an overview of recent
investigations.

6. Conclusion and future work

This method recognizes human activity by inte-
grating gyroscope and accelerometer sensors using
sensor-level fusion. Six different human activities
such as walking, jogging, walking upstairs, walking
downstairs, sitting, and standing are classified using
deep learning models, i.e. CNN, DNN, and LSTM.
Machine learning models such as logistic regres-
sion, XGBoost, and SGD classifier are also
compared. Optimal hyperparameter values for
different DL models have been investigated, and the
performances of these models are compared. LSTM
model has given good results for recognizing
human activity compared to other techniques. The
accuracy of CNN, DNN, and LSTM is 92%, 93%, and
96%, respectively.
Our future work will explore various ways to

identify more relevant sensors for activity recogni-
tion. We plan to incorporate different data fusion
techniques to further reduce computational
complexity. The set of activities can be extended by
including complex physical activities and a collec-
tion of better features. To improve recognition ac-
curacy, the combination of sensors and wearable
cameras for deep learning applications can be
analyzed individually.
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Table 6. Comparing results of different ML models.

Model Name Precision Recall F1-Score Accuracy

Logistic Regression 0.37 0.38 0.35 57%
XGBoost 0.88 0.77 0.80 86%
SGDClassifier 0.37 0.35 0.34 56%

Table 7. Comparing state-of-the-art methods.

State of the art approach sSensor Classified activities . Total no. of subjects Accuracy (%)

Patil et al. [32] Accelerometer Normal, crunch1,-
crunch2,MS, stroke

5 93.54

Linag et al. [42] Accelerometer Standing still, lying,
sitting, motorized trans-
portation, walking,
running, bicycling,
jumping

24 85

Zeng et al. [43] GPS ,walking,bicycling motor-
ized transportation

65 76

Martin et al. [44] Accelerometer g,Slowly walkin normally
walking, fast walking,
running, sitting standing
still

16 88

Kau and chen [28] Accelerometer Falling down 9 92
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