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Role of microorganisms in communication between soil and plants

Abstract

Microbial population in the rhizosphere establishes a number of important interactions with plants, whose
study is crucial in perspective of sustainable agricultural production. Studies on various plant crops have
revealed that, despite the complex microbial biodiversity of the soil, the bacterial microbiome is
characterised by multiple functionalities. A better understanding of the molecular mechanisms,
underlying the interactions between plants and the microbiome, could enable better development of
plants, related to the beneficial action of microorganisms. Therefore, this review aims to describe the
characteristics of the rhizosphere microbiome with the interactions that occur between soil and roots, as
well as the signals that influence bacterial activities, and the importance of molecular techniques for
analysing microbial activities.

Keywords
Plants interaction; Rhizosphere microorganisms; Exudates; Radical colonisation

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

Cover Page Footnote

The author would like to express his heartfelt gratitude to his colleagues at CREA Research Centre for
Vegetable and Ornamental Crops in Pescia and to all other sources for their cooperation and guidance in
writing this article.

This review article is available in Karbala International Journal of Modern Science: https://kijoms.uokerbala.edu.ig/
home/vol9/iss2/1


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://kijoms.uokerbala.edu.iq/home/vol9/iss2/1
https://kijoms.uokerbala.edu.iq/home/vol9/iss2/1

REVIEW ARTICLE

Role of Microorganisms in Communication Between
Soil and Plants

Domenico Prisa

CREA Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics, Via dei Fiori 8, 51012,
Pescia, PT, Italy

Abstract

Microbial population in the rhizosphere establishes a number of important interactions with plants, whose study is
crucial in perspective of sustainable agricultural production. Studies on various plant crops have revealed that, despite
the complex microbial biodiversity of the soil, the bacterial microbiome is characterised by multiple functionalities. A
better understanding of the molecular mechanisms, underlying the interactions between plants and the microbiome,
could enable better development of plants, related to the beneficial action of microorganisms. Therefore, this review
aims to describe the characteristics of the rhizosphere microbiome with the interactions that occur between soil and
roots, as well as the signals that influence bacterial activities, and the importance of molecular techniques for analysing

microbial activities.
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1. Introduction

he rhizosphere is the part of the soil sur-

rounding the root and is influenced by the root
itself. The plant releases carbon-based exudates
that influence the surrounding microbial commu-
nity [1]. These can be found on the surface of the
roots or growing in the surrounding areas. Novel
analysis methodologies enable the study of various
microbial communities independent of their culti-
vation. This greatly extends the possibility of
studying the interactions in the rhizosphere be-
tween plants and microorganisms [2,3]. As soon as
seeds germinate and rootlets begin to grow, the
release of organic material influences the activity of
microbial populations around the root, generating
the so-called rhizospheric effect [4]. This can
depend both on the development and extension of
the roots and the type of soil, which can interfere
with the speed and diffusion of the substances in
the exudates. There are billions of bacteria
belonging to thousands of different species in the
soil [5]. This biodiversity is often related to the

plant species to which the root belongs and differs
substantially from that of the surrounding soil not
affected by the presence of the root. There are
functional associations with certain bacterial
groups that have been investigated the most and
described in this review [6,7]. Among the various
examples, the plant growth-promoting rhizobac-
teria are certainly of great interest, particularly the
genus Burkholderia, which is capable of stimulating
plant growth, acting with biocontrol activities on
plant pathogens, and contributing to the decon-
tamination of soil pollutants [8]. The activity of
Burkholderia from the studies carried out seems to
be influenced by soil type, plant species and plant
development stage, aspects also found in other
bacteria and fungi colonising the rhizosphere [9]. In
this review, we describe the possible interactions
that take place between plants and soil microor-
ganisms, emphasising their benefits in plant culti-
vation and defence, and improvements in fertility.
Interactions between microorganisms and root
systems is relevant in order to make the most of the
application of microbial strains in agriculture.
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2. Root activity and the effect of exudates on
microbial activity

The ability of roots to influence the characteristics
of the surrounding soil is extremely variable, partly
due to differences in morphology, physiology and
longevity [10,11]. The characteristics of the rhizo-
spheric soil are modified by the release of exudates,
which may consist of cells, mucilage or components
of various kinds. Nutritional and other environ-
mental factors such as temperature, light, water re-
sources and the presence of toxic contaminants can
be relevant on the quantity and quality of rhizode-
positions [12]. Root exudates include mucilage
composed mainly of polysaccharides, generally
permeated by microorganisms or organic and
inorganic soil particles [13]. The main component of
root exudates is sugars, organic acids, amino acids
and rhizodeposits may vary depending on the plant
species, plant age, nutritional status and environ-
mental conditions. Part of the released compounds
can be reabsorbed by the roots (Table 1). The rhi-
zodepositions represent an important source of en-
ergy for the microorganisms in the rhizosphere,
which can vary depending on the presence of the
different exudates [14]. Microbial species may differ
depending on the root tract and influence plant
activity by favouring water and nutrient supply
processes, increasing resistance to stress situations
and acting as mediators in exchanges with micro-
organisms [15]. Usually, the presence of mucilage
improves the structure of the rhizospheric soil,
leading to situations that favour root growth,
particularly by reducing the friction between the
root apex and soil particles. In practice, an envi-
ronment is created between soil and root where the
uptake of nutrients, even difficult ones such as
phosphorus and iron, is easier. Roots are not the
only source of enzymes in the rhizospheric envi-
ronment; they can also originate from microorgan-
isms colonising areas around the root [16,17].
Exudates can play specific roles in the acquisition of

Table 1. Rhizodepositions released by roots in the soil [24].

Rhizodeposition Exudate type Exudate description
Organic root Enzymes Amylase, invertase,
exudates Fatty acids peroxidase
Sterols Linoleic, oleic, stearic
Phenolic Campesterol, cholesterol
compounds Flavonols, flavones
Sugars Glucose, fructose

all essential amino acids
H', K, NO3;, OH"

Amino acids
Inorganic root
exudates
Mucilages
Dead cells

nutrients and, in particular, in the communication
between root cells and microorganisms in the
rhizosphere. Roots can modify the conditions of the
rhizosphere, influencing the availability of certain
nutrients, and can also release metal-binding com-
pounds, leading to increased availability [18]. Much
research shows how the action of a substance
released by roots is influenced by a number of sit-
uations, including microbial activity, the site of
release and chemical alterations. Therefore, studies
concerning the relationships between plants and
microorganisms must consider all these aspects and
study the mechanisms that mediate the passage
from the root cells to the external medium [19].
Different classes of compounds that are released
from roots can cross membranes in different ways;
they are influenced by external and internal factors
and the chemical characteristics of the compound
[20—22]. While substances, such as amino acids and
organic acids, are released from the roots by passive
processes, the release of high molecular weight
compounds such as polysaccharides, mucilages and
proteins is influenced by exocytosis mechanisms,
with the formation of membrane vesicles that allow
the release of the contents into the soil [23].

3. Influence of nutrient availability on the
release of root exudates

In the soil, plants must resist hostile factors of
various biological, chemical and mechanical natures
that can affect their life and growth [25]. The plants,
particularly the roots, develop forms of adaptation
that are also reflected in changes in the conditions of
the rhizosphere, which in this way create favourable
environments for plant growth. Of particular
importance are, above all, nutritional and environ-
mental factors and the presence of toxic contami-
nants in the soil [26]. Mineral elements that can
influence plant growth include iron and phospho-
rous. Plants respond differently to the limited
availability of iron. Root responses are often local-
ised in the sub-apical zones and associated with
morphological changes [27]. An acidic soil contrib-
utes to increased iron solubility and, at the same
time, contributes to the release of exudates by the
roots that can complex it. These are strategies of
certain plants, such as dicotyledons and non-
gramineous monocotyledons, that are able to can
increase the availability of iron in the soil through
these mechanisms. Other modes of iron uptake are
related to the release into the rhizosphere of
considerable quantities of amino acids (phytosider-
ophores), characterised by their ability to complex
trivalent iron [28]. This release varies from species to
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species, and studies show that differences in the
phytosiderophores released and in the manner and
amount of exudation exist. There is a close rela-
tionship between the number of phytosiderophores
released and the ability to tolerate nutritional stress
[29,30]. It has also been noted that nutritional
stresses related to other elements such as copper
can increase the release of phytosiderophores.
Another element that can severely limit plant
growth is the availability of phosphorous. It has also
been observed that its deficiency can significantly
alter the quantity and composition of root exudates
so that the uptake of difficult-to-soluble forms of
phosphorous increases [31]. There are differences in
phosphorous deficiency between plants, involving
modes, production and release of carboxylic acids
and extent of acidification of the rhizosphere [32]. In
Aloe, for example, these modes occur simulta-
neously, while in some vegetables, only acidity in-
creases, and in cereals neither is observed. In
several plant species, phosphorus deficiency also
leads to the release of phenolic compounds from the
roots, which play a role as signal molecules in the
germination of and the growth of mycorrhiza
hyphae [33]. During phosphorous deficiency, the
rhizospheric soil can become enriched in enzymatic
activities, which can contribute to increased uptake
of this mineral element by the roots (Fig. 1).

The presence of toxic metals in the soil leads to
increased production of exudates by the roots over a
period ranging from a few minutes to a few hours

Fig. 1. Stimulating effects of rhizosphere bacteria (EM), Bacillus spp.
and Pseudomonas spp., on Aloe arborescens roots under phosphorus
deficient conditions. Increase in root volume and root hairs following
microbial treatment (EM), compared to untreated control (CTRL).

[34]. The release may vary depending on the type or
portion of the root; in some species, the release oc-
curs in the immediate vicinity of the root portion,
maintaining a high capacity to detoxify the areas
most sensitive to toxic metals [35].

4. Signs in the soil influencing root growth

Activities in the rhizosphere with regard to the
concentration of nutrients and humic molecules can
alter the development of the root system. Indeed, it
is well known that root systems are highly plastic
structures capable of responding to signals from
the surrounding environment [36]. Nutrients of
different types act as signals that can be perceived
by the roots and induce molecular mechanisms that
influence cell division and differentiation processes,
thus having a considerable impact on the structure
of the root system (Fig. 2). In particular, changes in
nutrient concentrations can modulate processes
such as root hair formation, main root growth and
lateral root formation. Root responses can be
mediated by the intervention of phytoregulators
[37]. Recent research reveals the existence of indi-
vidual nutrient-dependent signals whose function is
to interpret changes in nutrient concentrations to
modify root development. Other environmental
signals can induce changes in root morphology, in
particular, humic substances can play a key role [38].
Indeed, it has been shown that humic substances
influence plant metabolism through a series of
physiological processes, which can increase the
number of nutrients absorbed by plants [39]. Small
humic particles have been shown to increase lateral
root proliferation, with a significant increase in root
hair density. This ensures greater soil exploration
and increased nutrient uptake. The characterisation
of root exudates and the ability of roots to change
soil structure are the basis of current research [40].
All of these studies can certainly lead to the

o +—— 100t hair

mucigel
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Fig. 2. Diagram of the various structures that make up the root and root
hairs.
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improvement of crops and the development of
agronomic techniques that enable greater protection
of the environment as well as of the available re-
sources [41].

5. Beneficial influences of microorganisms in
the soil

Various processes take place in the rhizosphere,
related to the interactions that exist between plants
and microorganisms. Among the most important
situations, symbioses for nutrient uptake, stimula-
tion in phytohormone production and biocontrol
activity are of particular interest [42]. Root coloni-
sation is the phenomenon whereby the root surface
is colonised by microorganisms in the soil. There-
fore, a good root growth-promoting microorganism,
is first and foremost a good root coloniser. The
mechanisms that enable efficient root colonisation
bring together all those microorganisms that estab-
lish a close relationship with the roots, both bene-
ficial and pathogenic [43]. Molecular biology studies
have identified genes that are correlated to the
function of moving and degrading soil matter. In
particular, studies have shown that the presence of
flagella, pili and fimbriae and chemotaxis are deci-
sive for colonisation [44]. For example, bacteria of
the genus Pseudomonas can pick up signals related
to the presence of root exudates and transduce it
within the cell, in order to create a certain metabolic
pathway. Site-specific recombinases can also play
an important role in radical colonisation, associated
with DNA rear-rangements, which bring about
morphological changes on the cell surface and
appear to be useful in responding to environmental
changes by favouring adaptation to new ecological
niches. However, the colonisation process is very
complex and requires the activity of a large number
of genes linked to different metabolic and physio-
logical functions, especially related to surface in-
teractions and motility [45]. In recent vyears,
increasing interest has been focused on the possible
biological control of plant diseases. Biocontrol
studies have led to more in-depth investigations
both of the organism to be controlled and the
network of interactions within the microflora on the
plant surface, particularly on the root surface [46].
The best-known strains used in biocontrol normally
belong to the genera Pseudomonas, Bacillus and
Streptomyces, which have demonstrated disease
control on various horticultural and ornamental
plants, either through the production of antibiotics
or through competition for space and resources in
the rhizosphere. In addition to antibiotic produc-
tion, it must be remembered that key elements for

the success of a biocontrol strategy are also the
survival and the ability to compete for resources in
the rhizospheric environment. Interesting studies
on Agrobacterium have also shown how non-patho-
genic strains control the virulence of pathogenic
strains without killing them, thus not triggering
resistance mechanisms [47]. Microorganisms in the
rhizosphere also play a key role in a number of
biogeochemical cycles, in particular by enabling the
solubilisation of both phosphate and insoluble
organic compounds such as lignin and cellulose.
Microorganisms that solubilise phosphate are
abundant and ubiquitous in soils. They can be
found especially in the rhizospheric zone where
they provide phosphate that can be assimilated by
the plant [48]. Phosphate-solubilising bacteria carry
out this activity by acidifying the surrounding pH
through the secretion of organic acids. Plants benefit
from association with phosphate-solubilising micro-
organisms, as these provide access to phosphorous
sources otherwise not available to them [49]. Studies
of bulbous vegetable species inoculated with Bacillus
strains solubilise phosphate significantly more than
non-inoculated ones (Fig. 3). Research involving
rhizospheric microorganisms has also revealed their
importance in the degradation of insoluble com-
pounds derived from plant tissue, such as lignin and
cellulose [50]. The activity of cellulosol organisms
then influences the activity of other microorganisms
that utilise the by-products of degradation as a
source of energy and carbon, increasing soil fertility
and stimulating microbial activity [51].

6. Methods for analysing soil microbial
variability

The study of microbial variability in the rhizo-
sphere can provide a better understanding of the
interactions between microorganisms and roots. In
fact, in the rhizosphere, because of root exudates,
there is an abundance of metabolic processes that
regulate soil fertility [52]. The identification of mi-
croorganisms obtained by traditional cultivation
methods can only give a partial description of rhi-
zospheric microbial diversity. In fact, in the soil and
rhizosphere, only a small proportion of the micro-
organisms can be cultivated in the laboratory, while
the majority are viable but cannot be cultivated. It
has been hypothesised that cellular communication
mechanisms, mediated by small molecules, may be
responsible for the unculturability of some micro-
organisms [53]. In particular, the mechanism of
quoring sensins seems to be activated only at a
certain population density; conversely, it also ap-
pears that when microbial populations reach a
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Fig. 3. Increase in root volume, root hairs and bulb size following microbial treatment with Bacillus strains (TREATED), compared to untreated

control (CTRL), in various types of white, red and yellow onions.

certain size, this chemical signal is switched off,
ceasing growth. A modern approach to the func-
tional characterisation of complex microbial com-
munities is the characterisation of their catabolic
profile [54]. Typically, this type of characterisation is
carried out by determining the substrate utilisation
capacity of the microbial community. It can also be
carried out by analysing lipid chemotaxonomic
markers such as phospholipids or methyl esters of
total fatty acids. These methods can reveal relevant
properties of microbial communities, such as the
quantity and quality of the biomass. They also make
it possible to assess the viability of the biomass, as
this correlates with the state of degradation of fatty
acids, as well as the structure of the microbial
community and its nutritional status [55]. It is
possible to assess the complexity of the bacterial
community by establishing the number of equiva-
lents in the metagenome, through kinetic measures
of reassociation of the total DNA extracted from the
soil. In order to describe in detail the microbial di-
versity in the soil by including non-culturable pop-
ulations in the analysis, the most comprehensive
approach is to sequence the 16S rRNA gene of the
microorganisms inhabiting the system and compare
the sequences obtained with those deposited in
databases [56]. Modern genomic sequencing

techniques have enabled the introduction of new
approaches for characterising complex commu-
nities. Metagenome sequencing, for example, allows
the identification of entire genomes present in a
community, generating a wealth of information that
can be used to understand the functioning of the
entire system. Recent approaches also allow the
diversity of the microbial community to be corre-
lated with certain functions. The construction of
chromosome libraries has enabled the identification
of different metabolic functions associated with
previously unknown genes. One very interesting
strategy is based on marking the nucleic acids of
microorganisms that correspond to a specific
growth substrate, for example, an environmental
stimulus, a specific exudate, or physical factors such
as water, heat and salt stresses [57].

7. Microbial populations and environment

Molecular methodologies enable the analysis of
microbiology associated with plant roots, high-
lighting the sensitivity to different environmental
factors and the differences in the rhizospheric mi-
crobial community compared to that of root-free
soil. The microbial populations exhibit a different
level of complexity depending on the age of the
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plant [58]. Around young Aloe roots, which can be
associated with intense exudation and, thus, a rela-
tive abundance of nutrients, the microbial popula-
tion has a relatively low degree of complexity with
few genotypes. In contrast, a high diversity is
observed in adult Aloe plants for which exudation is
reduced. This is, probably, due to the more variable
nutrient availability. In roots close to senescence,
the detachment of localised cells in the soil and the
presence of nutrient heterogeneity allow for a
greater number of microbial types to thrive [59].
Under these conditions, the microbial community
becomes more complex and more similar to that
detectable in root-free soil. Another factor influ-
encing the structure and diversity of root microor-
ganisms is the soil type, whose chemical and
structural characteristics are crucial in determining
the selection of the microbial community [60]. At the
rhizospheric level, the effect produced by the soil
type on the microbial community is influenced by
exudates, which determine greater selection than
the soil type. The molecular approach was so sen-
sitive that it was possible to distinguish between
populations associated with different cultivars of
the same species, an effect probably influenced by
the different exudates produced by the different
plants [61].

8. Conclusions

The interaction between plant roots and soil
microbial activity influences their metabolism,
resistance to biotic and abiotic stresses and agri-
cultural production. Numerous studies have
shown how the soil microbiota represent the main
source of inoculum for plant-associated bacterial
communities and, at the same time, how the
physico-chemical characteristics of the soil affects
the physiological responses of plants, microor-
ganisms and their interactions. These consider-
ations are described in studies that exhibit how the
microbiome of plants, in different soils, differs in
both quality and quantity. Soil tillage techniques,
as well as the addition of organic and mineral
fertilisers, can influence the interactions between
plants and microorganisms. Plants of the same
Opuntia variety grown conventionally have a
different microbiome to plants grown in environ-
ments subject to more conservative cultivation
techniques. Further studies have shown how
plants of different species or genotypes of the same
plant species recruit distinct microbial commu-
nities. Therefore, scientific studies are aimed at
finding quick and inexpensive tools to help re-
searchers monitor soil microorganisms. Indeed,

the effects of microorganisms on plants are
generally influenced by many factors such as
temperature, soil type, the presence of indigenous
microorganisms and the agricultural practices
used. A better understanding of exchanges in the
rhizosphere and microbial activities can certainly
support those who wish to apply these cultivation
techniques in a sustainable farming approach. The
application of microorganisms in agriculture today
plays a key role in both improving crop quality and
reducing the use of synthetic fertilisers and plant
protection products. A better understanding of
how the interactions between roots and micro-or-
ganisms take place is relevant, especially in order
to be able to make better use of them in cultivation.
This review has highlighted the exchanges be-
tween plants and roots in the soil and their bene-
fits, taking into account the difficulties that are
present in the study of the ever rapidly changing
underground world.
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