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REVIEW ARTICLE

Mycorrhizal Symbioses and Plant Interactions

Domenico Prisa

CREA Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics, Via dei Fiori 8, 51012,
Pescia, PT, Italy

Abstract

The growing interest in mycorrhizal fungi in agriculture is related to their symbiotic relationships with cultivated
plants. Thanks to functional genomics approaches, mycorrhizae and symbioses with host plants have emerged for their
features. Besides improving nutritional supply, plantefungal interactions increase plants' tolerance to abiotic stresses
such as drought, salinity and cold, as well as their resistance to diseases. Recent studies have investigated the in-
teractions between plants and mycorrhizae, however the mechanisms often remain unclear. Indeed, plants in the field
are affected by various stresses and results often appear contradictory. This review is aimed at presenting the most
relevant studies in this field in order to highlight the possible benefits of mycorrhizal interactions and their application
in agriculture.

Keywords: Plants interaction, Symbiotic microorganisms, Microbial biodiversity, Rhizosphere

1. Introduction

T owards the end of the 19th century, symbiosis
was understood as a long-lasting association

established by different species [1]. Symbiosis en-
compasses a broad spectrum of relationships
involving benefits for both partners, antagonistic
relationships and relationships from which one or-
ganism benefits [2,3]. The type of association often
depends on the type of environment and the devel-
opmental stage of the partners. The basis of symbi-
osis is undoubtedly the possibility of an organism
acquiring new metabolic capabilities from the rela-
tionship established with its new partner. Symbioses
represent a solid evolutionary and innovative sig-
nificance in the development of new organs, tissues
and cells [4]. In the interaction that can take place
between nitrogen-fixing microorganisms and legu-
minous plants, a series of events occur that ensure
the relationship between the two organisms: the
presence of signal molecules, a signal uptake system,
the activation of transcription factors and target
genes [5]. Plants has an underdeveloped root system,
which makes arbuscular mycorrhizae a crucial factor
in plant evolution and territory conquest [6]. The
ability of symbiont micro-organisms to enhance the

mineral uptake of plants, especially in nutrient-poor
environments, certainly favoured symbiotic re-
lationships [7]. Unlike arbuscular mycorrhizae,
ectomycorrhizae seem to have appeared much later.
These fungi and their symbiotic relationships have
adapted to environments rich in organic matter, so it
can be outlined that the type of nutrient exchange
certainly depends on the type of mycorrhiza and
reflects the different ecological specialisations of
these associations [8]. Mycorrhizae are not obligatory
relationships with plants, as the latter can also grow
without the fungus, especially in nutrient- and
water-rich soils, such as those fertilised by agricul-
ture. Nervetheless, the mycorrhizal arbuscules can
develop symbiotic relationships with their host
plants that determine their dependence. Mycor-
rhizae play a crucial role in the establishment and
stability of plant communities [9e11]. The role of
mycorrhizal symbiosis in plant communities and
ecosystems has received more attention in recent
research. In fact, it has become increasingly
important to study the extraradical mycelial phase of
the symbiosis and to use realistic substrates in
answering pertinent ecological questions [12,13].
Many authors have highlighted the multifunctional
nature of mycorrhizal effects [14,15], including
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interactions with bacteria [16], weathering of min-
erals [17e19], carbon cycling [20], effects on plant
communities [21], tripartite syntheses with myco-
heterotrophs [22,23], and mediation of plant re-
sponses to stress [24]. Through symbiosis, the plant
improves its mineral nutrition, having a positive ef-
fect on its growth, in exchange for carbon com-
pounds that are given to the fungus [25,26]. The
success of mycorrhizal fungi, in time and space, is
mainly related to the nutritional benefits they confer
on their host plants: through the extraradical myce-
lium they absorb phosphate and other macronutri-
ents, as well as trace elements and water from the
soil, and release them to the plant [27]. Specifically,
nutrients are exchanged through the symbiotic
interface between the plant and the fungus, which is
created within the roots [25,27e30]. Moreover, using
the symbiosis, the plant becomes more resistant to
biotic stresses [31] and increases tolerance to abiotic
stresses, such as lack of water or the presence of
pollutants [28,29]. In recent years, it has also been
highlighted that the effects of symbiosis on plant
response may be different and may be related to the
genotypes of the two symbiotic organisms, environ-
mental conditions as well as the availability of re-
sources [32].
The aim of this review is to highlight the mecha-

nisms and effects that underlie the symbiosis be-
tween plants and mycorrhizae, in order to gain a
better understanding of these fundamental re-
lationships in plant life and for soil biodiversity and
fertility. There is still little understanding of the
detailed functioning and regulation of these
mycorrhizosphere processes, but recent progress
has been reviewed, as well as the potential benefits
of an improved understanding of mycorrhizosphere
interactions.

2. The various mycorrhizal symbioses

Generally, mycorrhizal symbioses can occur for
several reasons: anatomical characteristics, the type
of nutrients exchanged, and the taxonomic position
of the organisms involved [33]. In order to deter-
mine the type of mycorrhizal symbiosis, it is
generally observed how the symbiont fungus affects
the host plant cells. By contrast, ectomycorrhizal
fungi remain outside plant cells, while endomycor-
rhizal fungi colonize root cells. In the ectomycor-
rhizal symbiosis, the fungus produces a layer of
hyphae called mycoclena around the root, from
which organized hyphae branch off to explore the
soil and transport water and nutrients. At the same
time, a hyphal network develops on the root, which
surrounds the plant cells without penetrating them

(Hartig's network) [34,35]. A similar process occurs
in endomycorrhiza, where extraradical hyphae
explore the soil and absorb nutrients, however the
process is not comparable to ectomycorrhiza [36].
Arbuscular mycorrhizae take their name from the
arbuscule, a structure generated by branching the
hypha within cortical cells. There are also other
types of symbiosis, in which fungi generate hyphal
galls, as in the case in orchids and ericoid mycor-
rhizae (Table 1) [37]. Ectoendomycorrhizae present
characters intermediate between ectomycorrhizae
and endomycorrhizae and are specialized in a
limited number of plant species, on which they
generally develop a mycoclena or Hartig reticulum
associated with the root penetration of the fungus
[38,39]. Ectomycorrhizae are found in deciduous and
coniferous woodland environments in temperate
and cold climates. The soil of temperate forests
generally has a thick layer of organic material from
leaf litter, rich in compounds that are difficult to
degrade [40]. In these soils, nitrogen is in organic
form, easily absorbed by ectomycorrhizal fungi and
transferred to the host plant. In contrast, arbuscular
mycorrhizae are present in temperate and warm
climates. In these areas, microbial activity quickly
degrades organic matter, and phosphorous is the
limiting element for plant growth [41,42]. Therefore,
arbuscular mycorrhizal fungi mainly specialize in
the transfer of phosphates in inorganic form. Three
different forms of mycorrhiza can be identified in
the Ericaceae. These plants are characterized by
having excellent roots, and generally, the epidermis
is the cell layer colonized by the fungi. Erycoid
mycorrhizae are mainly found in tundra and
heathland environments both in Mediterranean and
cold regions. In heaths strongly characterized by
acidic soils, mineralization processes are mainly
slowed down, and the availability of heavy metals
can be high [43]. Under these conditions, the plants'
resistance is significantly increased by their associ-
ation with symbiotic fungi, which enable the
breakdown of complex molecules and transfer of
nutrients in organic form to the plants [44,45]. Plants
in the soil exhibit mycorrhiza consistently

Table 1. List of certain ectomycorrhizal fungi [37].

Ectomycorrhizal symbionts Family

Suillus luteus (L.) Roussel Suillaceae
Suillus granulatus (L.) Roussel Suillaceae
Boletus edulis Bull. Boletaceae
Amanita muscaria (L.) Lam. Amanitaceae
Clitopilus prunulus (Scop.) P. Kumm. Entolomataceae
Lactarius delicious (L.) Gray Russuluceae
Craterellus lutescens (Pers.) Fr. Cantharellaceae
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regardless of the ecological area in which they grow,
whether they are epiphytes or terrestrials [46]. Or-
chids are characterized by a complex life cycle.
Plants in the heterotrophic phase cannot photosyn-
thesize since photosynthetic pigments are absent
and rely on mycorrhizal fungi for carbon acquisi-
tion. For this reason, mycorrhizae represent a stan-
dard and, in many cases, a fundamental element in
the life of terrestrial species. Their first appearance
coincided with the evolution of host plants [47,48].
In addition to mycorrhizal fungi's crucial nutritional
role, they defend the host plant from numerous
abiotic and biotic stresses [49].

3. Determining mechanisms in biological
biodiversity

Mycorrhizal biodiversity at the root level closely
reflects the specificity of the particular funguseplant
association [50]. In the different mycorrhizal types,
very different situations are observed regarding the
diversity of fungal symbionts. In ectomycorrhizae, an
impressive richness of fungal symbionts species is
observed, requiring the host plant to complete its life
cycle and produce a fruiting body [51,52]. Measuring
the number of fruiting bodies produced by each
species within the plant community has long been
used to assess the diversity and relative abundance of
different ectomycorrhizal species. The first study on
symbionts showed a massive discrepancy in the
production of fruiting bodies, as species frequently
found as symbionts produced significantly few
fruiting bodies [53,54]. In contrast, other species
found as fruiting bodies were rarely associated with
root apices [55]. Studies have thus shown that a small
number of ectomycorrhizal fungal species colonize
up to 70% of root apices, while many species appear
more rarely [56]. The composition of these fungal
communities varies depending on numerous biotic
and abiotic factors [57]. The plant benefits obtained
from symbioses with ectomycorrhizal fungi are
attributable to access to otherwise inaccessible nu-
trients [58,59]. They produce a wide range of extra-
cellular enzymes capable of decomposing complex
organic molecules. The fungus can recover nitrogen
and phosphorous in an organic form that can be
partly given to the plant in exchange for sugars [60].
Since each fungus strain produces its spectrum of
enzymes with different biochemical characteristics,
the advantage of associating with a variety of fungal
symbionts is quite evident for a plant growing in
nutrient-poor ecosystems rich in organic compounds
of a varied and complex nature [61e63]. Compared to
ectomycorrhizae,where fungal species are numerous
and belong to different taxa, arbuscular mycorrhizae

have around a hundred species of symbionts. Several
recent studies have demonstrated that plants and
arbuscular mycorrhizae’ biodiversity is closely
related [64]. Microcosm studies have shown that the
species composition of the plant community corre-
lates with the type of fungi present. The plants most
favoured by establishing an affluent fungal popula-
tion depend on mycorrhiza for mineral nutrition and
growth (Fig. 1) [65]. The increase indiversity observed
in plant communities following the increase in fungal
species primarily reflects an increased presence of
these mycorrhiza-dependent species. Concerning
the diversity of fungal symbionts, very different
conclusions have been reached by identifying
mycelia isolated from mycorrhized roots or by mo-
lecular analysis [66]. Regarding thediversity of fungal
symbionts, very different conclusions have been
reached by identifying mycelia isolated from
mycorrhized roots or by molecular analysis [67]. In
the heterotrophic phase of the life cycle, the plant
acquires organic carbon compounds by exploiting its
symbionts' strong degradative ability to degrade
organic matter in the environment [68]. These
methodshavebeenused to identify themechanismof
acquiring organic carbon compounds. Inmycorrhizal
symbiosis, filamentous structures are composed of
symbiont fungi. On the one hand, they interact with
plant roots and explore the soil extensively, even over
considerable distances. This unique cellular organi-
zation makes mycorrhizal symbiosis a fascinating
phenomenon [69]. Alternatively, in this exploration
phase in the soil, fungal hyphae can make contact
with the roots of other potential hosts, forming hy-
phal connections between the roots of distinct plant
individuals [70]. Depending on the specificity of the
plant-fungus interaction, these hyphal connections
may involve individuals of the same or different
species. Different types of mycorrhizal fungi trans-
port different nutrients: arbuscularmycorrhizal fungi
transport mainly phosphorous and inorganic nitro-
gen. As opposed to this, ectomycorrhizal fungi
transfer organic carbon compounds [30,71]. Studies
concerning these interconnections have revealed

Fig. 1. Improving plant nutrition through mycorrhizal symbioses can
increase flowering in Kalanchoe blossfeldiana. Boka2 (TREATED) vs
CTRL (CONTROL).
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some consequences of the distribution of organic
carbon resources [72], for example, in transferring
sugars between photosynthetic adult plants and
young seedlings, which would otherwise die. In
Crocus sativus plants, the different types of mycor-
rhizae (ectomycorrhizae and endomycorrhizae) have
a different effect on the vegetative and root devel-
opment of the plants (Fig. 2). Most heterotrophic
plants have evolved this sophisticated exchange
mechanism through the fungi's network of hyphal
interconnections to obtain the needed sugars.
Moreover, several species have evolved a similar
mechanism, indicating evolutionary convergence
[73].

4. The different interactions between plant
and symbiont fungus

Despite the genetic and functional multiplicity,
there is a unifying factor in that the host plant must
accommodate the fungus in the root, giving rise to
micromorphogenesis events that can only be
appreciated microscopically. It can be observed that
the modification of the root is the result of coordi-
nated colonization processes.

1) development of the fungus in the rhizosphere
and the exchange of signals with the plant;

2) contact with the root surface and the develop-
ment of adhesion structures (Fig. 3)

3) development of fungal structures associated
with the root surface and intraradical.

The mycorrhizal symbiosis phase represents a
stage in a very complex life cycle comprising.

i) a saprotrophic phase where mycelia origi-
nating from spores of the sexual origin or
vegetative propagules grow even in the
absence of the host plant and proliferate in the
soil;

ii) a symbiotic association phase;

iii) a reproductive phase culminating in the pro-
duction of an ascocarp or basidiocarp.

In the molecular interaction between the two
partners, the fungus contacts the root surface, and
the hyphae increase in diameter and branch out,
cleaving the median lamella between the epidermal
cells and insinuating themselves, forming the first
elements of the Hartig reticulum [74]. As a result of
this morphological organization, functions are
compartmentalized: extraradical hyphae function as
nutrient uptake structures; the mantle serves as a
reserve structure for nutrients; the Hartig reticulum
serves as a site for exchange between both hosts due
to its increased contact surface. In some fungal ge-
notypes, defence reactions can also occur, with an
accumulation of callose. It is clear, therefore, that
there are essential processes that change the
morphology of the root and the shape of the
epidermal cells in the type of growth regulated by
genes and signal exchanges in the rhizosphere [75].
The genetic determinants that control the process of
mycorrhizal symbiosis in plants are beginning to be
known through the study of mutants, which have
enabled the identification of a good number of
genes that perform similar functions in different
plants have highly conserved sequences. In con-
trolling the colonization process, the secondary
metabolism of host plants may be of great impor-
tance [76]. It has long been known that flavonoids
released from roots can enhance the growth process
of hyphae from germinated spores, but the role of
these compounds is still unclear. Recently, however,
it has been shown that the release of metabolites
into the soil stimulates hyphal branching, simulta-
neously the respiratory process, and other related
oxidative metabolisms [77].

5. Molecular mechanisms determining the
establishment of symbioses

Knowledge of the molecular mechanisms that
enable the establishment of symbioses has leapt
forward thanks to the development of molecular
biology technologies [78]. Through them, it has been
possible to identify genes of interest, analyze their

Fig. 2. Effect of different types of mycorrhiza Laccaria bicolor (LB)
ectomycorrhiza and Glomus deserticola (GD) endomycorrhiza, on root
and vegetative growth of Crocus sativus.

Fig. 3. Process of colonisation of the root by mycorrhizae with
description of their structures.
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functions and assess gene expression under
different environmental conditions [79]. Various
scientific tests have shown that mycorrhized plants
grow better than non-mycorrhized ones [30]. This is
generally related to the improved uptake of nutri-
ents mediated by the symbiont fungi, which is
particularly important for poorly mobile ions such
as phosphate and ammonium [80]. These ions are
known to be growth-limiting for plants, as they
become deficient in the rhizosphere, where a
depletion zone forms, following uptake by the root
hairs [81]. The hyphae of the symbiont fungi can
efficiently counterbalance cuttings depletion area, as
nutrients through the fungal hyphae pass to the root
cells acting as sinks faster than they diffuse into the
soil. This faster translocation activity explains the
increased uptake rate of mycorrhized roots [82]. The
improved vegetative development of mycorrhized
plants is primarily due to the improved availability
of phosphorus (Fig. 4). The symbiont fungi can take
up the free phosphorus in the soil beyond the
depletion zone and transfer it to the plant [83].
Mycorrhizal fungi can solubilize forms of phos-
phorous that the plant cannot solubilize, such as
calcium and aluminium phosphates, thanks to the
controlled secretion of extracellular phosphatases
[84]. A gene coding for a high-affinity transporter for
phosphate, especially active in outer hyphae, is
present in Glomus spp. [85]. Even in the same
ecosystem, mycorrhizal fungi can explore different
niches and exploit mineral element sources differ-
ently. It is especially true for nitrogen: significant
changes are influenced by the concentration, form,
and availability of plants, all of which correlate with
soil microorganism degradation cycles (Fig. 5) [86].
At low temperatures and acid pH, nitrogen miner-
alization is so slow that organic sources become
essential. In addition to having high-affinity
ammonium transporters similar to yeast ammo-
nium permeases MEP2, ectomycorrhizal fungi
possess very active ammonium uptake agents [87].
Activated transporters occur during nitrogen

deficiency, are repressed by glutamine, and are
active during the symbiotic phase. It is still being
determined how glutamine synthetase is transferred
to plants [88]. Several studies have indicated gluta-
mine synthetase to be highly expressed in some
symbionts during nitrogen deficiency and fruiting
body formation [89]. A gene expression study has
shown that gene determinants are only activated
when the fungus emerges on a sugarepoor medium
and is low in glucose and ammonia. Therefore,
assimilation pathways differ significantly depending
on how closely the plant is associated with the host
[90]. The molecular approach was used to identify
nitrate reductase genes expressed by mycorrhizal
maize roots and distinguish between symbiont
genes and host genes [91].

6. Synergistic activity of soil microorganisms

Several analyses have recently been conducted on
the relationship between soil microorganisms and
symbiotic fungi, demonstrating that they can signif-
icantly impact plant health because of the synergy
between various populations in the rhizosphere [92].
In order to explain these interactions, many mecha-
nisms have been proposed, including phytohormone
production, enzyme release, vitamin release, and
growth stimulation. Mycorrhizae and rhizobacteria
maybe able to formbiofilms on the surface of hyphae,
preventing their leaching and, ultimately, their loss of
the inoculum. In light of this, increased bacteria
numbers and concentrations locally may explain the
beneficial effects [93]. Recent studies have shown that
certain Pseudomonas strains can adhere to fungal hy-
phaedue to thepresenceof specificmolecules such as
mucopolysaccharides [94]. Some mycorrhizae also

Fig. 4. Increased plant height and leaf growth in Plectranthus amboi-
nicus plants treated with Glomus intraradices under phosphorus defi-
cient conditions. The growth is evident in treated plants (AM), compared
to control plants (CTRL).

Fig. 5. Stimulating effect of Glomus mossae on Kalanchoe dai-
gremontiana plants in the presence of nitrogen. Increased vegetative and
root growth and number of new shoots in the treated thesis (TREATED)
compared to the control (CTRL) under conditions of reduced nitrogen
content in the growing medium.

D. Prisa / Karbala International Journal of Modern Science 9 (2023) 197e207 201



harbour several bacteria in their cytoplasm, which,
though unculturable with small genome size, are
transmitted vertically to future generations. As a
result of this symbiosis within symbiosis, the fungal
genome ismore complexdue to the resident genomes
[95]. Symbioses between microorganisms are fasci-
nating because of their peculiar cellular organization,
which has structures capable of interacting with the
roots of host plants and exploring the soil around
them. Depending on the specificity of the
microorganismeplant interaction, these connections
may involve individuals of the same or different
species [94]. Depending on the environment, these
lattices can move organic and inorganic nutrients
from one plant to another (Table 2). According to
these relationships in the subsoil, the concept of plant
communities as distinct individuals competing with
one another is profoundly altered. Rather than acting
antagonistically, these individuals symbiosis to pro-
vide nutrients as part of their resources [96].

7. Importance of exploiting soil interactions
between stimulating microorganisms

In response to the adverse effects of plant pro-
tection products and synthetic fertilizers on agro-
systems, strategies have been developed to promote
beneficial soil microorganisms [97]. Consequently,
microbial inoculation is of utmost importance
because the soil microbiota can play an essential
role in plant growth. As a result of microbiota's
beneficial effects on plant health under biotic and
abiotic stress conditions, biotechnology applications
are relevant. In recent years, mycorrhizal growth
and health have been highlighted, as well as the
nutritional value of edible parts of various crops
[98]. Mycorrhizae are not only a simple substitute
for chemical fertilizers or pesticides but also can be
used in food products of organoleptic and nutra-
ceutical quality despite a lack of comprehensive
research on their systemic effects on edible plants.
Various vegetables were shown to yield more and
be healthier with mixed inoculations of mycorrhizae

and growth-promoting bacteria. Similar results
were obtained for strawberries and perennials,
including olives and vines [99]. Mycorrhizal fungi
have been studied on some ornamental plants,
especially Camellia japonica, with significant effects
on growth and protection [100]. The development of
large-scale sequencing approaches has led to the
identification and selection of isolates forming
symbiotic relationships with plants in different en-
vironments or soils subjected to different cultivation
techniques, allowing researchers to identify and
select symbiotic fungi. Identifying isolates for a
specific crop or already adapted to certain condi-
tions and, thus, potentially more efficient depends
on data on the composition of mycorrhizal fungi
communities [101,102].

8. Benefits of introducing mycorrhizal fungi
into the soil

The enhancement of P uptake is generally
considered to be the most important benefit that
mycorrhizae provide to the host plant, and the P
status of the plant is often the main controlling
factor in the plantefungus relationship [103]. In
some cases, mycorrhizae can increase P uptake and
increase the performance efficiency of P nutrition of
crops [104]. Increased yield and growth can be
associated with this phenomenon [104]. It is com-
mon for several nutrients to be absorbed by the host
simultaneously by mycorrhizal fungi, though
different nutrients may be affected differently
[105,106]. The mycorrhizal association has been
extensively studied, but there is also evidence that
mycorrhizae play a role in the suppression of crop
pests and diseases, particularly soil-borne fungal
diseases (Table 3) [107,108]. As a result of improved
nutrition, plants may appear resistant to pests and
diseases [109], although multiple mechanisms of
resistance may be at work simultaneously [110].
Exclusion appears to be one of the most important
factors here, as it seems to be merely a matter of
competing for space [111]. Mycorrhizae have been

Table 2. Nutritional exchanges between different types of mycorrhizae.

Mycorrhizal typology Symbiont > host nutritional interaction Host > symbiont
nutritional interaction

Arbuscular mycorrhizae Mineral nutrients (P) Carbohydrates
Ectomycorrhizae Mineral nutrients (N) Carbohydrates
Hericoids Mineral nutrients (N) Carbohydrates
Arbutoids Mineral nutrients Carbohydrates
Monotropoids Carbohydrates and mineral nutrients e

Orchid mycorrhizae Carbohydrates and mineral nutrients
during the young phase; minerals
during the adult phase

e
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shown to increase the host plant's tolerance to water
stresses [112], including those caused by high
salinity [106,113,114]. Several mechanisms have
been proposed to explain why water is extracted
from smaller pores [112]: increased hydraulic con-
ductivity of the roots, improved stomatal regulation,
osmotic regulation of the host and better contact
with soil particles due to the binding effect of hy-
phae). Many studies have focused on how mycor-
rhizae directly influence the growth of the host
plant. They also have a direct effect on soil structure,
which is particularly relevant in agricultural envi-
ronments, in which cultivation, traffic and low levels
of organic matter tend to damage soil structure.
According to Jakobsen and Rosendahl [115], host
plants can transfer up to 20% of fixed carbon to their
fungal partners and mycorrhizae can produce sig-
nificant biomass in agricultural soils [116].

9. Conclusions

The molecular mechanisms underlying the ex-
change of nutrients between two symbiont organ-
isms are rapidly emerging and a nutritional
advantage for the host plant has been established.
Thanks to the development of large-scale
sequencing approaches, several researches have
been focused on the characterisation of mycor-
rhizae in different environments or in subsoils
characterized by different cultivation techniques.
In recent years, mycorrhizal symbiotic interactions
have been studied in greater depth, and it appears
that nutritional exchanges and physiological re-
sponses of plants may depend on the environment
and the partners involved in the symbiotic rela-
tionship, at least in mycorrhizal symbioses. In
addition, mycorrhizal fungi could regulate the
process of signal transfer between plants above
ground, as well as the transfer of signalling mole-
cules between plants. In order to optimize the use
of these fungi in application programmes, all of
these aspects will have to be investigated in the
future. Many of these studies have also been car-
ried out in roots sampled in natural soils, making it
possible to identify isolates that form symbioses
with the plants under consideration and making it

possible to observe that not all fungi associated
with roots form a functional symbiosis. Despite
much research, on the whole, the beneficial prop-
erties of mycorrhizal symbioses are still not widely
exploited in sustainable agriculture. This is because
many factors must be considered in order to ach-
ieve successful application. In order to be used for
agricultural purposes, mycorrhizae must also be
evaluated nutritionally and physiologically in fields
with different soil microbiota communities, with
which both symbiont fungi and plant roots interact,
as well as multiple stress factors affecting plants.
Although we are beginning to understand the as-
sociation of microorganisms and plants, there are
significant gaps, including the role of species di-
versity of bacteria and fungi in producing plant
benefits, as well as how agronomic practices can
affect the ecology and function and development of
beneficial microorganisms in the soil. It is crucial to
improve our understanding of the physiology and
function of mycorrhiza, as well as their interactions
with crops and environmental conditions, to ach-
ieve long-term agricultural stability and
productivity.
The study of the specific plantefunguseenviron-

ment combination is an important prerequisite, as
well as the implementation of less impactful agri-
cultural practices so that the biodiversity of this
group of fungi is maintained in the soil.
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