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The spike (S) protein is a major antigenicity site that targets neutralizing antibodies and drugs. The 
growing number of S protein mutations has become a severe problem for developing effective vaccines. 
Here, we investigated four severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that 
were the most infectious and widespread during the COVID-19 pandemic to determine the trends and 
patterns of mutation-induced changes in the stability, B-cell epitope, and antigenicity of the SARS-CoV-2 S 
protein. The data showed that the Beta and Gamma variants had three mutations on the receptor-binding 
domain (RBD), which is the specific site on the S protein for angiotensin-converting enzyme 2 (hACE2) 
binding. The Delta variant had only two mutations, whereas the Omicron variant had 15 mutations on the 
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complexes of the Beta and Gamma variants were relatively stable after 20 ns of simulation compared 
with those of the Delta and Omicron variants. We predicted that the B-cell epitopes of the mutant S 
protein would be different from those of the wildtype. Moreover, the antigenicity of Omicron changed 
drastically compared with that of the other variants. Bioinformatics analysis and a molecular dynamic 
simulation revealed that the mutations affected the stability of the S protein. A large number of mutations 
do not always stabilize the S protein. Mutations in Omicron significantly altered the B-cell epitope and 
antigenicity, which decreased vaccine effectiveness. These findings provide insights into SARS-CoV-2 
evolution for vaccine development. 
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Epitope, and Antigenicity of the Sars-Cov-2 Variant
Spike Protein: A Comparative Computational Study
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Abstract

The spike (S) protein is a major antigenicity site that targets neutralizing antibodies and drugs. The growing number
of S protein mutations has become a severe problem for developing effective vaccines. Here, we investigated four severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that were the most infectious and widespread during
the COVID-19 pandemic to determine the trends and patterns of mutation-induced changes in the stability, B-cell
epitope, and antigenicity of the SARS-CoV-2 S protein. The data showed that the Beta and Gamma variants had three
mutations on the receptor-binding domain (RBD), which is the specific site on the S protein for angiotensin-converting
enzyme 2 (hACE2) binding. The Delta variant had only two mutations, whereas the Omicron variant had 15 mutations
on the RBD. The results showed that the stability of the S protein varied and depended on the mutation type and that
Gamma and Omicron are the most stable of the four variants analyzed. The S proteinehACE2 complexes of the Beta and
Gamma variants were relatively stable after 20 ns of simulation compared with those of the Delta and Omicron variants.
We predicted that the B-cell epitopes of the mutant S protein would be different from those of the wildtype. Moreover,
the antigenicity of Omicron changed drastically compared with that of the other variants. Bioinformatics analysis and a
molecular dynamic simulation revealed that the mutations affected the stability of the S protein. A large number of
mutations do not always stabilize the S protein. Mutations in Omicron significantly altered the B-cell epitope and
antigenicity, which decreased vaccine effectiveness. These findings provide insights into SARS-CoV-2 evolution for
vaccine development.
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1. Introduction

S evere acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the causative agent of the

coronavirus disease (COVID-19), is a highly muta-
tional RNA virus, as it lacks a proofreading mech-
anism. This virus continuously undergoes deletion,
insertion, and genetic recombination that change
critical amino acids in its genome. These amino acid
changes benefit adaptation and evolution of the
coronavirus. This continual series of mutations has
led to a vast diversity of variants of the virus from

the original Wuhan sequence [1e3]. In February
2022, several variants of concern, including Gamma
(P.1), Beta (B.1.351), Omicron (B.1.529), and Delta
(B.1.617), were identified. The continuously
mutating SARS-CoV-2 spike (S) protein is a severe
problem for developing effective vaccines against
COVID-19.
The S protein is a part of the structure that plays a

unique and crucial function during the early stage of
infection to angiotensin-converting enzyme 2
(hACE2), the target-cell host receptor. As a target of
antibodies and drugs, the S protein is a major
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antigenicity site. Mutations in the S protein have
become the primary concern of many studies
because the S protein is an important target for
neutralizing antibodies [4,5]. Each variant demon-
strates a different mutation on its S protein. Muta-
tions affect the stability and binding expression of
SehACE2; however, no study has compared the
mutational effect of the SARS-CoV-2 S protein vari-
ants of concern. Therefore, in this study, we investi-
gated four SARS-CoV-2 variants that were the most
infectious and widespread during the pandemic
(Beta, Delta, Gamma, and Omicron) to detect trends
and patterns of how mutations in the S protein affect
interactions with ACE2 due to structural and func-
tional changes in the S protein. We also compared
the effect of mutations of the B-cell epitopes and
antigenicity of the four SARS-CoV-2 variants.
In this study, we investigated the mutational

effect, epitope, and antigenicity of the four above-
mentioned SARS-CoV-2 variants using bioinfor-
matics analysis and molecular dynamic (MD)
simulation and found that the stability of the S
protein was affected by the mutations. The results of
the MD simulations showed that Beta and Gamma
were relatively more stable than Delta and Omicron,
revealing that an increase in the number of muta-
tions does not always correlate with stabilization of
the S protein. Accumulated mutations on Omicron
significantly changed its B-cell epitope and antige-
nicity, thereby decreasing the effectiveness of
vaccines. These findings provide a more compre-
hensive understanding of SARS-CoV-2 adaptation
and evolution.

2. Materials and methods

2.1. Data mining

The S-hACE2 crystalline structure was obtained
from the ProteinData Bank (http://www.pdb.org). The

entire genome of the SARS-CoV-2 spike glycoprotein
structure was constructed using the Swiss Model Ho-
molog on the ExPASyweb server (swissmodel.expasy.
org). Sequences were retrieved from all selected vari-
ants of the protein using Biovia Discovery Studio.

2.2. Mutation collection

We introduced a mutation to the whole genome
monomer S protein and the S protein complex, con-
taining hACE2, by substituting amino acids based on
the mutation list retrieved from the literature [10e12]
to obtain the desired SARS-CoV-2 variants (Beta,
Gamma, Delta, and Omicron) using the FOLDX5
plugin on YASARA (Table 1) (viralzone.expasy.org).
Due to application limitations, the mutations intro-
ducedwere limited to amino acid substitutions (i.e., no
deletions or insertions).Aminoacid substitutionswere
introduced into the S protein monomer throughout
the genome, not just on the receptor-binding domain
(RBD). The mutations were only introduced on the
RBD of the S proteinehACE2 complex.

2.3. Protein stability calculation

The stability of the SARS-CoV-2 S protein and the
SehACE2 protein complex was predicted by the
folding free energy change (DDG) between the wild-
type (WT) and the mutant S protein structure. FoldX5
is apopular tool toassess the effect of amutationon the
folding and dynamics of nucleic acids and proteins [6].
The folding free energy change was calculated as

follows [7]:

DDG (stability) ¼ DG (folding)mutant � DG
(folding)WT

A negative G value indicates that the mutation sta-
bilizes the protein, whereas a positive G value in-
dicates that the mutation destabilizes the protein.

Table 1. Mutation sites in the RBD S protein.

Origin First Reported Lineage Mutation on S Protein Ref

Beta
(South Africa)

September 2020 B.1.351 K417N; E484K; N501Y; D614G; A701V [10]

Gamma
(Japan & Brazil)

January 2021 P.1 L18F; T20N; P26S; D138Y; R190S; K417T;
E484K; N501Y; D614G; H655Y; T1027I

[10]

Delta
(India)

October 2021 B.1.617 T19R, G142D, D156e157, R158G, D213e214,
L452R, T478K, D614G, P681R, D950N

[11]

Omicron
(South Africa)

November 2021 B.1.529 A67V; D69-70del; T95I; G142D; D143del,
G143D, D144-145del, D211del; L212I; ins214EPE;
G339D; S371L; S373P; S375F: K417N; N440K; G446S;
S477N; T478K; E484A; Q493R; G496S; Q498R; N501Y;
Y505H; T547K; D614G; H655Y; N679K; P681H; N764K;
D796Y; N856K; Q954H; N969K; L981F

[12]
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2.4. Molecular dynamics simulation

The effect of each mutation on the S protein was
assessed, and the structural stability was predicted
using MD. The MD analysis was based on the anal-
ysis of the physical movement of atoms and mole-
cules during a simulation. The MD analysis was
performed using YASARA with 20 ns of simulation
time. The MD simulations were conducted on pa-
rameters that were adapted to cellular conditions.
The system was neutralized with 0.9% NaCl and
1 atm of pressure while maintaining a pH of 7.4. The
temperature was set to 298 K. The simulation was
conducted with the md_runfast program in the
autosave setting every 25 ps for up to 800 simulations.

2.5. Predicting the B-cell epitopes and antigenicity

The B-cell epitope was predicted using BepiPred-
1.0 Linear Epitope Prediction at the Iedb.org web-
site. BepiPred is a machine learning-based method
that predicts epitopes using the propensity scale
and hidden Markov models [6,8]. The WT and
SARS-CoV-2 mutant S protein antigenicity was
predicted at the iedb.org website using the Kolaskar
and Tongaonkar antigenicity scales [9].

3. Results and discussion

The SARS-CoV-2 variants exhibited different mu-
tations on the S protein. Among the four variants
analyzed, the Beta variant had the fewest mutations,
with threemutations on theRBDand threemutations
on the S sequence. The Gamma variant had 3 muta-
tions on the RBD and 11 on the S sequence. The Delta
variant had two mutations on the RBD and seven on
the S sequence. The Omicron variant had 15 muta-
tions on the RBD and 30 on the S protein (Table 1).

3.1. Mutations that altered the S protein structure
and increased the protein stability

The S protein is important during the initial stages
of virus infection. The S protein binds with hACE2
to enter the cell. Due to a strong correlation between
structure and function, the structural stability of all
mutant S proteins was analyzed to understand the
effect of the mutation on protein stability. The S
protein was stabilized after one mutation (Table 2),
and the mutants had different degrees of stability
depending on the mutation. Gamma and Omicron
were the most stable variants.
The root-mean-square deviation (RMSD) back-

bone of the four SARS-CoV-2 variants showed the
effect of mutation on the structural stability of the Ta
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S protein. The RMSD analysis indicated that the WT
and mutants had high RMSD values after 20 ns of
simulation time, which may have been due to an
unstable S protein monomer. To be stable, the S
protein must be in the trimer state. The stability of
the variants was compared with that of the WT for
the structural stability analysis (Fig. 1).
The fluctuating trends were not different among

the WT, Gamma, and Delta variants. Omicron had a
lower RMSD value despite its instability. The RMSD
analysis of Beta indicated relatively stable fluctua-
tions, starting at 13 ns of simulation. Beta was more
stable than the other variants.
The root-mean-square fluctuation (RMSF) depicts

the flexibility of the amino acid residue under study
over the simulation time [13]. The RMSF analysis
showed that the WT and mutants had similar fluc-
tuating trends in the protein residues. The protein
fluctuated the least during the start of the simula-
tion, increased toward the middle, and then
decreased at the end. In contrast, Gamma displayed
the greatest fluctuations in the region between
Phe392 and Thr581, the region between Phe833 and
Lys854, and the site between Leu959 and Leu1001
compared with the other strains. Beta displayed the
least fluctuations compared with the other strains in
the same region. This RMSF result supports the
RMSD data, showing that the amino acids in a

protein structurally contribute most to molecular
motion.
Fig. 2 depicts the mutations in the S1-RBD of the

SARS-CoV-2 variants. Beta and Gamma had similar
mutations in the S1-RBD. The amino acids on the
RBD of Beta and Gamma changed to E484K, N501Y,
and K417N. The Delta variant only carried the
L452R and T478K mutations. Omicron has recently
evolved into many subvariants and has gained 15
mutations in its RBD.
The RMSD backbone of the S proteinehACE2 WT

complex andmutant SARS-CoV-2was also analyzed.
The RMSD analysis revealed that Beta and Gamma
had 2 Å values and relatively stable fluctuations after
20 ns of simulation, indicating that the S proteins of
these variants were stable after binding to hACE2.
Delta and Omicron had values exceeding 3 Å and
were relatively unstable after 3 and 8 ns of simulation,
indicating that the mutations disrupted the binding
interactions between the S protein and hACE2.

3.2. Omicron antigenicity was altered drastically
compared with the other variants

The B-cell epitope refers to the part of the antigen
that binds to the antibody. The B-cell epitope is
recognized by B-cell receptors (BCRs) and induces
an antibody response [6]. Because the S protein

Fig. 1. Analysis of trajectory fluctuations in the molecular dynamics simulations of the SARS-CoV-2 wildtype and mutant S proteins. (A) Root-mean-
square-deviation. (B) Root-mean-square fluctuation.
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epitopes are important for triggering an immune
response, presenting the S protein might be a
rationale for several essential vaccines. This is a
critical issue concerning the long-term effectiveness
of newly developed vaccines. We predicted and
compared the B-cell epitopes of the WT and mutant
S proteins using a well-established predictive web
server tool. The S protein mutants had different
epitope variations, which resulted in differences in
the efficacy of the antibodies and vaccines (Figs. 2A
and 4A). The B-cell epitope profiles of the Gamma,
Delta, and Omicron variant mutants were greater
than the threshold value (0.5), indicating that these
variants are easier to recognize using the BCR of
infected cells compared with the WT and Beta
variants.
Antigenicity describes the capacity of a virus to

bind to antibodies. Variations in the antigenicity at
these sites are driven by neutralizing antibodies.
Changes in mutation-induced antigenicity play a
role in the effectiveness of vaccines [13e15]. We
compared the antigenicity fluctuations of the Beta,
Gamma, Delta, and Omicron variants. Each variant
differed in terms of antigenicity. Omicron antige-
nicity was severely altered compared with that of

the other variants (threshold value: 1.05) (Figs. 2B
and 4B).
Multiple mutations have repeatedly occurred on

the SARS-CoV-2 S protein, resulting in the current
SARS-CoV-2 variants. To understand the trend in
the mutations and the evolution of the structure of
the four variants, we compared their protein sta-
bility, B-cell epitope, and antigenicity. The first case
of Beta was detected in September 2020 in South
Africa. Beta was linked with an increased hospi-
talization rate, immune escape, and death. The Beta
variant exhibited no increase in transmissibility
[16]. Beta became the most prevalent variant in the
second wave of the pandemic after the Alpha
variant. Besides D614G, the global mutations in
SARS-CoV-2 are known to benefit the virus with
faster transmission rates, higher affinity, and
higher antigenicity [17]. Beta also gained the E484K
and N501Y mutations, which enhanced its binding
affinity to hACE2 compared with the WT [18].
The Gamma variant has a lower hospitalization

risk than the Beta variant, which is associated with
increased transmissibility and immune response
escape. The Gamma variant shares some mutations
with Beta (N501Y, E484K, and D614G) and has also

Fig. 2. Mutation mapping of the SehACE2eSARS-CoV-2 variant complex. (A) BetaeGamma. (B) Delta. (C) Omicron.
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Fig. 3. Backbone fluctuations of the wildtype and mutant S proteinehACE2 complexes. The RMSD value indicates the dynamic of backbone
movement of the complex of S protein with hACE2.

Fig. 4. Linear B-cell epitopes and antigenicity of the SARS-CoV-2 variants. (A) Linear B-cell epitope profile. (B) Antigenicity profile.
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gained additional mutations (L18F and K417T).
These mutations benefit the virus with evasion of
antibody-mediated immunity, reinfection, and
increased transmission rates [19].
The Delta variant gained the E484Q and L452R

mutations, which are associated with increased
hACE2 binding affinity to the RBD. Delta also has a
P681R mutation on its S protein sequence, which en-
hances its immuneescape ability.Omicron is themost
recent variant circulating in the population and has
accumulated the most mutations in its sequence
(Fig. 4). Omicron has 30 mutations in the S protein
sequence. Omicron has been linked to significantly
lower hospitalization and mortality rates than previ-
ous variants [20,21].
These results agree with a previous report that

suggested that Omicron reduces the neutralization
activity of antibodies [22], but its infection fatality rate
is lower. Nevertheless, Omicron has a three-fold
higher transmissibility rate due to immune escape
than previous variants based on South African find-
ings. The mutations appear to alter the dynamics of
the proteineprotein interactions in the S sequence,
which helps stabilize theSprotein [18,23e25]. A stable
S protein bindsmore effectively to the ACE2 receptor.
Amutationmight change the stability of the S protein
differently depending on which amino acid un-
dergoes the mutation. Mutations, particularly in the
RBD, have various effects on protein stability and
ACE2 binding [26]. Different amino acid mutations
exert different effects.
Some mutations are associated with higher viral

antigenicity [27]. Changes in antigenicity result in the
changes in antibody's ability to recognize antigensand
reduce the effectiveness of the previous vaccine. This
could be the rationale behind the booster vaccine
being a prerequisite to protect the population and
minimize the effect of the SARS-CoV-2 variants. A
vaccine developed for a specific variant may be inef-
fective or less effective in protecting against future
evolving variants. Omicron has been reported to be
less protective against infection with two and three
doses of vaccination than Delta [28,29]. This phe-
nomenon is mainly caused by the mutations in the S
protein, especially on theRBD;Omicronhas30on its S
protein, of which half reside on the RBD [29e31]. This
mutation rate is twice that of Delta.
The RMSD results of the S monomer and S pro-

teinehACE2 complex revealed that the Beta and
Gamma variants were more likely to be stable than
the Delta and Omicron variants, indicating that
increasing the number of mutations does not always
result in the stabilization of the S protein (Fig. 3).
The RMSF results support this finding.

4. Conclusion

Mutations affect the stability of the S protein.
However, increasing the number of mutations does
not always result in a stable S protein. Moreover, the
mutations we induced had different effects on the
epitope and antigenicity of each variant. The
growing number of mutations in Omicron has
significantly changed its antigenicity compared with
that of the original Wuhan sequence and other
mutant variants, potentially reducing vaccine effec-
tiveness. Our research provides a more compre-
hensive understanding of the effects of mutation
and the evolution of SARS-CoV-2 for long-term
vaccine development. Our study should be used as
preliminary screening only, as it has computational
limitations. Laboratory experimental research is
required in future studies.
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