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Abstract

Various methods for representing the spatial orientation and rotation of objects are presented and compared with the
quantum bit state representation. By contrasting spherical, Euler angle, quaternion, and quantum spin coordinate
systems, this work highlights important concepts regarding the rotation axis of the X gate. Several ambiguities and
incomplete definitions associated with the qubit state representation are discussed, such as the spin around the qubit
itself and the explanation of the considered rotation angles and signs. A mathematical analysis of the physical meaning
of each eigenstate is provided along with a new comprehensive and meaningful YPR-based 3D representation of a qubit
state.

Keywords: Qubit state, Quantum spins, 3D rotations, Spherical coordinates, Yaw, pitch, and roll angles, Quaternions

1. Introduction

C omputing the orientation of rigid bodies is an
important task in many fields of engineering,

including robotics and aeronautics. Specifically in
robotics, orientation plays a fundamental role in
numerous industrial, medical, and surgical
applications.
Various methods are commonly used to model

and represent the orientation of a rigid body, such
as the spherical coordinates and the Euler angles,
or the yaw, pitch, and roll (YPR) angles. These
methods use 3 � 3 matrices to hold the projection
coordinates of the three unit vectors, which makes
them memory- and resource-intensive. In contrast,
compact methods have also been developed, such
as quaternions and dual quaternions. This repre-
sentation uses only four components: one real and
three imaginary parts. All the above methods have
been successfully used in multiple applications;

however, they are all designed for classical
computers.
With the advent of quantum computers, new

challenges arise concerning the modelling and
control of rigid body orientation using quantum
tools, as well as establishing bridges between clas-
sical and quantum methods. Quantum computing is
expected to vastly outperform conventional com-
puters. Thus, quantum computing methods have
been developed and implemented in various fields
and applications [1e6]. For example, qubit states
have been used to model the position and orienta-
tion of an industrial robotic arm end effector using
the equivalence between the Pauli gates and qua-
ternions [7]. A method of defining the end effector
orientation using a single qubit state based on the
elementary rotation gates is more efficient
compared with the results obtained using YPR an-
gles based on a homogenous matrix [8]. Moreover, a
quantum forward kinematics model has been
introduced for an industrial robotic arm, in which a
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systematic formulation of the D-H matrix is pre-
sented using a single qubit state [9]. Owing to the
complexity of the quantum representation using
only two components to express a qubit state,
especially compared with the intuitive representa-
tion in three-dimensional (3D) vector space, the
real-world meaning of this new formalism remains
somewhat obscure. We have found no published
validation of each eigenstate in terms of quantum
computing basics.
In the present study, we focus on the fundamental

quantum spins, or rotations, to compare the spher-
ical, Euler angle, and quaternion orientation repre-
sentations, to help clarify the true physical meaning
of the quantum states in the intuitive 3D space.
The proposed work highlights three significant

concerns and suggests potential solutions: first, the
lack of information in the current Bloch represen-
tation of a qubit state in relation to the self-spin
angle (around the oz axis); second, the basic speci-
fications of the axes in 3D space that do not corre-
spond to the existing representation; and third, the
ratio of the oy axis rotation angle must be consid-
ered, not only for sandwich products but also to
indicate the genuine rotation angles in real-world
3D space.
The findings of this work may help to establish

quantum versions of several conventional
computing concepts and thus provide a starting
point for a variety of real-world applications that
require appropriate and optimal orientation models,
such as quadrotors, quadcopters, UAVs, and UGVs
[10e14], mobile robots, and robotic manipulators
[15].

2. Materials and methods

2.1. The qubit and quantum operators

A qubit is the basic element of information in
quantum computing. Whereas a conventional bit
has two possible values (0 or 1), a qubit state has
infinite possible values that can each be expressed
as a linear combination of the two eigenstates 0 and
1, denoted by j0〉 and j1〉, respectively, as repre-
sented in equation (1) [16e18].

��q〉¼aj0〉þ bj1〉 ð1Þ

Where a and b are the projections of the qubit state��q〉 on the eigenstates j0〉 and j1〉, respectively. They
are complex numbers, such that jaj2 þ jbj2 ¼ 1, and
can be expressed as follows:

�
a¼ Rej0〉 þ iImj0〉
b¼ Rej1〉 þ iImj1〉

ð2Þ

Where Rej0〉 and Imj0〉 are the real and imaginary
components of a, Rej1〉 and Imj1〉 are the real and
imaginary components of b, and i is a purely
imaginary number, such that i2 ¼ � 1. The eigen-
states j0〉 and j1〉 are usually represented in the two-

dimensional (2D) vector space as j0〉 ¼
�
1
0

�
and

j1〉 ¼
�
0
1

�
.

A single qubit state is usually represented in the
3D space using the Bloch sphere, as illustrated in
Fig. 1, which corresponds to the mathematical
expression of equation (3) [19,20].

��q〉¼ cos
q

2
j0〉þ sin

q

2
ei4j1〉¼

0
BB@

cos
q

2

sin
q

2
ei4

1
CCA ð3Þ

Several operators exist, called quantum opera-
tors, which can alter a qubit's state. Quantum op-
erators or gates can be expressed using four basic
Hermitian matrices, known as the Pauli matrices
(i.e., s0, sx, sy, and sz), as defined in expressions (4)
through (7) [21].

s0¼
�
1 0
0 1

�
ð4Þ

sx¼
�
0 1
1 0

�
ð5Þ

Fig. 1. The Bloch sphere representation of a single qubit state.
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sy¼
�
0 �i
i 0

�
ð6Þ

sz¼
�
1 0
0 �1

�
ð7Þ

The Pauli matrices, sx, sy, sz, and s0, are also
known as the X, Y, Z, and identity gates, respec-
tively. Any quantum operator can be expressed in
terms of the Pauli gates, including the basic spins
RxðjÞ, RyðqÞ, and Rzð4Þ, or their respective rotations
j, q, and 4 around the axes ox, oy, and oz, as shown
in equation (8) through (10) [8].

RxðjÞ¼ cos
j

2
s0� isx sin

j

2
¼
0
@ C

j

2
�iS

j

2

�iS
j

2
C
j

2

1
A ð8Þ

RyðqÞ¼ cos
q

2
s0� isy sin

q

2
¼

0
BB@

C
q

2
�S

q

2

S
q

2
C
q

2

1
CCA ð9Þ

Rzð4Þ¼ cos
4

2
s0� isz sin

4

2
¼
 
e�i42 0

0 ei
4
2

!
ð10Þ

Where Cq and Sq are the cosine and sine of the
angle q.

2.2. The spherical coordinates

Spherical coordinates allow for the representation
of a vector in the 3D space using two angles, q and 4,
as illustrated in Fig. 2. A matrix transformation is

defined to express the unit vectors ur and uq, as
expressed in relationship (11) [22,23].

Msphðq;4Þ¼
0
@SqC4 CqC4 �S4

SqS4 CqS4 C4
Cq �Sq 0

1
A ð11Þ

The first column of the matrix Mðq;4Þ holds the
coordinates of the unit vector denoted by ur, and the
second column holds the coordinates of unit vector
uq. Only two unit vectors are used in the spherical
representation. The third unit vector contained in
the matrix is denoted by u4. This last unit vector is
obtained using the right-hand rule to complete the
3D orthonormal frame. This matrix should be
expressed as the product of two elementary rota-
tions, around the oz and oy axes, as shown in rela-
tionship (12). However, matrix

R0
y3DðqÞ ¼

0
@ Sq Cq 0

0 1 1
Cq �Sq 0

1
A is used instead of

Ry3DðqÞ.

Msphðq;4Þ¼Rz3Dð4ÞRy3DðqÞ ð12Þ

Where Rz3Dð4Þ ¼
0
@C4 �S4 0

S4 C4 0
0 0 1

1
A and

Ry3DðqÞ ¼
0
@ Cq 0 Sq

0 1 0
�Sq 0 Cq

1
A are the elementary rota-

tion matrices expressed in 3D space.

2.3. The yaw, pitch, and roll (YPR) angles

YPR angles provide another way to represent a
vector in the 3D space. Widely used in robotics and
aerospace engineering to model the orientation of
rigid bodies, these three angles represent the body's
orientation using three elementary rotations Rx3DðjÞ,
Ry3DðqÞ, and Rz3Dð4Þ around the ox, oy, and oz axes,
respectively, as illustrated in Fig. 3. The resulting
transformation matrix is provided in expression (13)
[24].

MYPRðj;q;4Þ¼Rz3Dð4ÞRy3DðqÞRx3DðjÞ

¼
0
@CqC4 SjSqC4�CjS4 CjSqC4þ SjS4

CqS4 SjSqS4þCjC4 CjSqS4� SjC4
�Sq SjCq CjCq

1
A

ð13Þ

Where Rx3DðjÞ ¼
0
@ 1 0 0

0 Cj �Sj
0 Sj Cj

1
A.

Fig. 2. Spherical coordinate representation of a vector in 3D space.
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2.4. The quaternions

Quaternions are hyper-complex numbers with one
real and three imaginary components. A typical
quaternion q canbe expressedbyequation (14) [25,26].

q¼ rþ xiþ yjþ zk ð14Þ

Where r is the real component, x, y, and z are the
imaginary components, and i, j, and k are the
three purely imaginary numbers, such that i2 ¼ j2 ¼
k2 ¼ �1 and ij ¼ k, jk ¼ i, and ki ¼ j. Quaternions
can be used to describe the translation or rotation of
a rigid body and have been extensively used in the
kinematic modelling of robotics [27e33]. Equation
(15) defines the translation, and relations (16) express
the three elementary rotations j, q, and 4, around the
three axes ox, oy, and oz, respectively [8,9].

q¼xiþ yjþ zk ð15Þ
8>>>>><
>>>>>:

qxðjÞ ¼ cos
j

2
þ i sin

j

2

qyðqÞ ¼ cos
q

2
þ j sin

q

2

qzð4Þ ¼ cos
4

2
þ k sin

4

2

ð16Þ

2.5. Methodology

The parallels between the above methods are
described below to help clarify how the quantum
spins method can achieve the same result. The
various transform equivalences developed in each
subsection are summarised in Fig. 4.

2.5.1. From the spherical to the YPR coordinates
An intuitive way of finding the equivalence be-

tween the spherical and YPR representations is to
set the angle j to 0, which leads to relation (17).

MYPRðj¼0;q;4Þ¼

Rz3Dð4¼0ÞRy3DðqÞRx3DðjÞ¼

0
B@

CqC4 �S4 SqC4

CqS4 C4 SqS4

�Sq 0 Cq

1
CA
ð17Þ

The obtained matrix is the result of a permu-
tation between the columns of the matrix in rela-
tionship (11). A transformation matrix MS�Y (or
MY�S) is necessary to switch from one representa-
tion to the other, as follows:

MYPRðj¼0;q;4Þ¼MSPHðq;4ÞMS�Y ð18Þ

MSPHðq;4Þ¼MYPRðj¼0;q;4ÞMY�S ð19Þ

Where MS�Y ¼
0
@ 0 0 1

1 0 0
0 1 0

1
A and MY�S ¼ MS�Y

�1 ¼
0
@ 0 1 0

0 0 1
1 0 0

1
A.

Relationships (18) and (19) state that the ox axis in
the YPR representation is equivalent to the oy axis
from the spherical representation, and the YPR
representation's oy and oz axes are equivalent to the
spherical representation's oz and ox axes, respec-
tively, with the yaw angle considered to be 0.

2.5.2. The qubit-to-spherical representation*
The principal source of inspiration for the Bloch

sphere and the qubit state in equation (3) is the
spherical coordinate system with angle half-values,
whereby the oz axis is considered to be the qubit
eigenvector j0〉, or eigenstate, and the unit vector ur
is obtained as the result of applying the elementary
rotations to this axis. The equivalences between the
spherical and quantum expressions of a qubit state
are illustrated in Fig. 5.

Fig. 4. The equivalences between the methods used in this article to
represent rigid body spatial orientation and trajectory.

Fig. 3. YPR representation of a vector in 3D space.

* Special description of the title (dispensable).
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In the current quantum computing formalism, or
Bloch sphere representation, eigenstate j1〉 is
considered to be on the opposite side of the oz axis
and hence linearly dependent on eigenstate j0〉,
which leads to ambiguity because the two eigen-
states are supposed to form the basis of a linear
independence. One solution to this might be to
consider half the rotation angles in relations (8) to
(10), where the angle q is divided by 2 and ranges
from 0 to p instead of 0 to 2p. This results in an
equivalent representation of the spherical co-
ordinates and mathematically brings the eigenstate
j1〉 to the right plane (ox, oy). However, this in-
troduces ambiguity for the two remaining rotation
angles because they must range from 0 to 2p.
Finally, the qubit, as represented in the Bloch

sphere and formulated in equation (3), does not
consider the rotation of a qubit state around itself,
and thus the equation is missing the third funda-
mental rotation j. Therefore, the eigenvector rep-
resentation and the basic rotations in quantum
computing need to be reformulated in greater detail.

2.5.3. The qubit-to-quaternion transformation
As quaternions have been widely used to model

the rigid body's position and orientation, a useful first
step towards a more coherent quantum representa-
tion of the possible qubit states is defining an
equivalence and transformation from qubit states to
quaternions. This qubit-to-quaternion trans-
formation requires the equivalence to be established
first between the Pauli matrices and the quaternions.
Expression (20) shows the representation of a given

quaternion q ¼ r þ x iþ y jþ z k in the 2D vector
space [7]. Since a quaternion can be used to express
the result of an operation, or an operator, expressing
a quaternion using the Pauli matrices reveals its
relationship to a qubit state and thus constitutes a
first step towards a quantum transformation.

q¼
�

rþ ix yþ iz
�yþ iz r� ix

�

¼ r
�
1 0
0 1

�
þ i x

�
1 0
0 �1

�
� i y

�
0 �i
i 0

�
þ i z

�
0 1
1 0

�

¼ rs0 þ i xsz � i ysy þ i zsx ð20Þ
Relationship (20) states that for a given oper-

ator, the quantum and quaternion representations
share a common real component and one of the
imaginary components, which is equivalent to the
oy axis projection. However, the ox axis component
of a quaternion appears to correspond to the Pauli z
component, and the z component corresponds to
the x component, both with negative signs.
Applying this quaternion operator to the oz axis unit

vector uz ¼ ð 0 0 0 1 ÞT or
�
0 i
i 0

�
leads to

quaternion qz ¼ ð�z y �x r ÞT :

quz¼
�

rþ ix yþ iz
�yþ iz r� ix

��
0 i
i 0

�
¼
��zþ iy �xþ ir

xþ ir �z� iy

�
ð21Þ

To fully clarify the relationship between the two
representations, relationship (20) is rewritten in
terms of the basic rotations, considering relations
(16), such that the basic rotation matrices result in
equations (22)e(24). These can be compared with
their equivalent basic rotations expressed in the
quantum formulation in equations (8)e(10).

qx¼ cos
j

2
s0 þ i

j

2
sz ð22Þ

qy¼ cos
q

2
s0 � isin

q

2
sy ð23Þ

qz¼ cos
4

2
s0 þ i sin

4

2
sx ð24Þ

At a glance, these three equations imply the
following:
The oz axis, which is considered the reference axis

in the quantum formulation, appears to be equiva-
lent to the ox axis in the quaternion representation,
and the rotation angle around the qubit's oz axis is
equivalent to the quaternion's �j angle.
The oy axis appears to be the same in both

representations.
The qubit's ox axis appears to be equivalent to the

quaternion's oz axis, and the rotation angle around
the qubit's ox axis is equivalent to the quaternion's �
4 angle.
In other words, to obtain the same operator matrix

result in quantum computing as that obtained in
quaternions, the operator Rxð�4ÞRyðqÞRzð�jÞ
should be used rather than Rzð4ÞRyðqÞRxðjÞ.
Similarly, switching from the qubit representation
to the quaternions implies the use of the transform
Rzð� jÞRyðqÞRxð� 4Þ.

Fig. 5. The equivalence between the quantum and spherical represen-
tations of the basic rotations.
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2.5.4. The quaternions-to-YPR transformation
There are several ways of transposing quaternions

into YPR angles for representing orientations
[34,35]. The following relationships can be used to
go from YRP to quaternions (25) and from quater-
nions to YPR (26) [34].

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

r ¼ C
j

2
C
q

2
C
f

2
þ S

j

2
S
q

2
S
f

2

x¼�C
j

2
S
q

2
S
f

2
þ S

j

2
C
q

2
C
f

2

y¼ C
j

2
S
q

2
C
f

2
þ S

j

2
C
q

2
S
f

2

z¼�S
j

2
S
q

2
C
f

2
þC

j

2
C
q

2
S
f

2

ð25Þ

8>>>>>>><
>>>>>>>:

j¼ 1
2
Asinð2ðry� zxÞÞ

q¼ 1
2
Atan 2

�
2ðrxþ yzÞ;1� 2

�
x2 þ y2

��
4¼ 1

2
Atan 2

�
2ðrzþ xyÞ;1� 2

�
y2 þ z2

��
ð26Þ

The corresponding homogenous matrix can
then be deduced as follows:

MYPRðj;q;4Þ¼Rz3Dð4ÞRy3DðqÞRx3DðjÞ

¼
0
@r2þx2�y2� z2 2xy�2rz 2ryþ2xz

2rzþ2xy r2�x2þy2� z2 2yz�2rx
2xz�2ry 2rxþ2yz r2�x2�y2þ z2

1
A

ð27Þ
2.5.5. The qubit-to-YPR transformation
The equivalence between the qubit state and the

YPR angles can be established using the three
elementary rotation transformations in both repre-
sentations, as well as the equivalence between the
quaternions and the YPR angles, as shown above
(subsection 3.3).
In 3D vector space, the matrix (13) defines the

transformation resulting from applying the f, q,
and j basic rotations around the oz, oy, and ox
axes, respectively. Similarly, in quantum
computing, the application of the three elementary
rotations RzðfÞ, RyðqÞ, and RxðjÞ results in the
following operator:

RzðfÞRyðqÞRxðjÞ¼0
BBBB@

�
C
j

2
C
q

2
þ iS

j

2
S
q

2

�
e�if2 �

�
C
j

2
S
q

2
þ iS

j

2
C
q

2

�
e�if2

�
C
j

2
S
q

2
� iS

j

2
C
q

2

�
ei

f
2

�
C
j

2
C
q

2
� iS

j

2
S
q

2

�
ei

f
2

1
CCCCA

ð28Þ
Applying the rotation operator (28) to the initial

qubit state j0〉 results in the qubit state
��q〉, defined

as follows:

��q〉¼RzðfÞRyðqÞRxðjÞj0〉¼

0
BBB@
�
C
j

2
C
q

2
þ iS

j

2
S
q

2

�
e�if2

�
C
j

2
S
q

2
� iS

j

2
C
q

2

�
ei

f
2

1
CCCA

ð29Þ
The components of a qubit state are expressed

in greater detail as follows:8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Rej0〉 ¼ C
j

2
C
q

2
C
f

2
þ S

j

2
S
q

2
S
f

2

Imj0〉 ¼ S
j

2
S
q

2
C
f

2
�C

j

2
C
q

2
S
f

2

Rej1〉 ¼ C
j

2
S
q

2
C
f

2
þ S

j

2
C
q

2
S
f

2

Imj1〉 ¼ C
j

2
S
q

2
S
f

2
� S

j

2
C
q

2
C
f

2

ð30Þ

Expression (29), or the detailed version (30),
appears to be the most complete way to define and
express a given qubit state. They also establish the
transformation from the YPR angles to the quantum
computing domain. Establishing the inverse trans-
formation implies the comparison of expressions
(25) and (30). This reveals the following relation-
ships between a quaternion and qubit state
components:

8><
>:

Rej0〉 ¼ r

Imj0〉 ¼�z

Rej1〉 ¼ y

Imj1〉 ¼�x

ð31Þ

Relationship (31) supports and generalises the
result obtained in Section 3.2. Moreover, consid-
ering relations (27) and (31), the homogenous
orientation matrix can be derived directly from the
qubit state's representation shown below:

MYPRðj;q;4Þ¼Rzð4ÞRyðqÞRxðjÞ
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This also establishes the calculation of the YPR
angles from a given qubit state, as shown in (33).

3. Results and discussion

Based on the concepts developed and analysed
above, it appears that a quaternion can be expressed
using a qubit state as follows:

q¼Rej0〉 � Imj1〉 iþRej1〉 j� Imj0〉 k ð34Þ
Furthermore, a qubit state can be expressed

using a given unit quaternion as follows:

��q〉¼� r� iz
y� ix

�
ð35Þ

Both expressions are valid if the initial qubit
state is considered to be j0〉, which is the case in
most, if not all, quantum computing circuits and
algorithms conceived so far.

3.1. Illustrative example

The orientation of a robotic arm is simulated
herein, first using the YPR angles (relation (13)),
then converted to quaternions (relation (25)), then to
qubit states (relation (35)), and then using a qubit
state in an online quantum computing simulator
[36]. The quantum spin operators are obtained from
Rxð�4ÞRyðqÞRzð�jÞ instead of Rzð4ÞRyðqÞRxðjÞ, as
mentioned in Section 3.2. This yields a qubit state
that matches a quaternion representation, such as
q ¼ Rej0〉 þ Imj0〉 iþ Rej1〉 jþ Imj1〉 k.
The orientation of the end effector varies accord-

ing to a fifth-order polynomial [37] with the
following initial and final conditions:

8>>>>>><
>>>>>>:

j¼ 0/
p

2
rad

q¼ 0/
p

4
rad

f¼ 0/
p

3
rad

3.2. Simulation results

Fig. 6 depicts the quantum circuit used to compute
the qubit states corresponding to several YPR
angles.
Fig. 7 shows the variations in the YPR angles,

whereas Fig. 8 summarises the qubit states for each
angle value computed using the online quantum
simulator [36].
Fig. 9 shows the resulting qubit states computed

using the online quantum simulator along with the
equivalent quaternion calculations performed using
Matlab software.
The results were obtained using the quantum

operator Rxð�4ÞRyðqÞRzð�jÞ applied to the initial
qubit state j0〉. This results in a qubit state that
matches the quaternion components, such that
Rej0〉 ¼ r, Imj0〉 ¼ x, Rej1〉 ¼ y, and Imj1〉 ¼ z. The

Fig. 6. Quantum circuit with the computed final qubit states (quantum
circuit realised with [36]).

¼
0
@Rej0〉2 þ Imj1〉

2 �Rej1〉2 � Imj0〉
2 �2Imj1〉Rej1〉 þ 2Rej0〉Imj0〉 2Rej0〉Rej1〉 þ 2Imj1〉Imj0〉

�2Rej0〉Imj0〉 � 2Imj1〉Rej1〉 Rej0〉2 � Imj1〉
2 þRej1〉2 � Imj0〉

2 �2Rej1〉Imj0〉 þ 2Rej0〉Imj1〉
2Imj1〉Imj0〉 � 2Rej0〉Rej1〉 �2Rej0〉Imj1〉 � 2Rej1〉Imj0〉 Rej0〉2 � Imj1〉

2 �Rej1〉2 þ Imj0〉
2

1
A ð32Þ

8>>>>>>><
>>>>>>>:

j¼ 1
2
Asinð2ðRej0〉Rej1〉 � Imj0〉Imj1〉ÞÞ

q¼ 1
2
Atan 2

�� 2ðRej0〉 Imj1〉 þRej1〉Imj0〉Þ;1� 2
�
Imj1〉

2 þRej1〉2
��

4¼ 1
2
Atan 2

�� 2ðRej0〉Imj0〉 þRej1〉Imj1〉Þ;1� 2
�
Rej1〉2 þ Imj1〉

2��
ð33Þ
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equivalence between the quaternions and the qubit
states (Section 3.2) appears to be effective. More-
over, the YPR angles are divided by 2 in both rep-
resentations because of the sandwich product of the
transformations and not as a result of the developed
representation of the qubit state or the angle 4

ranging in principle from 0 to p radians. Therefore,
we also multiply the angles by 2 in the simulation.

3.3. Further analysis

From equations (13), (27), (30) and (31), the 3D
representation of the oz axis undergoing the three
elementary rotations, or its final orientation repre-
sented by a vector v, can be expressed as shown in
formula (36) using the quaternion's components, or
using the qubit state's components as shown in
equation (37), or using the YPR angles as shown in
relationship (38).

v¼
0
@ 2ryþ 2xz

2yz� 2rx
r2 � x2 � y2 þ z2

1
A ð36Þ

v¼
0
@ 2Rej0〉Rej1〉 þ 2Imj0〉Imj1〉

�2Imj0〉Rej1〉 � 2Rej0〉Imj1〉
Rej0〉2 � Imj1〉

2 �Rej1〉2 þ Imj0〉
2

1
A ð37Þ

v¼
0
@CjSqC4þ SjS4

CjSqS4� SjC4
CjCq

1
A ð38Þ

Setting the angles j ¼ 0, q ¼ 0, and 4 ¼ 0 for both
the YPR angles and qubit states in the quantum
computing representation developed in this article
leads to the following expressions:

MYPRð0;0;0Þ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CAwith

v¼

0
B@

0

0

1

1
CA and

Rej0〉 ¼ 1

Imj0〉 ¼ 0

Rej1〉 ¼ 0

Imj1〉 ¼ 0

or
��q〉¼j0〉

8>>>>>><
>>>>>>:

ð39Þ

Using j ¼ 0, q ¼ p, and 4 ¼ 0 gives the following
result:

MYPRð0;p;0Þ¼

0
B@

�1 0 0

0 1 0

0 0 �1

1
CAwith

v¼

0
B@

0

0

�1

1
CA and

Rej0〉 ¼ 0

Imj0〉 ¼ 0

Rej1〉 ¼ 1

Imj1〉 ¼ 0

or
��q〉¼j1〉

8>>>>>><
>>>>>>:

ð40Þ

Using j ¼ 0, q ¼ 0 and 4 ¼ p gives the following
result:

Fig. 7. YPR angles variation.
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MYPRð0;p;pÞ¼

0
B@

1 0 0

0 �1 0

0 0 �1

1
CAwith

v¼

0
B@

0

0

�1

1
CA and

Rej0〉 ¼ 0

Imj0〉 ¼ 0

Rej1〉 ¼ 0

Imj1〉 ¼ 1

or
��q〉¼ ij1〉

8>>>>>><
>>>>>>:

ð41Þ

It appears that the oz axis corresponds to quantum
state j0〉 (39), and a rotation p around the quantum
oy axis leads to state j1〉 (40), which is in the opposite
direction of the oz axis. A rotation p around the oy
axis inverts the orientation of both the ox and oz axes
and leaves oy unchanged. Finally, a rotation p

around the quantum ox axis leads to state ij1〉 (41),
which is also in the opposite direction of the oz axis,
and a rotation p around the ox axis inverts the sign
of both orientations of the oy and oz axes and leaves
the ox axis unchanged. This implies that the X gate is
actually a p rotation around the oy axis and the Y
gate is actually a p rotation around the ox axis.
Performing the same operations with half YPR

angles gives the following:

MYPRð0;0;0Þ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CAwith

v¼

0
B@

0

0

1

1
CA and

Rej0〉 ¼ 1

Imj0〉 ¼ 0

Rej1〉 ¼ 0

Imj1〉 ¼ 0

or
��q〉¼j0〉

8>>>>>><
>>>>>>:

ð42Þ

Using j ¼ 0, q ¼ p
2 and 4 ¼ 0 gives the following

result:

MYPR
�
0; p2; 0

� ¼
0
@ 0 0 1

0 1 0
�1 0 0

1
A with v ¼

0
@ 1

0
0

1
A

and

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Rej0〉 ¼
ffiffiffi
2

p

2
Imj0〉 ¼ 0

Rej1〉 ¼
ffiffiffi
2

p

2
Imj1〉 ¼ 0

or
��q〉¼

ffiffiffi
2

p

2
j0〉þ

ffiffiffi
2

p

2
j1〉 ð43Þ

Using j ¼ 0, q ¼ p
2 and 4 ¼ p

2 gives the following
result:

MYPR
�
0; p2;

p
2

� ¼
0
@ 0 �1 0

0 0 1
�1 0 0

1
A with v ¼

0
@ 0

1
0

1
A

and

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Rej0〉 ¼ 1
2

Imj0〉 ¼�1
2

Rej1〉 ¼ 1
2

Imj1〉 ¼ 1
2

or
��q〉¼�1

2
�1
2
i
�
j0〉þ

�
1
2
þ1
2
i
�
j1〉

ð44Þ
It is tempting to conclude that assuming the

quantum computing angles to be twice their
equivalent YPR angles leads to the same result in
both representations, as relations (42), (43), and (44)

Fig. 8. The qubit states computed for each angle range (results obtained
with [36]).
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imply. However, this is inconsistent with the gate
reversibility. For example, applying equation (42)

twice gives v ¼
0
@ 0

0
�1

1
A instead of the expected

result v ¼
0
@ 0

0
1

1
A, whereas applying RyðpÞ twice to

state j0〉 gives the same initial state j0〉, owing to the
quantum gate's fundamental reversibility.
The relationship between the YPR and quantum

spin representations appears to apply to half angles
in the former case versus double angles in the latter
case.
To summarise, a reference frame (o0 x0 y0 z0) is

considered to be described in the YPR representa-
tion as shown below:8<
:

ðoxÞ≡ðo0x0Þ
ðoyÞ≡�o0y0�
ðozÞ≡ðo0z0Þ

ð45Þ

The axes are therefore described as follows in
the spherical representation:

8<
:

ðoxÞ≡ðo0z0Þ
ðoyÞ≡ðo0x0Þ
ðozÞ≡�o0y0� ð46Þ

The axes are described as follows in the qua-
ternion's representation:8<
:

ðoxÞ≡� ðo0z0Þ
ðoyÞ≡�o0y0�
ðozÞ≡� ðo0x0Þ

ð47Þ

The axes are described as follows in the quan-
tum computing-based representation:8<
:

ðoxÞ≡ðo0x0Þ; considering 2j
ðoyÞ≡�o0y0�; considering 2q
ðozÞ≡ðo0z0Þ; considering 24

ð48Þ

Moreover, the quantum states corresponding to
the three axes should be obtainable using a sys-
tematic approach, for instance, based on the basic
rotations. Representing the three unit vectors of the
ox, oy, and oz axes (ux, uy and uz) using their

quantum qubit states
�
ax

bx

�
,
�
ay

by

�
, and

�
az

bz

�
, a p

2

rotation (p in quantum computing) around the ox

axis on the qubit state
�
ay

by

�
should result in the oz

axis or qubit state
�
az
bz

�
. The same rotation around

the oy axis on the qubit state
�
az

bz

�
should result in

the ox axis or qubit state
�
ax

bx

�
, and likewise around

Fig. 9. Quaternion and qubit state results for each angle range.
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the oz axis on the qubit state
�
ax

bx

�
should result in

the oy axis or qubit state
�
ay
by

�
. This can be

expressed in the three relationships shown below:�
0 �i
�i 0

��
ay

by

�
¼
�
az

bz

�
ð49Þ

�
0 �1
1 0

��
az

bz

�
¼
�
ax

bx

�
ð50Þ

��i 0
0 i

��
ax

bx

�
¼
�
ay

by

�
ð51Þ

These expressions lead to the following system

under the condition jaxj2 þ jbxj2 ¼ ��ay
��2 þ ���by���2 ¼

jazj2 þ jbzj2 ¼ 1:8>>>>>><
>>>>>>:

�iby ¼ az

�iay ¼ bz

�bz ¼ ax

az ¼ bx

�iax ¼ ay

ibx ¼ by

ð52Þ

An infinite number of possible solutions exist
for system (52). One of these solutions considers the

qubit state
�
az
bz

�
as j0〉, with az ¼ 1 and bz ¼ 0. The

remaining qubit state
�
ax
bx

�
can then be considered

as j1〉 with ax ¼ 0 and bx ¼ 1, and the state
�
ay
by

�
as

ij1〉 with ay ¼ 0 and by ¼ i. The oz, ox, and oy axes
thus appear to correspond to states j0〉, j1〉, and ij1〉,
respectively.
Other possible solutions lead to the same qubit

states but with permutations. That is, for instance,

the states
�
az

bz

�
,
�
ay

by

�
, and

�
ax

bx

�
become j1〉, ij1〉;

and j0〉, respectively.
A more convenient and realistic representation of

the qubit state and the quantum eigenstates can be
illustrated, as shown in Fig. 10.

3.4. Validation of the proposed representation

To validate the proposed representation, the ox,
oy, and oz axes, corresponding respectively to the
states j1〉, ij1〉, and j0〉, are rotated over an arc
spanning p radians, equivalent to p

2 in the 3D vector

space. A p rotation of the oz axis around the ox axis
should lead successively to �oy, �oz, and then oy. A
similar rotation of the ox axis around oy should lead
to �oz, �ox, and then oz. Similarly, rotating the oy
axis around oz over p radians should lead to �ox,
�oy, and then ox. These transitions are indicated in
the matrix relations expressed below.

�
0 �i
�i 0

��
1
0

�
¼
�

0
�i

�
ð53:aÞ

�
0 �i
�i 0

��
0
�1

�
¼
��1

0

�
ð53:bÞ

�
0 �i
�i 0

���1
0

�
¼
�
0
i

�
ð53:cÞ

�
0 �1
1 0

��
0
1

�
¼
��1

0

�
ð54:aÞ

�
0 �1
1 0

���1
0

�
¼
�

0
�1

�
ð54:bÞ

�
0 �1
1 0

��
0
�1

�
¼
�
1
0

�
ð54:cÞ

��i 0
0 i

��
0
i

�
¼
�

0
�1

�
ð55:aÞ

��i 0
0 i

��
0
�1

�
¼
�

0
�i

�
ð55:bÞ

��i 0
0 i

��
0
�i

�
¼
�
0
1

�
ð55:cÞ

Fig. 10. Proposed comprehensive representation of a qubit state.
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4. Conclusion

This article presents an original and comprehen-
sive analysis of several mathematical tools used to
define the spatial rotation of rigid bodies and ex-
amines their equivalences in the context of quantum
spins as an effective model for describing object
orientations.
The development of the proposed quantum rep-

resentation of a qubit state raises a few conceptual
problems, such as the linear interdependency of the
two eigenvectors, incomplete information on the
spin of a qubit around itself, and the proper defi-
nition of the 2D quantum vector representation in
terms of the classical 3D axes.
The proposed work addresses three major issues

and proposes solutions to them. First, regarding the
lack of information in the current Bloch representa-
tion of a qubit state in reference to the self-spin angle
(around the oz axis), a comprehensive representa-
tion that contains the roll rotation, which is required
in various practical applications, is proposed.
Second, regarding the essential specification of

the 3D axes that do not correspond to the existing
representation, the current depiction uses half an-
gles and assumes aligned ox and oz axes, which
contradicts the rational and widely accepted 3D
representation. The proposed representation ad-
dresses this by including a proper characterisation
of the three fundamental spatial axes.
Third, the ratio of the oy axis rotation angle must

be considered, not only for sandwich products but
also to accurately represent the genuine rotation
angles in 3D space.
Several equivalences are found to exist between

the different representations of rotation and quan-
tum spins. The new comprehensive and more
intuitive way of representing a qubit state may help
guide future studies aimed at modelling orientation-
based processes using a single qubit state for
various applications in quantum computing, such as
industrial robots, autonomous vehicles, and aircraft.
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