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Abstract

One is prompted to examine an energy-dependent space-time with significant distortion of standard general relativity
through a breach of the Lorentz invariance in high-energy quantum gravity. The present study explores how the energy
of a test particle influences the energy density of a charged black hole in the framework of rainbow gravity. In this
context, the focus is on investigating the dyadosphere of the black hole, where the space-time fabric is influenced by the
energy of the test particle. We also employ graphical analysis to visually illustrate the variations in the black hole's
energy density defined within the framework of the quantum gravity perspective.
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1. Introduction

H ow to conciliate gravity with quantum princi-

ples is perhaps the most challenging theoret-
ical question confronting science in the twenty-first
century. The solution to this problem, which is ex-
pected to encompass a description of quantum
space-time, should serve as the fundamental
cornerstone for the rest of physics. Regrettably,
despite the concerted efforts of numerous scientists,
a quantum theory of gravity has yet to be developed.
Nevertheless, it is an important theoretical accom-
plishment in this pursuit that we have candidate
theories capable of explaining various physical
phenomena, as we strive to construct a compre-
hensive quantum theory of gravity [1e7]. One such
theory is the rainbow formalism of general relativity
(RFGR), which takes into account the quantum
mechanical effects on particles in curved space-
time. It can be argued that the emergence of the
RFGR is driven by two main factors. One of them is
that Einstein's theory of gravity performs well in the
infrared (IR) range but fulfills poorly in the ultravi-
olet (UV) range. This is because the energy-

momentum dispersion relation, which maintains
Lorentz invariance in the IR region, fails to preserve
this symmetry in the UV region within the frame-
work of the general relativity theory [8]. As a means
to address this issue, doubly special relativity (DSR)
takes the Planck energy and speed of light as upper
bounds and operates in the minimum accessible
region dominated by the effect of quantum gravity
[9]. In the context of DSR, F 1ð3Þ and F 2ð3Þ should
satisfy the following modified dispersion relation at
the Planck scale in order to preserve the energy-
momentum invariance

F 2
1ð3ÞE2¼F 2

2ð3Þp2 þm2; ð1Þ

where F 1ð3Þ and F 2ð3Þ are rainbow functions that
rely on the properties of the space-time curvature.
Here, 3 is defined in terms of the test particle (EPR)
and Planck (EPL) energies as 3 ¼ EPRE�1

PL . It is worth
noting that the relation expressed in Equation (1)
can be reduced to the known energy-momentum
dispersion under the low-energy limit lim

3/0
F ið3Þ ¼ 1,

where i ¼ 1; 2, which is known as the correspon-
dence principle of the RFGR [10]. Emphasizing the
significance of the choice of rainbow function, it is
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essential to recognize that it profoundly influences
the examination of the studied physical quantity,
rendering this selection phenomenologically rele-
vant and motivating. For instance, the F 1ð3Þ ¼ 1 and
F 2ð3Þ ¼ 1þ 3=2 forms of rainbow functions were
used to investigate the geodetic structure of the
Schwarzschild black hole [11]. The other reason is
that space-time should be characterized using an
energy-dependent metric when gravity arises from
quantum degrees of freedom. To deal with this,
Magueijo and Smolin extended doubly special rel-
ativity into curved space-time, giving rise to the
rainbow formalism of general relativity (RFGR) [12].
According to this novel formalism, particles can
receive energy by interacting with space-time,
resulting in different trajectories within the same
gravitational field [10,12]. Furthermore, modifying
the energy distribution of particles can have a sig-
nificant impact on the behavior of matter near black
holes and other objects with strong gravitational
fields. Therefore, the RFGR serves as a crucial tool
for investigating and advancing our comprehension
of fundamental physical laws, encompassing quan-
tum mechanics and general relativity. Thenceforth,
the RFGR as a quantum gravity perspective has
been utilized to explore various physical properties
of black holes, including the geodesic structure [11],
entropy [13e15], thermodynamics [16e20], thermo-
dynamic phase transition [21], Hawking radiation
[22,23], effective horizon [24], complementarity [25],
and initial singularity problem [26].
On the one hand, it is well established that black

holes provide fertile ground for studying quantum
gravity, as demonstrated by Hawking's discovery in
the 1970s that black holes can emit matter and ra-
diation within the framework of quantum me-
chanics [27]. Furthermore, attaining a thorough
comprehension of black holes could serve as a
crucial milestone in advancing the theory of quan-
tum gravity. On the other hand, exploring the en-
ergy distribution of black holes can provide insights
into their formation, evolution, environment, and
quantum properties, while also having practical
applications in astrophysics and cosmology. So far,
the topic of black hole energy density has exclu-
sively been examined within the framework of
either the general theory of relativity or its modified
theories. However, it is widely acknowledged that
all of these theories adopt a classical perspective. In
this context, it is obvious that discussing the energy
distributions of black holes in the RFGR, which is
one of the most promising contenders in the realm
of quantum gravity theory, will yield remarkable
outcomes. To achieve this objective, the dyado-
sphere configuration of an electromagnetic black

hole, proposed in [28e30] as a suitable approach for
elucidating gamma radiation bursts, is considered.
The subsequent sections are structured as follows.

In the second section, the space-time form is
composed in the RFGR. The third section is devoted
to computing the energy density of the dyadosphere
of a charged black hole in the RFGR. Graphical an-
alyses and discussion are presented in the fourth
section. Closing remarks are given in the last section.
G; Z; and c are taken equal to unity throughout the

study. Moreover, the tensor indices and local Lor-
entz indices are represented by the Greek (a;b;g…)
and Latin (a; b; c…) letters, respectively.

2. Space-time in the RFGR

De Lorenci and colleagues have reconstructed the
Reisner-Nordstr€om space-time configuration, which
was proposed to explain gamma-ray bursts occur-
ring in charged black holes [28e30]. This recon-
struction takes into consideration the first-order
contributions of the Euler-Heisenberg Lagrangian
and is outlined as follows [31].

ds2¼I2ðrÞdt2 �I�2ðrÞdr2 � r2dq2 � r2sin2 qdf2: ð2Þ

Here, I2ðrÞ ¼ 1� 2M
r þ Q2

r2 � 2Q4

5r6 where M and Q
respectively indicate the mass and charge of the
black hole while gravitational coupling constant for
non-linear electrodynamics is represented by 2.
Here are three significant aspects that should be
taken into account in this context: i) if 2 is extremely

minuscule, the contribution of 2Q4

5r6 can be dis-

regarded; ii) the contribution of 2Q4

5r6 is insignificant

when Q2

r2 [
2Q4

5r6 ; iii) Equation (2) reduces to the stan-
dard Reissner-Nordstr€om metric as 2 is set to zero.
In literature, wormholes [32], classical energy
[33,34], and entropy [35] have been studied for the
space-time given in Equation (2). On the other hand,
as mentioned in the introduction, the RFGR alludes
to the fact that space-time geometry switches en-
ergy, resulting in a distinct classical geometry for
each energy quantum. This is manifested through
the use of rainbow functions in the space-time
metric [10,11]. Thus, considering the metric (2), one
can achieve the following energy-dependent space-
time model by chasing the method dt/F�1

1 ð3Þdt
and dxi/F�1

2 ð3Þdxi introduced in [10,11] in view of
the RFGR

ds2¼I2ðrÞF�2
1 ð3Þdt2�I�2ðrÞF�2

2 ð3Þdr2

�F�2
2 ð3Þr2

�
dq2þ sin2 qdf2

�
:

ð3Þ
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So, the metric tensor and its inverse for the
aforementioned space-time can be respectively
expressed as

gab¼I2F�2
1 d0ad

0
b �I�2F�2

2 d1ad
1
b �F�2

2 r2d2ad
2
b

�F�2
2 r

2
sin2 qd3ad

3
b;

ð4Þ

gab¼I�2F 2
1d

a
0d

b
0 �I2F 2

2d
a
1d

b
1 �F 2

2r
�2da2d

b
2

�F 2
2r

�2
sin�2 qda3d

b
3 :

ð5Þ

3. Energy density

Our preference lies in computing the energy
density of the charged black hole with a rainbow
effect within the framework of teleparallel theory
(TT), which describes gravitational interactions in
terms of torsion rather than curvature [36]. The
rationale behind this selection is that the TT offers a
comparatively uncomplicated solution to the
enduring problem of calculating energy within the
framework of Einstein's general relativity (more
comprehensive information can be found in
[37e40]).
The gravitational energy-momentum tensor is

given as follows [37].

§ðaÞ ¼∭
�
vjХ

ðaÞj�d3x; ð6Þ

where gravitational energy density is expressed as

c¼vjХ
ðaÞj¼vj

 
det
�
hðiÞ
b

�
4p

XðaÞ0j
!
; ð7Þ

and

XðaÞðbÞðcÞ ¼1
4

�
T ðaÞðbÞðcÞ þT ðbÞðaÞðcÞ �TðcÞðaÞðbÞ�

þ 1
2

�
hðacÞT ðbÞ �hðabÞTðcÞ�: ð8Þ

Here, the torsion tensor is defined in the following
form [41].

TðjÞ
ab ¼vah

ðjÞ
b � vbhðjÞ

a ; ð9Þ
while

TðaÞ ¼TðbÞðaÞ
ðbÞ : ð10Þ

It should be noted that one can interchange the
tensor indices with the local Lorentz indices using
the tetrad tensor, or vice versa, that is TðaÞ ¼
haðbÞh

ðaÞ
b gbmTðbÞ

am . Moreover, the tetrad tensor hðjÞb which
establishes a connection between flat and curved
space-time, gives rise to the following relation

gab¼hðiÞ
a hðjÞ

b hðijÞ; ð11Þ

where hðijÞ indicates the Minkowski metric tensor.
The components of the tetrad for the energy-

dependent metric (3) can be determined by intro-
ducing the general coordinate transformation

hðjÞa ¼ vXb0

vXah
ðjÞ
b0 where Xb0 and Xa respectively represent

the Schwarzschild and the isotropic coordinates
ðt; r; q;fÞ [37]:

hðjÞ
a ¼IF�1

1 d
ðiÞ
0 d0a þI�1F�1

2 sin q
�
cos fd

ðiÞ

1
þ sin fd

ðiÞ
2

�
d1a

þF�1
2 r cos q

�
cos fdðiÞ1 þ sin fd

ðiÞ
2

�
d2m

þF�1
2 r sin qð � sin fd

ðiÞ
1 þ cos fdðiÞ2

�
;

ð12Þ

ha
ðjÞ ¼I�1F 1d

ðiÞ
0 d0a þIF 2 sin q

�
cos fd

ðiÞ

1
þ sin fd

ðiÞ
2

�
d1a

þF 2r�1 cos q
�
cos fdðiÞ1 þ sin fd

ðiÞ
2

�
d2m

þF 2r�1 sin�1 q
�
cos fdðiÞ2 � sin fd

ðiÞ

1

�
ð13Þ

where d indicates the Kronecker delta function. The
form of the non-zero elements of the torsion tensor
(9) is acquired as follows

Tð0Þ
01 ¼�Tð0Þ

10 ¼�F�1
1
dI
dr

; ð14Þ

Tð1Þ
12 ¼�Tð1Þ

21 ¼F�1
2

�
1�I�1�cos q cos f; ð15Þ

Tð1Þ
13 ¼�Tð1Þ

31 ¼F�1
2

�
I�1�1

�
sin q sin f; ð16Þ

Tð2Þ
12 ¼�Tð2Þ

21 ¼F�1
2

�
1�I�1�cos q sin f; ð17Þ

Tð2Þ
13 ¼�Tð2Þ

31 ¼F�1
2

�
1�I�1�sin q cos f; ð18Þ

Tð3Þ
12 ¼�Tð3Þ

21 ¼F�1
2

�
I�1�1

�
sin q: ð19Þ

Then, by utilizing Equations (14)e(19) along
with Equations (8), (12) and (13), the necessary
components of the XðaÞ0i tensor required for
computing the energy density are calculated as
follows

Xð0Þ01¼F 1F 2
2

2

�
dI
dr

þ2ðI� 1Þ
r

�
;Xð0Þ02¼Xð0Þ03¼0:

ð20Þ
Consequently, the gravitational energy density

for the dyadosphere of an energy-dependent
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charged black hole (3) is achieved in the following
form

In order to get an analytical expression for the
gravitational energy, one can expand the energy
density (21) up to the third-order as follow

cz
sinq
8pF 2

 
2
ffiffiffiffiffiffiffiffiffiffiffiffi
�Q42

p
ffiffiffi
5

p
r3

�2þ3
ffiffiffi
5

p
Q2rffiffiffiffiffiffiffiffiffiffiffiffi

�Q42
p �12

� ffiffiffi
5

p
M
�
r2ffiffiffiffiffiffiffiffiffiffiffiffi

�Q42
p þO½r�3

!
;

ð22Þ
which leads to the following gravitational

energy

§ð0Þ ¼
ffiffiffi
5

p �
3r4
�
5Q2 � 16Mr

�� 8Q42 LogðrÞ�
160F 2

ffiffiffiffiffiffiffiffiffiffiffiffi
�Q42

p � pr
4F 2

:

ð23Þ

4. Discussion of results

The energy density, as shown in Equation (21), is
dependent on several factors, including the charge,
mass, and coupling constant of the black hole, as
well as the rainbow function, F 2. In accordance with
[28], the dyadosphere is a distinctive area envelop-
ing the event horizon of an electrically charged
black hole, wherein the strength of the electric field
surpasses the crucial threshold required for the
creation of particle pairs. Therefore, it is reasonable
to expect that the energy density of the black hole,
described by metric (3), is influenced by the energy
of the test particle. Consequently, determining the
form in which the energy of the particle is desig-
nated by the rainbow functions is of great signifi-
cance. Although there are no experimental
constraints on rainbow functions yet, there are
different choices available in the literature (see [42]
and references therein). In this context, Equation
(21) yields different energy densities for the inves-
tigated black hole depending on the chosen form of
the rainbow functions. Figs. 1 and 2 provide visual
representations of the energy density, as given by
Equation (21), with respect to r. As expected, Fig. 1
illustrates the considerably high energy density of
the dyadosphere of a charged black hole in the
RFGR. Comparing Fig. 1 with Fig. 2, it can be

concluded that the energy density decreases for
F 2 > 1, whereas it increases for 0<F 2 < 1. On the

other hand, the energy density for metric (2) was

obtained by Xulu using Einstein
�
4M
r3 � 2Q2

r4 þ 2Q42

5r8

�
,

Landau-Lifshitz
�

Q2

8pr4 þ Q42

8pr8

�
, Papapetrou

�
Q2

8pr4 þ
Q42

8pr8

�
, and Weinberg

�
Q2

8pr4 þQ42

8pr8

�
formulations [34].

These results depend on the higher orders of 1=r, as
shown in Equation (21). This dependence supports
the variation in energy density depicted in Figs. 1
and 2.
It is apparent from Equation (21) that the last term

plays a crucial role in the dyadospheric region,
which is characterized by small values of r. In
addition, it is necessary to have 2< 0 in order to get
real energy density.

c¼ sin q

8pF 2

0
BBBB@

4M
r � 4Q2

r2 þ 12Q42

5r6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

r2 � 2M
r � Q42

5r6

q þ
3Q2

r2 � 2M
r � 21Q42

5r6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

r2 � 2M
r � Q42

5r6

q �
�
M
r � Q2

r2 þ 3Q42

5r6

�2
�
1þ Q2

r2 � 2M
r � Q42

5r6

�3=2þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

r2
� 2M

r
�Q42

5r6

r
�2

1
CCCCA: ð21Þ

Fig. 1. Energy density vs (F 2; r) with M ¼ 1;Q ¼ 1; 2 ¼ �1 and
q ¼ p=2 for F 2 > 1.

Fig. 2. Energy density vs (F 2; r) with M ¼ 1;Q ¼ 1; 2 ¼ �1 and
q ¼ p=2 for 0<F 2 < 1.
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Furthermore, it is important to highlight that our
obtained result (21) retrieves two distinct energy
density expressions for black holes within the
following limits.

i. 2/0 gives the Reissner-Nordstr€om black hole

cNR¼
sin q

8pF 2

0
BBBB@

2M
r � Q2

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

r2 � 2M
r

q �
�
M
r � Q2

r2

�2
�
1þ Q2

r2 � 2M
r

�3=2

þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

r2
� 2M

r

s
�2

1
CCCCA;

ð24Þ
ii. 2/0 and Q/0 give the Schwarzschild black

hole

cS¼
sinq

8pF 2

0
BBB@

2M
rffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2M
r

q �
�
M
r

�2�
1� 2M

r

�3=2þ2
�
1�2M

r

�1=2

�2

1
CCCA:

ð25Þ
The present study has provided the firs determi-

nation of the energy density of the dyadosphere of
an energy-dependent charged black hole in the
RFGR from the perspective of quantum gravity. The
energy density, as given by Equation (21) has been
influenced by various factors, including the charge
and mass of the black hole, coupling constant, and
rainbow function F 2. It has been important to
highlight that our obtained result (21) encompasses
two distinct energy density expressions for black
holes, with the limits 2/0 corresponding to the

Reissner-Nordstr€om black hole, and ð2;QÞ/0 cor-
responding to the Schwarzschild black hole.
This study presents a novel perspective for further

research on the energy densities of black holes,
encompassing both theoretical and experimental
aspects, with significant implications in the field.
Finally, it is worth emphasizing here that various
models (see Table 1) of rainbow functions have been
proposed in literature and our research can be
further deepened by using these definitions.
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