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Recent advances in CRISPR/Cas9-assisted gene therapy

Abstract

CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) is an exponentially growing tool
with wide-spread applications in therapeutics like gene modifications that focus on altering the hereditary
material to repair or eliminate any defective gene-causing diseases like cancer, AIDS (Acquired
immunodeficiency syndrome), etc. It also includes the identification of the target sequence with the help
of sgRNA followed by the substitution of a malfunction-ing gene with a normal version. It offers high
efficiency, specificity, and post-gene-editing efficacy, but have also some off-target impressions, and
immunogenic effects. The contribution of CRISPR/Cas9 has already been proved primarily in in-vitro
studies using animal germ cell lines but translation in in-vivo models is still not much supported due to
ethi-cal considerations. The recent advances include studies and clinical trials focusing on the treatment
of various diseases of genetic origin. For instance, CRISPR gene knock-in technique was applied for in-
vivo Leber Congenital Amaurosis 10 treatment, where CRISPR components were delivered via sub-retinal
injection to correct the mutation in CE9290. The current paper recapitulates the capability of CRISPR/
Cas9 in in-vivo gene therapy for various disorders like cancer, AIDS, sickle cell disease and the most
recent COVID-19. The insights presented herein are poised to contribute signifi-cantly to the advancement
of the field, fostering a deeper understanding of CRISPR/Cas9 technology and accelerating its clinical
transition. Ultimately, this review paper serves as a valuable resource for researchers, clinicians, and
policy-makers invested in the continued evolution of gene therapy and responsible utilization of CRISPR/
Cas9 for human welfare
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Abstract

CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) is an exponentially growing tool with
widespread applications in therapeutics like gene modifications that focus on altering the hereditary material to repair or
eliminate any defective gene-causing diseases like cancer, AIDS (Acquired immunodeficiency syndrome), etc. It also
includes the identification of the target sequence with the help of sgRNA followed by the substitution of a malfunctioning
gene with a normal version. It offers high efficiency, specificity, and post-gene-editing efficacy, but have also some off-
target impressions, and immunogenic effects. The contribution of CRISPR/Cas9 has already been proved primarily in in-
vitro studies using animal germ cell lines but translation in in-vivo models is still not much supported due to ethical
considerations. The recent advances include studies and clinical trials focusing on the treatment of various diseases of
genetic origin. For instance, CRISPR gene knock-in technique was applied for in-vivo Leber Congenital Amaurosis 10
treatment, where CRISPR components were delivered via sub-retinal injection to correct the mutation in CE9290. The
current paper recapitulates the capability of CRISPR/Cas9 in in-vivo gene therapy for various disorders like cancer, AIDS,
sickle cell disease and the most recent COVID-19. The insights presented herein are poised to contribute significantly to
the advancement of the field, fostering a deeper understanding of CRISPR/Cas9 technology and accelerating its clinical
transition. Ultimately, this review paper serves as a valuable resource for researchers, clinicians, and policymakers
invested in the continued evolution of gene therapy and responsible utilization of CRISPR/Cas9 for human welfare.
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1. Introduction metal-based nanostructures [4—6] have proved
effective against cancer. However, gene therapy
eliminates the disease from the root level.

The basic idea behind gene therapy is to rectify
the defective gene/s by transferring new gene/s to
treat non-life-threatening as well as life-threatening
ailments [1]. Considering the results from the trials,
27 cellular and gene therapies have already been
approved by the FDA (Food and Drug Administra-
tion) [7]. CRISPR-associated (Cas) nuclease systems,
meganucleases, zinc finger nucleases (ZFN) and
transcription activator-like effector nucleases (TAL-
ENs) are some of the most prominent methods for
gene therapy [8].

CRISPR/Cas9, one of the advanced gene therapy
variants has potential applications outside the realm

E rrors in genetic information transfer due to
monogenic disorders, multifactorial inheritance
disorders, and mutations lead to genetic illnesses.
Certain disorders like sickle cell disease are present
by birth while some are acquired during life span
like cancer. For instance: AIDS, cystic fibrosis, can-
cer, hematological and neurological disorders have
adverse effects on a large number of people globally
[1]. Safer and more effective remedies have become
the need of the hour. Nanotechnology has been
proven effective in treating ailments with much
lower doses of medicine and with the least side ef-
fects. Several nanomaterials and composites with
biomaterials like chitosan, hydroxyapatite [2,3], and
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of traditional gene therapy techniques [9]. CRISPR/
Cas covers more than 50% of bacterial and archaeal
genomes and is responsible for adaptive immunity
in prokaryotes [10]. It uses RNA-guided nucleases to
detect and chop foreign genetic material. The hy-
pervariable locus, created by CRISPR absorbed by
the host and utilized for the development of ac-
quired immunity [11]. CRISPR was designated as
the breakthrough of 2015 by Science and in 2020,
Jennifer Doudna and Emmanuelle Charpentier
shared the Nobel Prize in Chemistry [12].

CRISPR/Cas is widely considered to acquire dis-
ease-related models for ailments including Alz-
heimer's disease [13], brittle bone [14], X-linked
adrenoleukodystrophy [15], and aniridia-related
keratopathy [16]. In addition to this, CRISPR/Cas
has also shown the contribution of CRISPR in
monogenic human genetic illnesses treatment,
which is one of the fascinating and most promising
developments of this technology. For instance, as
the paper highlights the ongoing advancement of
CRISPR in cancer treatment, diagnostic and thera-
peutic applications in COVID-19 disease, and gene
therapy approaches in viral diseases like AIDS and
hereditary disorders like SCD, this technology not
only overcomes the shortcomings of conventional
therapies but also paves the way to new and
advanced methodologies for research studies and
clinical trials with successful results as is presented
in this review paper. Drawing from a plethora of
recent studies and breakthroughs, the paper sys-
tematically presents different challenges, emerging
strategies, and solutions aimed at enhancing the
precision, efficacy, and safety of in-vivo CRISPR/
Cas9 applications. Scientists have evaluated several
mouse and animal models against different diseases
(Table 1). This paper acknowledges the previous
reviews done on the subject [17—20] and continues
the work by providing an improved, detailed, and
recent review on different aspects of CRISPR/Cas9
which includes recent and ongoing clinical trials
using this technology, detailed view of diseases and
their treatment and ethical concerns surrounding
CRISPR/Cas9 along with current international
standing and regulatory norms of different coun-
tries and stakeholders on gene editing. It focuses on
the convergence of scientific progress and ethical
discourse essential for the continued success and
acceptance of CRISPR-based therapies.
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Significant preservation of photoreceptors observed
Partial recovery of functional dystrophin protein

Lowered mutant HTT mRNA and related

protein aggregates.
~50% improved motor neurons at the end stage.

17 (of 22 patients) had higher modified T-cells
40% reduction of AGT expression.

for infusion.
Dose-dependent decrease in serum TTR

Ongoing (NCT04438083)
Ongoing (NCT04244656)
Ongoing (NCT04037566)

Indel frequency of 93.0% (SpCas9)
2.6% of alleles corrected.

Complete remission of acute

lymphoblastic leukemia

Result

Ex-vivo
In-vitro
Ex-vivo
In-vivo
Ex-vivo
Ex-vivo
Ex-vivo
Ex-vivo
In-vivo
In-vivo
In-vivo
In-vivo
Ex-vivo

Mode

BCL11A Hematopoietic stem and progenitor cells

CCR5-ablated hematopoietic stem and

progenitor cells
Exon 23 from dystrophin gene (Mdx mouse)

Retinitis pigmentosa GTPase regulator
Huntingtin (HTT) gene

Superoxide dismutase 1

Transthyretin (TTR)
AGT gene

PD-1 edited T cells
CD70

FAH hepatocytes

Target
BCMA
HPK1

HIV-1 and acute lymphoblastic

leukemia
Duchenne muscular dystrophy

Huntington's disease
Amyotrophic lateral sclerosis

X-linked retinitis pigmentosa
Hypertension

Disease

Metastatic lung Cancer
B-thalassemia

Transthyretin amyloidosis
Renal cell carcinoma
Multiple myeloma
Hematopoietic malignancies
Hereditary tyrosinemia type I

2. Gene editing using CRISPR/Cas9:
mechanism

During a pathogen attack in a bacterium, the
CRISPR acts as a genomic memory from the previous

Table 1. CRISPR/Cas9 application in healthcare and disease treatment.

Model
Human
Mouse

Mice
Rat
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exposure to the pathogen that is used by Cas proteins
and guides RNA to recognize the foreign DNA fol-
lowed by its inactivation via endonuclease activity
[21]. The same mechanism for gene editing and
altering the genomic target of Cas9 proteins can be
used for human welfare by simply modifying the
target sequence.

Genome editing with CRISPR/Cas9 is usually
classified into three steps [22]: The first stage
(recognition) engineered sgRNA directs the Cas9
protein toward the target sequence. In the second
stage, RuvC and HNH domains of Cas9 protein
form double-stranded break (DSBs) at target loci,
upstream to a protospacer adjacent motif (PAM) site
[23—25]. In the final stage (rejoining), created breaks
are repaired either via homology-directed repair
(HDR) or Non-homologous end joining (NHE]) [26].
NHE] while the repair of DSBs may introduce small
insertions or deletions (indels) randomly that make
the process more error-prone than HDR [24].

3. Applications of CRISPR/Cas9 in healthcare
and treatment

CRISPR has shown a promising way to treat some
of the serious and lethal diseases and aid in saving
lives. However, the animal and human model trials
are still not getting support due to ethical concerns.
This section summarizes the advancements in
CRISPR/Cas9 and its contribution to some health
ailments:

3.1. Cancer

Abrupt genetic changes and certain environ-
mental factors induce tumorigenesis [27]. Current
treatment methods involve chemotherapy, radiation
therapy, surgery, hormonal therapy, and molecular
targeted therapy or their combinations which
mainly suffer from poor efficiencies, side effects,
and possible recurrence [28]. Antitumor immuno-
therapy relies on the identification and targeting of
immunological checkpoints such as the cluster of
differentiation i.e. CD152 (also called CTLA-4) and
CD279 (also known as PD-1) [29,30] and the use of
immunological checkpoint inhibitors. Gene therapy
for the modification of immune cells like Chimeric
antigen receptor T-cells (CAR-T cells) has shown
great potential [31] but is ineffective against solid
cancers [32] due to heterogeneous antigen expres-
sion [33], T cell fatigue [34], poor expression of MHC
(major histocompatibility complex), high tumor
mutational burden, and immunosuppressive ele-
ments in the tumor microenvironment [35] that ul-
timately results in immune escape.

CRISPR has offered multiplexing capability,
especially against genetic changes related to can-
cers, and become a potent tool to restore the normal
state of genes [36]. The first clinical trial with
CRISPR against cancer was performed in China in
2016 by editing immune cells against lung cancer.
The PD-1 gene's exon 2 was targeted using sgRNAL,
and sgRNA2, followed by cotransfection of Cas9 and
sgRNA plasmids into T-cells via electroporation. In
comparison to unedited cells, modified T cells had a
significantly higher percentage of CD8+IFN-y+
cells [37]. This study has raised the hope for the
clinical applications of CRISPR. Li et al. [38], have
prepared CD133 knockout cells by targeting exon 1
gene using LentiCrispr V2 followed by transfection
into HEK-293T cells. Modified CD133+ colon cancer
cells have shown a significant decline in colony-
forming ability, cell proliferation, and inhibition of
cell migration and invasion.

Feasibility and safety assessment of multiplex
CRISPR editing and T-cell designing was conducted
with three patients having refractory cancer. The T-
lymphocytes from the patient were edited ex-vivo to
target TRAC, PDCD1 and TRBC genes and then
infused back. The prolonged activity of designed T-
cells has suggested the potential application of
CRISPR gene editing in cancer immunotherapy [51].
Besides gene editing, CRISPR/Cas9 system is also
capable of identifying the chemo-resistant genes
that are the main obstacles in cancer treatment [19].

3.2. Corona-virus disease of 2019

The latest pandemic COVID-19 was brought on
by the SARS-CoV-2 (Severe Acute Respiratory
Syndrome Coronavirus-2) virus. The World Health
Organization (WHO) estimates that as of February
23, 2023, COVID-19 has infected 757, 264, 511 people
and caused 6,850,594 deaths. The virus has rapid
transmission via direct contact, air, bacteria, and
droplets [52]. Long COVID has shown new-onset
illnesses including cardiovascular and cerebrovas-
cular diseases [53], type 2 diabetes [54], and dysau-
tonomia [55]. Vaccines, antiviral medications,
monoclonal antibodies (mAbs), and non-pharma-
ceutical measures like isolation, lockdowns, social
distancing, contact tracing, and intensive care have
been used to prevent transmission as well as lower
the number of casualties [56,57].

The advancements in CRISPR-Cas9 technology
allows the development of time-effective assays and
diagnosis kits along with providing therapeutic tool.
The detection assays are around 95% accurate and
completed within 40 min of turnaround time [58].
Specific  high-sensitivity =~ enzymatic  reporter
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unlocking (SHERLOCK) is another detection
approach that provides a framework for COVID
testing with paper strips [59] that generates visually
readable output by detecting specific nucleic acid
sequences. In addition, CRISPR can also be
employed as a gene therapy tool in Covid-19 treat-
ment with RNA-guided RNA-targeting endonu-
clease Casl3. PAC-MAN (Prophylactic Antiviral
CRISPR in huMAN cells), a VI-D CRISPR/Cas13d
variant from Ruminococcus flavefaciens can disrupt
RNA simultaneously at multiple regions. This
approach has higher efficiency and can complete a
relatively high rate of mutation and recombination
of SARS-CoV-2 [60].

3.3. Acquired immunodeficiency syndrome (AIDS)

Despite several advancements in medical and
healthcare, viral infection like COVID and HIV
(human immunodeficiency virus) AIDS remains a
serious health concern across the globe. The major
issue with HIV infection is incomplete eradication
and retention of the virus in HIV reservoirs, like
astrocytes (human brain) [61], peripheral blood [62],
and lymphoid tissues [63] that may show recurrent
infection [15,63]. Lifelong antiviral medication may
be suggested but it has shown serious side effects
like the risk of fractures, central nervous system,
cardiovascular, hepatic, and renal systems [64]
associated ailments.

The emerging CRISPR system might help in
eliminating HIV-integrated genomes as well as the
complete elimination of HIV from reservoirs [65].
Previous studies revealed that multiplexed CRISPR
can selectively target multiple conserved sequences
and eliminate the elevated level of the pre-inte-
grated proviral genome along with prolonged pro-
tection from HIV-1 infection [66]. In August 2013,
the CRISPR system was used to engineer the
mutated long terminal repeat sequence (LTR) of
HIV-1 in an in-vitro model which resulted in the
elimination of proviral DNA integrated into the
infected host cell and blocked the virus expression.
The gRNA expression vector was constructed with a
human U6 polymerase III promoter to target HIV-1
LTR considering target 5 (located in the R region, at
TAR sequence) and target 6 (located in the U3 re-
gion at NF—«B binding sequence). LTIG vectors,
pseudotyped with VSV-G envelope protein were
used to infect HeLa cells and 293 T to evaluate the
impact of the CRISPR. It successfully disrupts the
expression of active HIV-1 provirus but prevents
latent infection [67]. In another study, TALEN+ and
CRISPR were compared to edit the human CCR5
gene (transmembrane co-receptor critical for HIV-1

entry into target CD4+ cells). It turned out that
CRISPR/Cas9 facilitated the sorting of cells with 4.8
times higher gene editing than TALEN + trans-
fected cells [68]. Teque et al. [69], reprogrammed
peripheral blood mononuclear cells of HIV-infected
patients by introducing bi-allelic CCR5A32 muta-
tional changes using Sendai virus vector (SeVdp) or
EBNA1/OriP episomal vectors. All created iPSC
lines and altered cell lines maintained their normal
karyotype and showed no signs of HIV integration.

3.4. Sickle cell disease (SCD)

It is a hereditary monogenic autosomal recessive
illness caused due to point mutation in the hemo-
globin B subunit gene (HBB) [70]. Polymerization of
deoxygenated sickle hemoglobin resulted in ane-
mia, erythrocyte distortion, hemolysis, excruciating
vaso-occlusive events, and irreparable end-organ
damage [71]. The only treatment possibilities avail-
able are hydroxyurea, transfusions, and pain man-
agement. FDA has approved only four medications
ie. voxelotor (2020), crizanlizumab-tmca (2019), L-
Glutamine (2018), and hydroxyurea (1998) to mini-
mize acute complications.

One of the therapeutic approaches involved ex-
vivo B-globin gene repair in hematopoietic stem and
progenitor cells (HSPCs) using adeno-associated
virus serotype 6-mediated HBB gene repair with
chemically modified guide RNAs. The preclinical
trial results confirmed the reproducibility, safety,
and efficacy to start 1/2 phase clinical trial [72]. Wu
et al. [73], amplified sgRNA with promoter T7 from
pX458 plasmid followed by in-vitro transcription.
The strategy didn't have any off-target impact even
after the alteration of more than 80% of alleles. It
enhanced fetal hemoglobin without any transfusion
and vaso-occlusive abolition.

4. Challenges in gene editing with CRISPR/
Cas9

CRISPR is one of the efficient methods used for
gene editing but suffers from some bottlenecks like
off-target effects, off-target binding, and editing [74]
which may result in serious complications. In com-
parison to zebrafish and mice, human cells are more
sensitive to off-target mutations [75,76]. CRISPR-
assisted gene editing may have unintentional com-
plex rearrangements, large deletions, and inefficient
DSB repair which result in adverse impact and cell
apoptosis [77,78].

In the past few years, multiple techniques i.e.
IDLVs (integrase-defective lentiviral vectors) [79],
DISCOVER-seq (discovery of in-situ Cas off-targets
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and verification by sequencing) [80], CIRCLE-seq
(Circularization for in vitro reporting of cleavage
effects by sequencing) [81], digenome-seq [82],
HTGTS (high-throughput, genome-wide, trans-
location sequencing) method [83], GUIDE-seq
(genome-wide, unbiased identification of DSBs
enabled by sequencing) [84], etc, have been
immersed to detect off-target genome modifica-
tions. Some of the methods include the engineering
of Cas9 nucleases [85], dimeric Cas9 nuclease [86],
Cas9 coupled with artificial inhibitory domains [87],
optimized sgRNA design [88] “hit-and-run”
approach by transferring Cas9 protein in the place
of Cas9 gene [89] and non-viral delivery [90] to
minimize the off-target effects. The use of dCas9
(dead Cas9) was more efficient in its therapeutic
applications as it can modify the expression of target
genes without the introduction of DSBs [91] while
Cas9n uses only single-stranded breaks (SSBs). The
upgraded approach has contributed to the devel-
opment of prime editors and base editors for the
safer applicability of CRISPR in gene editing [17].
Besides, stability of alterations and efficiency in
genes also is a major concern [74]. For example, in
some cells, the edited genome gives out a growth
advantage. In a mouse model of hereditary tyrosi-
nemia [92], liver cells were modified with CRISPR.
Initially, only 0.25% of liver cells were genetically
corrected which survived and after 33 days, this
proportion reached 33.5%, which was enough for
the disease phenotype to be rescued. In some cases,
the edited genome has also shown growth disad-
vantages like in the case of inactivating oncogenes.
In comparison to edited cells, unedited cancer cells
have malignant capacities and acquire growth
advantage. To counter this, repeated treatment ep-
isodes and highly specific editing efficiency must be
required [74].

Some immunogenic effects because components
used in CRISPR-based in-vivo gene therapy like Cas
nucleases [18], and gene delivery vehicle [90] are
exogenous e.g. humans have frequent exposure to
Cas9 nucleases from Streptococcus pyogenes and
Staphylococcus aureus [93]. In such cases, subjects
already have pre-existing immunity against these
bacterial orthologs: SaCas9 and SpCas9 [94]. Studies
have confirmed that mouse models can tolerate the
presence of bacterial Cas9 orthologs: SaCas9,
SpCas9 and CjCas9 (Campylobacter jejuni Cas9) [95]
but humans already possess antibodies against
SaCas9 and SpCas9, only CjCas9 left as an option.
Removal of Cas9 epitope nuclease [18] and selection
of nonimmunogenic delivery vehicles like nano-
particles or lipid-based mRNA or protein delivery
vehicles can be employed to prevent immunogenic

responses [96,97]. Besides, the engineering of
Adeno-associated viruses (AAVs) with the insertion
of human epidermal growth factor receptor 2 spe-
cific ligands into the AAVs capsid increased the
tropism of the virus for tumor cells in-vivo by
approximately 20-fold [98].

5. Ethical concerns

Application of CRISPR Cas9 as a gene editing and
a potential gene therapy tool has posed plenty of
ethical concerns regarding the transmittance of un-
desirable changes into future generations along
with several side-effects and unintended mutations
[99], non-therapeutic applications of CRISPR [100]
and evolution of the “designer babies” [101]. One
more problem associated with CRISPR is the cost of
treatment which makes its availability fractional
[102]. To avoid the misuse of CRISPR Cas9 tech-
nology, socially acceptable and ethically sound
regulations and policies are necessary [101]. The
National Guidelines for Gene Therapy Product
Development and Clinical Trials, framed by the
Indian Council of Medical Research and Depart-
ment of Biotechnology, Ministry of Science and
Technology, Government of India, clearly states that
the ideal gene therapy product must not be terato-
genic, excessively immuno-stimulating, mutagenic,
or with undesirable host immune response. The
Department of Health Research, Ministry of Health
and Family Welfare, Government of India has also
constructed a specialist national committee ‘Gene
Therapy Advisory and Evaluation Committee
(GTAEC) that evaluates various aspects of
biomedical research, concerned government bodies
and other stakeholders involved [103]. The interna-
tional standpoint and regulatory approaches
regarding gene editing in various countries can be
accessed from the research project report presented
at the Third International Summit on Human
Genome Editing (Francis Crick Institute, London
UK) [104].

6. Conclusion

The scope of CRISPR/Cas9 in the future is vast, as
the current exploratory research and application-
based studies are just a drop in the ocean and it has
barely scratched the surface in terms of its future in
medical research. The intricate interplay of gene
editing, precision medicine, and ethical consider-
ations have been examined indicating the need for a
multidisciplinary approach to advance the field. It is
quite possible that CRISPR-based genome editing
will soon be widely used in clinical practice, even
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though efficacy and safety concerns remain a major
issue at present. However, the scientific break-
throughs and clinical successes over the past years
demonstrate the capacity of CRISPR/Cas-mediated
gene therapy to provide lasting benefits to human
health, which justifies increasing efforts and
continued optimism towards incorporating these
therapies into our standard treatment option and
forward-thinking strategies that maximize preci-
sion, efficacy and patient safety. The prospects of
this technology have resulted in an explosion in its
application across multiple fields but most impor-
tantly it could lead to becoming a one-stop solution
for any disease that has a genetic origin. As we stand
at the threshold of transformative advancements,
we encourage the community to harness the in-
sights presented here as catalysts for innovative
research, actionable solutions, and a shared
commitment to realizing the full potential of
CRISPR/Cas9 in shaping the future of personalized
medicine.
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