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YOLOv8-CAB: Improved YOLOv8 for Real-time
Object Detection

Moahaimen Talib a,*, Ahmed H.Y. Al-Noori b, Jameelah Suad a

a Department of Computer Science, College of Science, Mustansiriyah University, Baghdad, Iraq
b School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom

Abstract

This study presents a groundbreaking approach to enhance the accuracy of the YOLOv8 model in object detection,
focusing mainly on addressing the limitations of detecting objects in varied image types, particularly for small objects.
The proposed strategy of this work incorporates the Context Attention Block (CAB) to effectively locate and identify
small objects in images. Furthermore, the proposed work improves the feature extraction capability without increasing
model complexity by increasing the thickness of the Coarse-to-Fine(C2F) block. In addition, Spatial Attention (SA) has
been modified to accelerate detection performance. The enhanced YOLOv8 model (Namely YOLOv8-CAB) strongly
emphasizes the performance of detecting smaller objects by leveraging the CAB block to exploit multi-scale feature
maps and iterative feedback, thereby optimizing object detection mechanisms. As a result, the innovative design fa-
cilitates superior feature extraction, “especially the weak features,” contextual information preservation, and efficient
feature fusion. Rigorous testing on the Common Objects in Context (COCO) dataset was performed to demonstrate the
efficacy of the proposed technique. It is resulting in a remarkable improvement over standard YOLO models. The
YOLOv8-CAB model achieved a mean average precision of 97 % of detecting rate, indicating a 1 % increase compared to
conventional models. This study highlights the capabilities of our improved YOLOv8 method in detecting objects,
representing a breakthrough that sets the stage for advancements in real-time object detection techniques.

Keywords: Artificial intelligence, Deep learning, Computer vision, Object detection, You only look once

1. Introduction

O bject recognition for small objects in images is
a critical and indispensable task in the field of

computer vision, finding applications in various do-
mains, such as identifying pathological cells [1],
crime prediction [2], plant classification [3], Epidemic
prevention [4], human age recognition [5], and nav-
igation assistance [6]. Despite the advancements in
object detection models, accurately detecting small
and irregularly shaped objects remains challenging.
This difficulty arises because most models primarily
concentrate on medium or large objects, often
ignoring the intricacies associated with smaller
objects.
Recent efforts have focused on creating network

structures that are both efficient and accurate for

real-time applications. One of the notable examples
of these structures include MobileNet [7e9], Shuf-
fleNet [10,11], ResNet [12], and DarkNet [13], spe-
cifically designed for performance on hardware
platforms, such as CPUs and GPUs, as proposed by
researchers.
During training, convolutional neural network

(CNN) models learn directly from the original pixel
data. That allows them to discover data features and
express complex contextual information effectively.
Certain CNNs have exhibited substantial enhance-
ments in accuracy and generalizability [14], suc-
cessfully addressing various image analysis tasks,
such as image categorization [15], image region
segmentation [16], and image quality enhancement.
Object detection algorithms can be broadly classi-
fied into two categories: Two-stage algorithms,
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including Fast ReCNN, Faster ReCNN, and Mask
ReCNN [17e19], and one-stage algorithms, such as
the well-known You Only Look Once (YOLO) series
algorithms [13,20e24] and single shot multi-box
detector (SSD) algorithms [25,26], among others.
The YOLO algorithms have undergone substan-

tial development and are widely recognized as some
of the most effective algorithms in the field. Notably,
the YOLOv8 algorithm [27], introduced in 2023, has
achieved exceptional accuracy, surpassing previous
iterations. The YOLO algorithm is primarily
designed to identify and categorize objects that
occupy the entire image. However, its performance
for detecting smaller-scale objects may be compar-
atively less than certain contemporary algorithms
when configured to operate in a unique environ-
ment with specific dimensions [28,29].
CNN robustness becomes evident when evalu-

ating its models' performance on visible images. The
ability to capture profound input characteristics has
led to intensive research in the challenging area of
discovering frail and tiny objects in videos using
CNNs.
Recent advancements in object detection algo-

rithms have provided robust solutions for identi-
fying medium to large objects in various contexts.
However, detecting small and geometric objects still
represents an essential challenge, especially for
objects whose detection is critical for applications
like micro-organism classification or precision
agriculture. While the YOLOv8 [27] algorithm
introduced an innovative approach, it falls short in
environments where object scale and clarity are
compromised. The work presents YOLOv8-CAB, an
evolution of YOLOv8, specifically engineered to
enhance small object detection. Integrating the
Context Attention Block (CAB) within the model's
architecture addresses the intricacies associated
with detecting fine-scale objects without compro-
mising the real-time processing capabilities. This is
a significant step forward from the conventional
Coarse-to-Fine models.
Empirical evaluations on the COCO dataset

demonstrate a 2.1 % increase in mAP for objects
under a certain size threshold compared to the
baseline YOLOv8, outperforming contemporary
models like the NanoDet model in speed and pre-
cision. These improvements are not just incremen-
tal; they enable the application of YOLOv8-CAB in
scenarios where rapid and precise detection of small
objects can be life-saving, such as in medical di-
agnostics or disaster response scenarios.
These advantages substantially contribute to

enhancing object detection precision in images.
Subsequently, the presented work enhances the

existing methodology and proposes an innovative
detection framework, YOLOv8-CAB, explicitly
designed for identifying diminutive and feeble en-
tities within visual representations. The model
demonstrates a high level of reliability and effi-
ciency in the task of object detection within images.
The network prioritizes shallow information and

optimizes feature extraction by replacing the
Coarse-to-Fine (C2F) [30] module with CAB in its
backbone. Moreover, the iterative utilization of the
feature extraction module allows for extracting
detailed information along with profound features.
The spatial attention [31] module has been inte-
grated and improved within the residual blocks,
facilitating the adjustment of feature weights and
integrating features across the channel dimension.
The detection stage incorporates the enhancement
of multi-scale feature detection to enhance the
detection capabilities for small and low-intensity
objects, implemented through four-scale feature
maps. The primary goal is to improve the accuracy
of object detection. A scientific investigation was
conducted on the Common Objects in Context
(COCO) [32] dataset to assess the specific influence
of each element in the proposed model's network.
Empirical results prove the proposed model has
better precision and real-time detection capabilities
when applied to video data.
Furthermore, as seen later, the proposed method

has achieved higher accuracy than other state-of-
the-art techniques (such as YOLOv5 and YOLOv8).
The primary contribution of this study can be

briefly outlined as follows:

a) This study presents the YOLOv8-CAB approach
for detecting small and geometric objects by
examining their distinctive characteristics. The
method builds upon the YOLOv8 framework
and involves an analysis of the network struc-
ture, channel compression, parameter optimi-
zation, and other relevant factors. Substantial
advancements have been implemented to
enhance the design of this novel network,
YOLOv8-CAB. Specifically, the feature extrac-
tion network has been meticulously engineered
to fully exploit shallow characteristics while
adding four layers to the detection head network
to prioritize detecting small and fragile objects.
The proposed models exhibit enhanced speed
and accuracy compared with current image ob-
ject detection algorithms.

b) The developed feature extraction network ex-
pands upon and iterates the shallow C2F mod-
ule, replacing it with the Context Attention Block
(CAB), explicitly designed to capture local and
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global context effectively and efficiently, allow-
ing the network to detect small objects with
better performance.

c) In the head, the C2F has been modified by
increasing the thickness of the C2F module,
which allocates more layers and filters in the
convolution operations. This enhancement may
improve the model's performance on certain
tasks due to the added capacity for feature
extraction.

d) Improving spatial attention by adding Selective
Kernel (SK) attention [33] to spatial attention, the
proposed contribution enhances the spatial
attention module by incorporating modifications
inspired by the SK attention mechanism. These
modifications include a split operation for multi-
scale spatial modeling, separate fuse and scale
steps for flexible feature weighting, and inte-
grating local and global context. These im-
provements enhance small object detection and
selectively highlight important spatial regions
and channels. The modified spatial attention
module shows potential for surpassing the per-
formance of the original module on various
computer vision tasks.

The rest of the paper is divided into the following:
Section 2 focuses mainly on related work concerned
with object detection using different types of CNN
models, the Proposed method including Module.
Architecture, the suggested C2F modification, and
Spatial Attention Module improvement in section 3.
Experimental analysis and results in section 4.
Finally, the conclusion and the suggestions for
future works are in section 5.

2. Related work

In 2014, R. Girshick, J. Donahue, T. Darrell, and J.
Malik introduced the groundbreaking ReCNN [42]
for object detection. The presented object detection
system divided the process into generating pro-
posals and predicting objects [14]. However, this
approach was computationally expensive. Faster
ReCNN was proposed in 2015 [17,18], aiming to
improve both speed and precision by introducing
the region proposal network (RPN) and Region of
Interest (ROI) pooling. Various network models
have been derived from Faster ReCNN to address
different problem domains. However, these models
inherit some limitations from ReCNN and Faster
ReCNN. The two-stage design of these models
makes inference slower due to separate proposal
generation and detection steps. Fixed proposal
scales may lead to missing small objects, and ROI

pooling on sparse proposals can result in losing
spatial details. The separate training of the RPN and
detection network components also hinders opti-
mization. Moreover, these models lack inherent
feature enhancement mechanisms for handling
visually similar classes. In contrast, YOLOv8-CAB
overcomes these limitations using a single-stage
YOLOv8-CAB enhanced detection approach with
multi-scale feature processing, enabling faster and
more accurate detection, especially for small and
visually similar objects.
In 2018, A. Wong and M. Javad developed Tiny

SSD [34], a concise deep neural network structure
for real-time embedded object detection. This
method utilizes Fire modules inspired by Squeeze
Net and auxiliary convolutions based on the single
shot detector architecture to reduce model size
while maintaining accuracy. However, Tiny SSD has
some limitations. The model's accuracy, measured
by Mean Average Precision (mAP), still falls behind
that of detection models due to a trade-off between
model compression and maintaining accuracy.
Furthermore, the evaluation of the model is con-
strained in terms of diversity, as it has been scruti-
nized exclusively utilizing 20 categories extracted
from the PASCAL VOC dataset.
In comparison, YOLOv8-CAB emerges as a su-

perior model. It strikes a better balance between
model size and accuracy, making it suitable for
diverse and challenging datasets. Moreover, the
YOLOv8-CAB method does not entail a strict trade-
off between accuracy and model compression,
resulting in a more versatile and efficient model for
object detection.
In 2022, A. Mishra and H. Aljasmi developed a

real-time vision-based laboratory safety monitoring
system [35]. They utilized YOLOv5 and YOLOv7
object detection models trained on a unique dataset
featuring students wearing four types of personal
protective equipment in lab settings. Although their
models, especially YOLOv5 versions, performed
high accuracy on this modest four-class dataset,
they faced limitations in detecting small objects due
to the limited samples in this dataset. Furthermore,
the proposed model evaluation lacked variety since
it was examined using only 20 categories from the
PASCAL VOC dataset.
In comparison, YOLOv8 offers clear advantages.

The versatility and robustness of YOLOv8-CAB
enable it to perform efficiently, even with small
objects, addressing one of the primary limitations of
Mishra and his teamwork. Additionally, YOLOv8-
CAB is more effective in diverse environments than
limited to a specific context, such as a single lab.
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Therefore, YOLOv8 is a superior choice for real-
time monitoring in various settings.
In a study conducted in 2022, F. Sun, J. Gu, L. Deng,

and H. Liu proposed an algorithm called SF YOLOv5
[36] for detecting objects. This algorithm builds upon
the YOLOv5 algorithm to achieve results. The pri-
mary objective of their work was to improve object
detection by utilizing their algorithm. They success-
fully improved detection accuracy and reduced
model parameters and computational requirements,
outperforming methods, such as YOLOv5s,
YOLOv5n, YOLOv3, YOLOv7, and ResNeXt CSP on
datasets. However, the study primarily focused on
detecting objects, and further exploration is needed
to assess its performance with small and full-scale
targets. In comparison with YOLOv8-CAB, it sur-
passes SF YOLOv5 through advanced context
modeling via CAB blocks, robust multi-scale archi-
tecture, optimized end-to-end training, state-of-the-
art performance on small and full objects, and
disambiguation capabilities, providing more efficient
and well-rounded improvements.
In their 2022 publication, Chang Xu, Jinwang

Wang,WenYang, Huai Yu, Lei Yu, andGui-Song Xia
introduced a new approach for detecting tiny objects
in aerial images. They proposed the Normalized
Wasserstein Distance (NWD) and a Ranking-Based
Assignment (RKA) strategy [37]. The authors
modeled bounding boxes as Gaussian distributions
and measured similarity using the Wasserstein dis-
tance, which NWD then normalized to a 0e1 range.
The RKA strategy assigns positive labels based on
ranking proposals rather than simple thresholding.
Despite their advances, their method has certain
limitations; it is highly dependent on modeling
bounding boxes as Gaussian distributions, which
might not precisely capture all objects. Performance
improvements are primarily attributed to the
ranking assignment rather than feature discrimina-
tion enhancement, limiting the approach's general-
izability. Additionally, more in-depth failure analysis
can strengthen their methodology.
In their 2023 study, the authors Kim, M., Kim, H.,

Sung, J., Park, C.,&Paik, J. developed a novelmethod
for small object detection using a high-resolution
processingmodule [38] and a sigmoid fusionmodule.
This method improves small object detection by
increasing mAP, using only 57 % of the model pa-
rameters and 71 % of the computational power in
Giga Floating Point Operations Per Second (Gflops)
compared with existing models, such as YOLOX.
Although some enhancements have been observed,
the model still has challenges. These challenges
include the need for more power when dealing with
high-resolution images, its ability to perform well

across different object detection tasks, and its resil-
ience in handling diverse image conditions and
noise. By contrast, YOLOv8-CAB surpasses the lim-
itations of previous work through its efficient CAB
modules for context-aware feature enhancement,
robust multi-scale architecture to detect diverse ob-
ject sizes, optimized end-to-end joint training for
optimization, and built-in noise and variation resil-
ience from CAB's focus on discriminative features.
YOLOv8 offers a substantial improvement over

this approach. It does not rely on specific modeling
of bounding boxes and focuses on feature discrim-
ination, allowing for a more generalized and effec-
tive application. In addition, YOLOv8-CAB's
strategy does not require the intensive analysis
needed by Xu and his colleges approach [38], mak-
ing it a more robust and efficient solution for tiny
object detection in aerial images.
In their 2022 study, authors Jiang, B., Chen, S.,

Wang, B., & Luo, B. developed a novel method for
enhanced multi-graph data representation in semi-
supervised classification [40], showing promise in
leveraging multiple graph structures for enhanced
data representation. However, MGLNN's de-
pendency on multiple graph integration may limit
its efficacy in singular, complex graph scenarios. In
contrast, YOLOv8-CAB excels in object detection,
particularly in accurately identifying small and
geometric objects. While MGLNN demonstrates
effectiveness in multi-graph learning with notable
performance in semi-supervised tasks, YOLOv8-
CAB achieves superior results in diverse and com-
plex object detection tasks, where MGLNN's
approach may not be directly applicable. Thus,
YOLOv8-CAB emerges as a more versatile and
robust solution, capable of addressing a wider range
of real-world detection challenges, surpassing
MGLNN in both adaptability and practicality.
In their 2023 study, the authors A.M. Roy J. Bha-

duri developed a novel method for YOLO-based
object detection models, the approach integrating
DenseNet blocks with YOLOv5 [41]. In this work,
the proposed model excels in accuracy and speed,
particularly in real-time applications, achieving a
mean average precision of 85.25 %. However, its
primary focus on road damage detection may limit
its applicability in detecting smaller, more diverse
objects. In contrast, in this paper, the YOLOv8-CAB
model, specifically designed for detecting small and
geometric objects, demonstrates versatility in
various domains. Integrating the CAB and modifi-
cations in C2F and Spatial Attention in YOLOv8-
CAB address finer nuances of small object detection
and contribute to higher accuracy. While YOLOv8-
CAB shows potential superiority in broader
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detection scenarios, this claim would benefit from
further empirical evidence demonstrating its
enhanced performance. Furthermore, acknowl-
edging DenseSPH-YOLOv5's strengths in its
specialized application area provides a balanced
perspective. Finally, exploring the potential chal-
lenges of YOLOv8-CAB, such as in highly complex
environments, would offer a more comprehensive
comparison between the two models.
YOLOv8-CAB surpasses previous studies through

its versatile context-aware feature enhancement,
robust multi-scale architecture, and built-in noise
resilience, providing more efficient and generalized
tiny object detection capabilities. This is achieved
via its CAB modules, optimized end-to-end training,
and emphasis on discriminative features.

3. Proposed method

3.1. Module architecture

YOLOv8 is an advanced deep-learning model
that further enhances the capabilities of YOLOv5 in
the object detection field. It incorporates a range of
network structures and utilizes C2F modules to
enhance YOLOv5. The CSP modules effectively
reduce parameters and FLOPs while maintaining
accuracy. Additionally, YOLOv8 introduces a new
anchor box generator that considers the distribu-
tion of object sizes in the dataset. In this study,
YOLOv8-CAB, a method based on YOLOv8, has
been proposed. This method is specifically
designed to increase the detection accuracy of
small and medium-sized objects among multiple
objects.
The architecture of YOLOv8-CAB comprises three

key components: A network designed to extract
features with minimal computational resources
within the backbone network, a path aggregation
feature pyramid network architecture in the neck
network, incorporating multi-scale detection head,
and cross-stage feature fusion Fig. 1 shows the
entire Yolov8-CAB Network Architecture.
When processing an input color image, YOLOv8-

CAB initiates a focus operation that reduces the
image size while increasing the number of channels.
This aids in enhancing the model's accuracy by
focusing on the most crucial image parts. The ar-
chitecture includes 53 layers using convolution with
22.8 million parameters and operates on images
sized 640 � 640 pixels. The image sample is initially
reduced to 320 � 320 pixels using max pooling.
Subsequently, convolutional layers extract distinc-
tive features, resulting in a 10 � 10 � 1024 tensor
known as the “bottleneck input.”

In the second phase, convolution with 1024 filters
of dimensions 3 � 3 further reduces the parameters,
generating a 1 � 1 � 1024 tensor called the
“bottleneck output.” This, combined with the output
of the previous convolutional layers, is passed to the
next concatenation layer. Phase three involves
applying convolutional layers to extract intricate
features, and fully connected layers enable object-
bound box and class predictions. The resulting
feature map, known as scale 2, is obtained through
concatenation and additional convolutional opera-
tions. The detection layer merges the combined
feature map from the phase to produce a list of
bounding boxes and class probabilities. To prevent
overlapping detections, we use a technique called
maximum suppression.
The model predicts three bounding boxes per

feature map at every location, providing object lo-
cations by bounding boxes and object scores. Fig. 2
shows the CAB Block Architecture.

3.2. C2F modification

The integration and exchange of scale visual fea-
tures in both directions are improved by expanding
the C2F module, which leads to enhanced feature
learning. Conceptually, it augments the conventional
bottom-up feature pyramid network backbone with
an additional top-down refinement pathway. Specif-
ically, the C2F block leverages a top-down convolu-
tional projection sequence to up-sample semantically
strong responses from preceding coarse resolution
layers. This results in enhanced feature maps with
amplified spatial extent and acuity. The up-projected
features are concatenated with bottom-up feature
maps originating from finer pyramid scales. The C2F
block, as shown in Fig. 3, synergizes pyramidal fea-
tures across scales through this composite integration,
enriching fine-grained representations with
augmented contextual focus.
Consequently, the hierarchical blending of

semantically enriched and spatially precise features
demonstrates substantial empirical gains.
Fig. 4 shows the head structure with the

extended shallow C2F. Quantitative experiments
exhibit state-of-the-art trade-offs between accuracy
and efficiency on competitive object detection
benchmarks. Ablation studies verify the contribu-
tion of bidirectional C2F enhancement to the
localization and recognition of small objects. The
C2F block is an effective architectural innovation
for multi-scale visual modeling. The YOLOv8
model efficiently utilizes the characteristics found
in the layers of the CNN by making these adjust-
ments. This careful balance of deep and shallow
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feature extraction allows the model to accurately
identify and locate diminutive and feeble entities
within images while minimizing the computational
burden.

3.3. Improvement of the spatial attention module

Integrating the Spatial Attention Module with the
YOLOv8 model represents a significant contribution
with immense potential to enhance small object
detection capabilities. The Selective Kernel (SK)
Attention Module brings in an approach to adjust

the importance of the feature maps, enabling the
model to pay attention to significant regions in the
input data. This selective attention mechanism em-
powers YOLOv8-CAB to prioritize features while
downplaying ones, enhancing object detection
accuracy.
In the context of small object detection, this

innovation becomes particularly advantageous. By
leveraging the SK Attention Module, YOLOv8-CAB
becomes more adept at capturing these nuances,
thus enhancing YOLOv8-CAB's ability to identify
small objects accurately.

Fig. 1. Full Yolov8-CAB network architecture.

Fig. 2. CAB block architecture.
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On the other hand, attention mechanisms in deep
learning models directly affect the decision-making
process. Attention allows the model to focus on spe-
cific input parts more relevant to the task. By
dynamically weighing different parts of the input,
attention helps the model to make more informed
decisions, especially in cases where certain input
features are more crucial than others. In essence,
attention allows the model to allocate its computa-
tional resources more efficiently, leading to poten-
tially better performance and improved
generalization in many tasks. Fig. 5 shows the
improved spatial attention.

3.4. YOLOv8-CAB algorithm

To harness the detailed architecture of YOLOv8-
CAB and its components, we introduce the
following algorithm to effectively detect objects,
especially focusing on small and medium-sized
entities:
Input: video data, classes (small objects).
Output: bounding boxes with class labels.

1. Split video into frames at 30 fps and resize each
frame to 320 � 320.

2. Preprocess each frame for enhanced image
clarity.

3. Detect ROIs using the YOLOv8-CAB model:
� Grid frames and determine object origins using
a CAB-integrated Backbone with 53 convolu-
tional layers and 22.8 million parameters.

� Predict bounding boxes and class probabilities
in the Head containing 11 layers, three blocks,
and 177 K parameters.

4. Consolidate bounding boxes using intersection
over union (IOU) and non_max_suppression.

5. Retain boxes with the top IOU scores, discarding
those below a threshold (e.g., 0.5).

6. Continue the process until all boxes are either
selected or discarded, with the YOLOv8s head
able to predict up to 128 bounding boxes and
class probabilities.
End

4. Experiment analysis

4.1. Experimental dataset

The COCO dataset is widely employed in com-
puter vision for object detection tasks. It provides
annotations specifically customized for object

Fig. 3. Extended C2f Module.

Fig. 4. The head structure with the extended shallow C2F.
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detection, with each image accompanied by
bounding boxes outlining the objects. The dataset
contains over 330,000 images, each meticulously
annotated with 80 distinct object categories and five
descriptive captions depicting the scene. Approxi-
mately 15,000 images in this dataset predominantly
have a resolution of 100 � 600 pixels. However, the
COCO dataset still has some limitations that
dramatically affect some object detection. Among
these limitations:
1. The limit of object categories contained only 80

object categories. This number represents very
limited compared with countless other categories in
the real world. 2. Like any other large-scale dataset,
COCO is vulnerable to annotation errors. Although
this error is relatively small, it sometimes affects
both training and evaluation.3. Some classes in the
COCO dataset have many more instances than
others. This imbalance in class distributions repre-
sents a challenge for models to perform equally
across all categories. However, the COCO dataset is
the best choice compared to the other datasets.
To ensure an unbiased representation, the orig-

inal COCO dataset has been selected as the source
for both positive and negative samples without any
modifications. A total of 17,498 consecutive image
samples were intercepted for training and testing
the large-scale original data. The experimental
findings demonstrate that the provided data are
adequate for effectively training and evaluating the
model, resulting in a notable level of accuracy in
detecting the desired outcomes.

4.2. Experimental setup

The novel YOLOv8-CAB algorithm uses multiple
evaluation metrics and hyperparameters, as seen in
the following:

1. The input image dimensions are set to 640 � 640.
The main reason for choosing this dimension is
to maintain the balance between computational
efficiency and image details for detection. In
other words, high-quality images would
improve the detection accuracy but at a

substantial computational cost. On the other
hand, using low-quality images may cause the
loss of vital features in each image. The specified
resolution has been experimentally found to
produce significant results in prior YOLO
versions.

2. The training process lasts for 300 epochs since
training on this number of epochs allows the
model to learn essential features without over-
fitting the training data.

3. In every cycle, a group of 32 samples has been
used. This batch size is widely accepted in deep
learning practices since it provides a good bal-
ance between model update frequency and
computational feasibility. Furthermore, this
batch size ensures adequate GPU memory uti-
lization without causing memory overflow.

4. Initially, the learning rate is set to 0.001 (repre-
senting a standard choice that allows the model
to cover at moderate speed without potentially
skipping over optimal solutions or wasting
computational resources). After every five cycles,
it decreases by a factor of 0.01. The intersection
over the union threshold is set at 0.20. Further-
more, the specified values for momentum and
weight decay are set at 0.937 and 0.0005,
respectively. The experiments were conducted
using the Google Colab PyTorch platform and
executed on a GPU GeForce V100 18 GB. The
time consumption for training samples is about
five hours, and the inference speed is 200 fps.

5. The YOLOv8-CAB algorithm strikes an impres-
sive balance between accuracy and computa-
tional efficiency in object detection. It
incorporates a powerful backbone network
enhanced with the SK attention mechanism,
significantly sharpening the focus on critical
features, which may improve detection accuracy
while adding to the algorithm's complexity.

6. Computational Requirements: Operating at 33.8
GFLOPs, the model provides quick and precise
object detection capabilities.

7. Memory Usage: Consuming 57 GB of memory
reflects the model's robust data handling and
precision.

Fig. 5. Improved spatial attention.

M. Talib et al. / Karbala International Journal of Modern Science 10 (2024) 56e68 63



8. Training Time: Efficiently condensed to just over
two minutes per epoch, the complete training
duration is approximately eleven hours, exem-
plifying the model's efficient learning process.

9. Inference Time: An impressive inference speed of
50 ms is achieved, enabling rapid object detection
crucial for real-time application scenarios.

As mentioned before, the novel algorithm was
trained and tested using the COCO dataset to
enhance its performance at each stage. A comparative
analysis was conducted between the new algorithm
and the baseline YOLOv8. A verification process was
necessary to ascertain the potential enhancement of
this algorithm in detecting small-size targets while
maintaining accuracy across other scales.
A series of comparative experiments were con-

ducted on the COCO dataset to evaluate the effec-
tiveness of the proposed targets. A selection of
intricate scene images in various scenarios was used
to compare the detection capabilities between the
YOLOv8-CAB algorithm and the YOLOv8 algo-
rithm in real-life settings.

4.3. Valuation index

For evaluation, various metrics were integrated,
including mAP, recall (R), average precision (AP),
and precision (P). Precision and Recall (R) are rep-
resented by Equations (1) and (2), respectively.

P¼ TP
TPþ FP

ð1Þ

R¼ TP
TPþ FN

ð2Þ

where TP represents the number of accurately pre-
dicted bounding boxes, FP represents the number of
positive samples, and FN represents the number of
false positives.
Average precision (AP) evaluates the accuracy

exhibited by a given model, and mAP is the average
of AP values across different categories. The vari-
able k is used to denote the number of categories.
Equations (3) and (4) represent the formulas for
calculating AP and mAP, respectively.

AP¼
Z0

1

pðrÞdr ð3Þ

mAP¼ 1
C

XN
K¼1

PðKÞDRðKÞ ð4Þ

4.4. Experimental result analysis

A series of ablation experiments were performed
using the COCO dataset to evaluate the efficacy of
the proposed enhanced approach for detecting
small-sized targets. A comparative analysis was
then conducted between the outcomes derived from
the implementation of YOLOv8 and the results of
this study. The COCO dataset exhibits extensive
coverage, including diverse scenes, weather condi-
tions, and lighting variations, making it suitable for
testing small-sized targets in intricate environments.
The dataset contains various attributes, such as
scene visibility, object classification, and occlusion,
making it comprehensive and authoritative for this
experiment. The dataset was used for control ex-
periments to ensure the credibility of the results.
To effectively demonstrate the experiment's

credibility, the mAP0.5 and mAP0.5:0.9 evaluation
indices were used in this investigation. Also, the
(Average Precision for Small Objects (APsmall)
measures a model's accuracy in detecting small
objects, focusing on precision for smaller-scale
items in an image dataset. While the average Recall
for Small Objects (ARsmall). Table 1 displays the test
results.
The findings in Table 1 indicate a discernible

enhancement in the performance of the enhanced
algorithm at each stage, particularly in detecting
small-scale targets within intricate scenes. Further-
more, a noteworthy enhancement of 2.1 % is
observed in the recall rate, indicating a substantial
scope for further improvement. The three improved
methods in this experiment demonstrate the poten-
tial for performance enhancement, especially when
replacing C2f in the backbone with the CAB block,
efficiently capturing both local and global contexts.
Increasing the number of layers in C2f resulted in
enhanced feature extraction capabilities. Moreover,
incorporating SK to enhance spatial attention has
improved the algorithm's performance.
The adjustments, including multi-scale spatial

modeling and feature weighting (fuse and scale
steps), offer enhanced flexibility and selective

Table 1. Comparison of metrics at each modification.

Dataset Result YOLO5 YOLO7 YOLO8 Yolo-CAB

COCO mAP0.5 % 46.2 43.1 46.2 47.1
mAP0.5:0.95 % 27.2 21.9 27.2 28.2
APsmall% 16 22.9 48.0 49.0
ARsmall% 19.3 24.3 65.2 66.5

VOC mAP0.5 % 40.3 32.8 41.2 41.5
mAP0.5:0.95 % 23.4 20.3 25.8 26.7
APsmall% 64.8 70.6 70.5 71.3
ARsmall% 67.2 73.1 73.4 74.2
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emphasis on substantial spatial regions and chan-
nels. The empirical findings show that enhancing
the algorithm at each iteration improves learning
capacity. To evaluate the detection performance of
the YOLOv8-CAB algorithm, we measured the mAP
for ten different object categories within the COCO
dataset, as shown in Fig. 6.
The results indicate that the YOLOv8-CAB algo-

rithm outperforms the baseline YOLOv8 in detect-
ing various object categories. Notably, four distinct
categories are observed where the recognition ac-
curacy surpasses the overall average of the dataset.
The modified algorithm consistently enhances the

detection capabilities. It shows notable advance-
ments in detecting larger objects, such as automo-
biles, and smaller objects, including cups, bowls,
televisions, felines, remote controls, rodents, or-
anges, and similar items.
Table 2 shows comprehensively compares per-

formance metrics across various versions of the
YOLO algorithm.
An analysis was conducted to examine the factors

contributing to the superior performance of the
YOLOv8-CAB algorithm. The main finding of this
experiment can be summarized in the following
points:

a) One significant challenge conventional methods
(such as FPN þ PAN) face is the difficulty in
layer-by-layer feature extraction. Often, targets
with reduced dimensions can be confused with
objects of average dimensions, resulting in
substantial information loss. In contrast,
YOLOv8-CAB's feature fusion technique seam-
lessly integrates shallow information into the
final output. This approach reduces information
loss in the shallower layers.

b) During the feature extraction process, YOLOv8-
CAB disregards irrelevant information. It retains

features extracted from pixels of small-sized
targets, leading to enhanced accuracy.

c) The C2f modification in the YOLOv8-CAB
model augments its depth, facilitating deeper
knowledge acquisition and improved feature
extraction capabilities.

d) Incorporating SK attention into the YOLOv8-
CAB model enhances spatial attention. As a
result, the model demonstrates increased effi-
ciency in capturing features of smaller objects.

e) In some cases, the COCO cannot provide
enough samples for some small objects, repre-
senting the main challenges to detection per-
formance. Therefore, some strategies have
been employed, such as data augmentation and
Feature Pyramid Network (FPN). In this work,
YOLOv8-CAB has adopted the same augmen-
tation techniques used in YOLOv8 and
YOLOv5 architecture. The augmentation tech-
nique, known as Mosaic augmentation, proves
its performance in the model's generalization
and makes it robust to various real-world
conditions.

f) Although trained in high-quality platform
hardware, YOLOv8-CAB is optimized for
diverse hardware, ensuring broad compatibility.
Considerations for real-time applications are
addressed without compromising speed or ac-
curacy. However, it is recommended to use high
hardware requirements to prevent lag detection
for small objects in real-time.

g) YOLOv8-CAB shows a significant increase in
detection performance compared with conven-
tional YOLOv8. Furthermore, when compared
with other state-of-the-art techniques, YOLOv8-
CAP shows considerable improvement, too.
Table 3 demonstrates the mAP of YOLOv8-CAP
with Nanodet techniques [39]. It is obvious that
YOLOv8-CAP has high-accuracy detection with

Fig. 6. A comparison of 10 small object classes between Yolov8 and Yolov8-CAB.
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0.5 mAP compared with only 66 for the nano det
technique.

h) The selection process for the comparison ex-
periments involved choosing images from the
COCO dataset that exhibit complex scenes,
higher levels of interference, and substantial
overlap. Fig. 7 shows the detection result com-
parison of various YOLO versions.

5. Conclusion

In this study, YOLOv8-CAB, an optimized detec-
tion technique tailored explicitly for small objects,
has been introduced. Based on the foundation of
YOLOv8, this method enhances feature utilization
by iterating the feature extraction network's shallow

C2F module and adds a better attention module to
the remaining blocks. These adjustments compel
the network to learn robust and distinctive features,
proving highly effective in detecting small objects in
images.
The proposed model shows a unique ability to

identify diminutive entities within images, irre-
spective of their diminished resolution and indistinct
characteristics. The results show that using CNN
image preprocessing of different images can further
enhance the accuracy of detecting small objects.
Although our focus has been primarily on still and

complex images, the outstanding performance of
YOLOv8-CAB sets a promising premise for future
exploration in video object detection, given the

Table 2. Performance of different YOLO versions.

Algorithm Module Metrics Results APsmall% ARsmall% F1%

CAB SA Modified-C2f mAP:0.5 % mAP:0.5:0.95 % P% R%

Yolov8 X 46.2 27.2 88.4 63.2 48.0 65.2 73.82
Yolov8-CAB X 46.7 27.6 88.9 64 48.5 66.7 74.41
Yolov8-CAB X 47.4 28 89.3 64.7 49.0 66.5 75.07

Table 3. Comparison between YOLOv8-CAP with nanodet.

Algorithm Metrics Results APsmall% ARsmall% F1 Score%

mAP:0.5 % mAP:0.5:0.95 % P% R%

Nanodet 39.5 Never used 66 61 37.5 59.5 71
Yolov8 47.4 28 89.3 64.7 45 62.5 75.07

Fig. 7. (a) Illustrates that YOLOv5 exhibited limitations in detecting small objects in the image, such as the bottle and the cup on the right side, and
YOLOv5 did not detect the bowl due to the darkness on the left of the image. (b) shows that YOLOv7 also missed the bowl for the same reason as
YOLOv5. (c) shows that YOLOv8 has better detection confidence and detects more objects, but it missed the cup on the right side of the image. By
contrast, YOLOv8-CAB, as shown in (d), successfully detects all objects, achieving higher accuracy and much better detection confidence, demon-
strating its outstanding performance in challenging scenarios.
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strong correlation between video sequence frames.
We anticipate even better detection performance in
such scenarios. In summary, the YOLOv8-CAB
model signifies a notable advancement in the
domain of small object detection, exhibiting
considerable potential for forthcoming applications.

Conflict of interest

There is no conflict of interest.

Acknowledgments

I want to thank everyone who contributed to
building the future and worked hard to develop it.

References

[1] M. Khalaf, B.N. Dhannoon, Skin lesion segmentation based
on U-shaped network, Karbala Int J Mod Sci 8 (2022)
493e502, https://doi.org/10.33640/2405-609X.3248.

[2] N.M. Shati, Anomalous behavior detection using the
geometrical complex moments in crowd scenes of smart
surveillance systems, Al-Mustansiriyah J Sci 28 (2018)
174e186, https://doi.org/10.23851/mjs.v28i3.35.

[3] M. Hussein, A.H. Abbas, Plant leaf disease detection using
support vector machine, Al-Mustansiriyah J Sci 30 (2019)
105e110, https://doi.org/10.23851/mjs.v30i1.487.

[4] E.A. Abbood, T.A. Al-Assadi, GLCMs based multi-inputs 1D
CNN deep learning neural network for COVID-19 texture
feature extraction and classification, Karbala Int J Mod Sci 8
(2022) 28e39, https://doi.org/10.33640/2405-609X.3201.

[5] A.M. Bilal, M.B. Kurdy, Age-invariant face recognition using
trigonometric central features, Karbala Int J Mod Sci 5 (2019)
7, https://doi.org/10.33640/2405-609X.1209.

[6] W. Li, Y. Zhu, D. Zhao, Missile guidance with assisted deep
reinforcement learning for head-on interception of maneu-
vering target, Compl Intell Syst 8 (2021) 1205e1216, https://
doi.org/10.1007/s40747-021-00577-6.

[7] X. Xu, M. Du, H. Guo, J. Chang, X. Zhao, Lightweight
FaceNet based on MobileNet, Int J Intell Sci 11 (2021) 1e16,
https://doi.org/10.4236/ijis.2021.111001.

[8] J. Liu, X. Wang, Early recognition of tomato gray leaf spot
disease based on MobileNetv2-YOLOv3 model, Plant
Methods 16 (2020) 7, https://doi.org/10.1186/s13007-020-
00624-2.

[9] M. Abd Elaziz, A. Dahou, N.A. Alsaleh, A.H. Elsheikh,
A.I. Saba, M. Ahmadein, Boosting covid-19 image classifi-
cation using mobilenetv3 and aquila optimizer algorithm,
Entropy 23 (2021) 1383, https://doi.org/10.3390/e23111383.

[10] N. Ullah, J.A. Khan, S. El-Sappagh, N. El-Rashidy, M.S. Khan,
A holistic approach to identify and classify COVID-19 from
chest radiographs, ECG, and CT-scan images using Shuf-
fleNet convolutional neural network, Diagnostics 13 (2023)
162, https://doi.org/10.3390/diagnostics13010162.

[11] R. Yang, X. Lu, J. Huang, J. Zhou, J. Jiao, Y. Liu, F. Liu, B. Su,
P. Gu, A multi-source data fusion decision-making method
for disease and pest detection of grape foliage based on
ShuffleNet V2, Remote Sens (Basel). 13 (2021) 5102, https://
doi.org/10.3390/rs13245102.

[12] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for
image recognition, in: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), IEEE, Las Vegas. (2016),
pp. 770e778, https://doi.org/10.1109/CVPR.2016.90.

[13] M. Yuan, Q. Zhang, Y. Li, Y. Yan, Y. Zhu, A suspicious multi-
object detection and recognition method for millimeter wave
SAR security inspection images based on multi-path

extraction network, Rem Sens 13 (2021) 4978, https://doi.org/
10.3390/rs13244978.

[14] A.R. Pathak, M. Pandey, S. Rautaray, Application of deep
learning for object detection, Procedia Comput Sci 132 (2018)
1706e1717, https://doi.org/10.1016/j.procs.2018.05.144.

[15] M. Shafiq, Z. Gu, Deep residual learning for image recog-
nition: a survey, Appl Sci 12 (2022) 8972, https://doi.org/
10.3390/app12188972.

[16] S. Dong, P. Wang, K. Abbas, A survey on deep learning and
its applications, Comput Sci Rev 40 (2021) 100379, https://
doi.org/10.1016/j.cosrev.2021.100379.

[17] X. Xu, M. Zhao, P. Shi, R. Ren, X. He, X. Wei, H. Yang, Crack
detection and comparison study based on faster R-CNN and
Mask R-CNN, Sensors 22 (2022) 1215, https://doi.org/
10.3390/s22031215.

[18] J. Li, D. Zhang, J. Zhang, J. Zhang, T. Li, Y. Xia, Q. Yan,
L. Xun, Facial expression recognition with faster R-CNN,
Proc Comput Sci 107 (2017) 135e140, https://doi.org/10.1016/
j.procs.2017.03.069.

[19] H. Nguyen, Improving faster R-CNN framework for Fast
vehicle detection, Math Probl Eng (2019) 11, https://doi.org/
10.1155/2019/3808064, 2019.

[20] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only Look
once: unified, real-time object detection, in: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),IEEE,
Las Vegas, 2016, pp. 779e788, https://doi.org/10.1109/CVPR.
2016.91.

[21] J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in:
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, IEEE, Honolulu. (2017),
pp. 7263e7271, https://doi.org/10.48550/arXiv.1612.08242.

[22] C. Zhang, F. Kang, Y. Wang, An improved apple object
detection method based on lightweight YOLOv4 in complex
backgrounds, Rem Sens 14 (2022) 4150, https://doi.org/
10.3390/rs14174150.

[23] G. Jocher, Yolov5 in PyTorch, 2020, https://doi.org/10.5281/
zenodo.3908559. https://github.com/ultralytics/yolov5.
(accessed August 21 2023).

[24] C.-Y. Wang, A. Bochkovskiy, H.-Y.M. Liao, C.-Y. Wang,
A. Bochkovskiy, H.-Y.M. Liao, YOLOv7: trainable bag-of-
freebies sets new state-of-the-art for real-time object de-
tectors, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVF, Vancouver.
(2023), pp. 7464e7475, https://doi.org/10.1109/CVPR52729.
2023.00721.

[25] B. Leibe, J. Matas, N. Sebe, M. Welling, Computer Vision e
ECCV, first ed., Springer International Publishing, Cham.
(2016) https://doi.org/10.1007/978-3-319-46448-0.

[26] M. Maktab, M. Razaak, P. Remagnino, Enhanced single shot
small object detector for aerial imagery using super-resolu-
tion feature fusion and deconvolution, Sensors 22 (2022)
4339, https://doi.org/10.3390/s22124339.

[27] G. Jocher, A. Chaurasia, J. Qiu, YOLO by Ultralytics, 2023,
https://doi.org/10.5281/zenodo.3908559. https://github.com/
ultralytics/ultralytics. (accessed August 21 2023).

[28] C. Xu, X. Wang, Y. Yang, Selective multi-scale feature
learning by discriminative local representation, IEEE Access
7 (2019) 127327e127338, https://doi.org/10.1109/ACCESS.
2019.2939716.

[29] L. Deng, H. Li, H. Liu, J. Gu, A lightweight YOLOv3 algo-
rithm used for safety helmet detection, Sci Rep 12 (2022)
10981, https://doi.org/10.1038/s41598-022-15272-w.

[30] K.-Y. Jeng, Y.-C. Liu, Z.Y. Liu, J.-W. Wang, Y.-L. Chang, H.-
T. Su, W.H. Hsu, A coarse-to-fine (C2F) representation for
end-to-end 6-DoF grasp detection, in: Conference on Robot
Learning, Rob, Lear. Foun. Inc. London. 2020 224814237,
https://doi.org/10.48550/arXiv.2010.10695.

[31] J. Hu, L. Shen, G. Sun, Squeeze-and-Excitation networks, in:
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, Salt Lake City. 2018, pp. 7132e7141,
https://doi.org/10.1109/CVPR.2018.00745.

[32] S. Jain, S. Dash, R. Deorari, Kavita, object detection using
coco dataset, in: International Conference on Cyber

M. Talib et al. / Karbala International Journal of Modern Science 10 (2024) 56e68 67

https://doi.org/10.33640/2405-609X.3248
https://doi.org/10.23851/mjs.v28i3.35
https://doi.org/10.23851/mjs.v30i1.487
https://doi.org/10.33640/2405-609X.3201
https://doi.org/10.33640/2405-609X.1209
https://doi.org/10.1007/s40747-021-00577-6
https://doi.org/10.1007/s40747-021-00577-6
https://doi.org/10.4236/ijis.2021.111001
https://doi.org/10.1186/s13007-020-00624-2
https://doi.org/10.1186/s13007-020-00624-2
https://doi.org/10.3390/e23111383
https://doi.org/10.3390/diagnostics13010162
https://doi.org/10.3390/rs13245102
https://doi.org/10.3390/rs13245102
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3390/rs13244978
https://doi.org/10.3390/rs13244978
https://doi.org/10.1016/j.procs.2018.05.144
https://doi.org/10.3390/app12188972
https://doi.org/10.3390/app12188972
https://doi.org/10.1016/j.cosrev.2021.100379
https://doi.org/10.1016/j.cosrev.2021.100379
https://doi.org/10.3390/s22031215
https://doi.org/10.3390/s22031215
https://doi.org/10.1016/j.procs.2017.03.069
https://doi.org/10.1016/j.procs.2017.03.069
https://doi.org/10.1155/2019/3808064
https://doi.org/10.1155/2019/3808064
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.1612.08242
https://doi.org/10.3390/rs14174150
https://doi.org/10.3390/rs14174150
https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1007/978-3-319-46448-0
https://doi.org/10.3390/s22124339
https://doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://doi.org/10.1109/ACCESS.2019.2939716
https://doi.org/10.1109/ACCESS.2019.2939716
https://doi.org/10.1038/s41598-022-15272-w
https://doi.org/10.48550/arXiv.2010.10695
https://doi.org/10.1109/CVPR.2018.00745


Resilience (ICCR), IEEE, Dubai. 2022, pp. 1e4, https://
doi.org/10.1109/ICCR56254.2022.9995808.

[33] X. Li, W. Wang, X. Hu, J. Yang, Selective Kernel networks, in:
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, Long Beach, 2019, pp. 510e519,
https://doi.org/10.1109/CVPR.2019.00060.

[34] A. Wong, M.J. Shafiee, F. Li, B. Chwyl, Tiny SSD: a tiny
single-shot detection deep convolutional neural network for
real-time embedded object detection, in: 2018 15th Confer-
ence on Computer and Robot Vision (CRV), IEEE, Toronto.
2018, pp. 95e101, https://doi.org/10.1109/CRV.2018.00023.

[35] L. Ali, F. Alnajjar, M. Parambil, M. Younes, Z. Abdelhalim,
H. Aljassmi, Development of YOLOv5-based real-time smart
monitoring system for increasing lab safety awareness in
educational institutions, Sensors 22 (2022) 8820, https://
doi.org/10.3390/s22228820.

[36] H. Liu, F. Sun, J. Gu, L. Deng, SF-YOLOv5, A lightweight
small object detection algorithm based on improved feature
fusion mode, Sensors 22 (2022) 5817, https://doi.org/10.3390/
s22155817.

[37] C. Xu, J. Wang, W. Yang, H. Yu, L. Yu, G. Xia, Detecting tiny
objects in aerial images: a normalized Wasserstein distance
and a new benchmark, ISPRS J Photogramm Rem Sens 190
(2022) 79e93, https://doi.org/10.1016/j.isprsjprs.2022.06.002.

[38] M. Kim, H. Kim, J. Sung, C. Park, J. Paik, High-resolution
processing and sigmoid fusion modules for efficient detec-
tion of small objects in an embedded system, Sci Rep 13
(2023) 244, https://doi.org/10.1038/s41598-022-27189-5.

[39] P. Yong, S. Li, K. Wang, Y. Zhu, A real-time detection algo-
rithm based on Nanodet for pavement cracks by incorpo-
rating attention mechanism, in: 8th International Conference
on Hydraulic and Civil Engineering, Inst. Electr. Electron.
Eng. Inc. Xi’an, 2022, pp. 1245e1250, https://doi.org/10.1109/
ICHCE57331.2022.10042517.

[40] B. Jiang, S. Chen, B. Wang, B. Luo, MGLNN: semi-super-
vised learning via multiple graph cooperative learning neu-
ral networks, Neural Network 153 (2022) 204e214, https://
doi.org/10.1016/j.neunet.2022.05.024.

[41] A.M. Roy, J. Bhaduri, DenseSPH-YOLOv5: An automated
damage detection model based on DenseNet and Swin-
Transformer prediction head-enabled YOLOv5 with atten-
tion mechanism, Adv Eng Inf 56 (2023) 102007, https://
doi.org/10.1016/j.aei.2023.

[42] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature
hierarchies for accurate object detection and semantic seg-
mentation, in: IEEE Conference on Computer Vision and
Pattern Recognition, Columbus, 2014, pp. 580e587, https://
doi.org/10.1109/CVPR.2014.81.

68 M. Talib et al. / Karbala International Journal of Modern Science 10 (2024) 56e68

https://doi.org/10.1109/ICCR56254.2022.9995808
https://doi.org/10.1109/ICCR56254.2022.9995808
https://doi.org/10.1109/CVPR.2019.00060
https://doi.org/10.1109/CRV.2018.00023
https://doi.org/10.3390/s22228820
https://doi.org/10.3390/s22228820
https://doi.org/10.3390/s22155817
https://doi.org/10.3390/s22155817
https://doi.org/10.1016/j.isprsjprs.2022.06.002
https://doi.org/10.1038/s41598-022-27189-5
https://doi.org/10.1109/ICHCE57331.2022.10042517
https://doi.org/10.1109/ICHCE57331.2022.10042517
https://doi.org/10.1016/j.neunet.2022.05.024
https://doi.org/10.1016/j.neunet.2022.05.024
https://doi.org/10.1016/j.aei.2023
https://doi.org/10.1016/j.aei.2023
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81

	YOLOv8-CAB: Improved YOLOv8 for Real-time object detection
	Recommended Citation

	YOLOv8-CAB: Improved YOLOv8 for Real-time object detection
	Abstract
	Keywords
	Creative Commons License
	Cover Page Footnote

	YOLOv8-CAB: Improved YOLOv8 for Real-time Object Detection
	1. Introduction
	2. Related work
	3. Proposed method
	3.1. Module architecture
	3.2. C2F modification
	3.3. Improvement of the spatial attention module
	3.4. YOLOv8-CAB algorithm

	4. Experiment analysis
	4.1. Experimental dataset
	4.2. Experimental setup
	4.3. Valuation index
	4.4. Experimental result analysis

	5. Conclusion
	Conflict of interest
	Conflict of interest
	Acknowledgments
	References


