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Abstract Abstract 
Outdoor images are used in many domains, such as surveillance, geospatial mapping, and autonomous 
vehicles. The occurrence of noise in outdoor images is a widely observed phenomenon. They are 
primarily attributed to extreme natural and manufactured meteorological conditions, such as haze, smog, 
and fog. In autonomous vehicle navigation, recovering the ground truth image is essential, enabling the 
system to make more informed decisions. Accurate air-light and transmission map calculation is vital in 
recovering the ground truth image. An efficient approach for image dehazing that utilizes the mean 
channel prior (MCP) is presented in this paper to estimate the transmission map, followed by Gamma 
transformation to correct the transmission map obtained by MCP. This paper presents two novel 
contributions: first, an Alexnet network transfer model classification of hazy images as a preprocessing, 
and second, an efficient image dehazing based on an image fusion strategy. In the image dehazing stage, 
the transmission map estimated by the mean channel is altered with Gamma correction first. Then, the 
initial transmission map and its modified copy are combined using the weighted average fusion technique 
to retain the information in the initial transmission map. Additionally, the fused transmission map 
undergoes filtration using a guided filter to mitigate block and halo artifacts within the dehazed image. 
Lastly, the dehazed image is recovered using the improved transmission map by utilizing an optical 
scattering model. The proposed Alexnet network transfers algorithm significantly and decreases the 
quantity of training data required compared to the traditional classification algorithm. In addition, the 
network's classification accuracy can reach 98%. The proposed image dehazing showed better 
performance in terms of computational time, natural image quality evaluator (NIQE) index, peak-signal-to-
noise ratio (PSNR), and structural similarity index (SSIM) than that of existing methods. 
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Abstract

Outdoor images are used in many domains, such as surveillance, geospatial mapping, and autonomous vehicles. The
occurrence of noise in outdoor images is a widely observed phenomenon. They are primarily attributed to extreme
natural and manufactured meteorological conditions, such as haze, smog, and fog. In autonomous vehicle navigation,
recovering the ground truth image is essential, enabling the system to make more informed decisions. Accurate air-light
and transmission map calculation is vital in recovering the ground truth image. An efficient approach for image
dehazing that utilizes the mean channel prior (MCP) is presented in this paper to estimate the transmission map, fol-
lowed by Gamma transformation to correct the transmission map obtained by MCP. This paper presents two novel
contributions: first, an Alexnet network transfer model classification of hazy images as a preprocessing, and second, an
efficient image dehazing based on an image fusion strategy. In the image dehazing stage, the transmission map esti-
mated by the mean channel is altered with Gamma correction first. Then, the initial transmission map and its modified
copy are combined using the weighted average fusion technique to retain the information in the initial transmission
map. Additionally, the fused transmission map undergoes filtration using a guided filter to mitigate block and halo
artifacts within the dehazed image. Lastly, the dehazed image is recovered using the improved transmission map by
utilizing an optical scattering model. The proposed Alexnet network transfers algorithm significantly and decreases the
quantity of training data required compared to the traditional classification algorithm. In addition, the network's clas-
sification accuracy can reach 98%. The proposed image dehazing showed better performance in terms of computational
time, natural image quality evaluator (NIQE) index, peak-signal-to-noise ratio (PSNR), and structural similarity index
(SSIM) than that of existing methods.

Keywords: Image dehazing, Hazy image classification, Alexnet network, Mean channel prior, Gamma correction, Image
fusion

1. Introduction

T he issue of limited visibility poses a significant
challenge when trying to ascertain the exact

ground truth. Recently, several researchers have
made significant contributions to addressing this
issue. Fog consistsmostly of aerosols andfineparticles
suspended in the air. Fog plays a substantial role in
raising the relative humidity in the atmosphere until it
reaches saturation [1]. So, fog and haze, which reduce
visibility, share a common origin. Numerous

applications call for the automatic detection of hazy
images and the application of suitable algorithms to
restore the original brilliance of object detection for
additional processing, such as object detection, seg-
mentation, and different vision fields [2]. The task is
difficult because thehaze concentration closely relates
to the object's depth [3]. Khmag et al. [4] suggested a
method for dehazing a single image based on fine
texture and edge preservation. Thismethod is divided
into two parts: the first part uses the mean vector L2-
norm to estimate the transmission map. The second
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part uses the second generation of wavelet transform
to enhance the transmission map. Kumar et al. [5]
suggested an algorithm for calculating the trans-
mission map-based color uniformity principle, but
airlight estimation needs to be more accurate under
various haze situations. The study of Gao et al. [6] is
built upon the local linear integrationof the subtracted
layer of haze image andgamma-correctedgrey image,
but generalization to other images is needed. Khmag
[7] suggested a method for dehazing and defogging
images using transmission map estimation and sec-
ond-generation wavelets. The proposed technique
can handle images with multiple haze densities. It
enhances the transmission map based on semi-soft
thresholding and gamma transformation with the
second-generation wavelet transformation.
A dehazing method based on several images

taken at various polarization levels was proposed by
Narasimhan and co-authors [8]. Taking multiple
images simultaneously is inconvenient, even though
it yields impressive results. In the past, numerous
researchers have significantly improved single-
image dehazing techniques. To remove haze,
contrast-limited adaptive histogram equalization
(CLAHE) and retinex method were used as image
enhancement techniques. The results of CLAHE,
which emerged for images used in medicine and
has demonstrated excellent performance, could be
more visually competent for hazy images [9]. Reti-
nex theory indicates improved performance in
inadequate illumination [10], whereas haze removal
is entirely different and depends on the object's
depth. By boosting the image's local contrast using
Markov random fields, Tan proposed a novel
method for removing haze from single images, but it
suffers from color shift [11]. Fattal offered Inde-
pendent component analysis for haze removal, but
the technique takes time [12]. The transmission map
was estimated based on the mean channel prior,
based on the probability assumption that each space
image will have at least one color channel, which is
minimal or extremely close to zero. Still, the trans-
mission map was refined using a soft mat, which
took much time [2].
Many modifications were made to the traditional

DCP technique to enhance the clarity of hazy images,
such as using guided filters rather than soft matting
for image haze removal [13]. Additionally, several
changes were made, including the near-infrared
images and integration of high-frequency elements
[14], the use of surround filtering [15] with DCP for
haze removal, and average saturation prior [16] for
calculating the transmission map, respectively.
Transmission map and airlight estimation were per-
formed using linear transformation algorithms like a

fast mean filter, minimum filter, and natural and
geometric characteristics of outdoor images [17];
however, there needed to be more evidence of
advancement over the application. Techniques like
boundary constraint [18] and color attenuation prior
[19] were utilized. Clear images form tight clusters of
distinct colors, and all outdoor images can be char-
acterized by a limited range of colors and form haze
lines, which were utilized in literature to remove
haze. The scene prior using non-local total variation
(NLTV) regularization [20], adaptive wiener filter
[21], saliencymap [22], and reference retrieval [23] are
just a few of the DCP-dependent techniques that
have been developed in the past for image dehazing
applications. A new method for calculating the
transmission map for the sky and non-sky areas
based on DCP and extension, respectively, and using
sigmoid fusion was recently presented by Sahu and
Seal [24]. Khmag [25] studied the problem ofmedium
transmission inaccuracy and proposed a smoke
removal strategy based on dark channel prior (DCP).
According to the conventional DCP, second-genera-
tion wavelets filter (SGWs) is used to further increase
ambient light in the digital image, which DCP in-
dicates as a global constant.
Artificial intelligence techniques such as machine

learning and deep learning have proven successful
in various imaging applications. Cai and colleagues
[26] introduced a novel deep-learning approach to
de-haze from a single image called Dehaze Net. The
method used a convolutional network and in-
corporates a bilateral rectified linear unit activation
function to estimate the transmission map. Santra
et al. [27] introduced a deep learning method for
dehazing a single image based on a patch quality
comparison. The above strategies have been helpful,
but there is always room for development. In other
words, most contemporary dehazing algorithms rely
heavily on precisely estimating the transmission
map. This paper has developed an MCP-fusion
model combination to estimate the transmission
map better. The developed method is based on
MCP, positively affecting natural scene images. At
the same time, the theory will be incorrect in areas
that are too dark or bright, leading to an imprecise
transmission map and over-enhancement of the
recovered images. To address this issue, this paper
extends the dynamic range of the low grayscale re-
gion by applying gamma correction to the MCP
initial transmission map. Fortunately, Gamma
correction may result in losing some information in
the initial transmission map.
Furthermore, it may cause the transmission map

to be imprecise in dense, hazy regions, resulting in
insufficient dehazing. In light of this issue, an image
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fusion technique was proposed that combines the
initial transmission map with its improved version
using Gamma correction. The fusion approach
preserves the details of the restored image.
Furthermore, the fused transmission map un-
dergoes filtration using a guided filter to mitigate
block and halo artifacts within the dehazed image.
As a preprocessing unit, this article provides an
Alexnet network transfer model for hazy, non-hazy
image classification and image dehazing. Based on
the constraints of the current methodologies in the
literature, the proposed work proposes and sum-
marizes the following main contribution:

� A hazy image classifier automatically detects
hazy images. So, clear images need no
preprocessing.

� A method for transmission map estimation
based on image fusion is presented. This paper
used the fusion method to combine the original
MCP transmission map with the gamma-cor-
rected version. It preserved the features in the
transmission map and fixed the issue of further
optimizing inaccurate results due to an erro-
neous transmission map.

� A proposed method for removing haze relies on
a transmission map estimation strategy based on
image fusion and an optical scattering model.
The guided filter is employed in this dehazing
approach to adjust the transmission map to
eliminate block and halo artifacts in the final
dehazed images.

� Experiments on both real-world and synthetic
data sets are carried out to prove the proposed
method's capability and demonstrate its effi-
ciency over other modern techniques. The re-
sults show that the proposed strategy is superior
regarding subjective visual perception and
quantitative evaluation measures.

The remainder of the paper is organized as fol-
lows: Section 2 discusses the scattering model.
Section 3 explains the proposed method. Section 4
discusses the comparison of results. Finally, Section
5 is included, and the conclusions are discussed.

2. Atmospheric scattering model (ASM)

File ASM can be can be mathematically expressed
using Equation (1) below:

Iði; jÞ¼Gði; jÞ:tði; jÞ þAð1� tði; jÞÞ ð1Þ

Where (i,j) are the pixel coordinates, I(i, j) is the
irradiance of the scene (the captured hazy image),
G(i, j) is the image's ground truth (the haze-free

image), A is the airlight and t(i, j) is the transmission
map. The transmission map depends on an object's
distance from the camera lens [1].

tði; jÞ¼ e�bd ð2Þ

Where b is the attenuation parameter, and d (i,j)
denotes the image's object depth at (i,j) coordinates.
Based on the equations mentioned earlier, it can be
inferred that when the object depth approaches in-
finity, the function t(i) converges to zero, while the
function I(i) remains constant at A. When the object
is positioned in the foreground, the depth of the
scene is expected to be relatively shallow, resulting
in Equation J(i,j) ¼ I(i,j) for (1). If the values of two
variables, namely d(i) and A, can be determined, it is
possible to reconstruct the irradiance of the original
scene from the deformed image. After calculating
the two crucial parameters, airlight and the trans-
mission map, the ground truth can be calculated
directly as:

JðiÞ¼ IðiÞ �A
tðiÞ þA ð3Þ

3. Proposed method

Fig. 1 illustrates the proposed method's compre-
hensive structure. It can be broadly categorized into
two main components: classification and
restoration.
The addition of intelligence is necessary to enable

automation inside any given system. To address this
concern, this paper developed a classifier utilizing
an Alexnet network transfer algorithm. This classi-
fier is designed to determine whether an image has
been affected by haze accurately. If the classifier's
output is nearly zero, it can be inferred that the
input image is high quality and can be readily uti-
lized for subsequent processing. The classifier
developed in this study demonstrates a level of
precision of 97.4%. If the classifier produces a value
close to one, it can be inferred that noise, such as
haze or fog, has affected the collected image. This
classifier facilitates the exclusion of clean images,
alleviating the computational burden on the pro-
cessor and obviating the need for human interven-
tion. The technique was specifically developed to
handle the input image if the classifier score exceeds
a threshold of 0.6.
After the classifier, the original transmission map

is generated using MCP and corrected using
Gamma transform. The original transmission map
and its improved form are combined via image
fusion. Then, the fused transmission map is
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subjected to a guided filter. Finally, using the ob-
tained transmission map and an optical scattering
model, the dehazed images are recovered.

3.1. Alexnet network transfer model-based hazy
image classifier

3.1.1. Alexnet - Convolution neural network
Krizhevzky and others suggested the concept of

Alexnet. AlexNet's image recognition precision is
more than twice that of ImageNet, and it possesses
unique benefits. It is the most traditional model in
the domain of digital imaging [28,29]. Alexnet's
network architecture consists of eight layers, five of
which are convolution layers and three of which are
fully connected. Up to 1000 different types of image
categorization may be done by training the network
using massive amounts of data. Table 1 shows the
Alexnet architecture.
The dimensions of the input image for the

network are 227 � 227 � 3. The value 227 corre-
sponds to both the height and width of the image,
while the value 3 signifies that the image is in RGB

format, consisting of three color channels. To ensure
consistency throughout training, it is necessary to
normalize the size of the training pictures to
227 � 227 pixels. In the standard Alexnet network,
the first and second layers are followed by the max
pooling layer, normalization layer, and ReLu acti-
vation function. The third layer utilizes the convo-
lution layer and ReLu activation function, while the
fifth layer is identical to the first layer but lacks
normalization by the norm. The fully connected
layers are layers six to eight, while the final layer
employs a softmax classifier to classify the images
by 1000.

3.1.2. Transfer model-based haze image classification
It is generally known that standard ANN models

often need a lot of data to make more accurate
models. Similarly, using Alexnet for image classifi-
cation requires many training data sets to reach a
better precision [30]. However, getting training data
for a public modeling assignment is frequently
challenging. Overusing training sets can enhance
precision rates, increase the complexity of network

Fig. 1. The proposed block diagram.

Table 1. Alexnet network architecture using CNN.

Layer Feature map Size Kernel size Stride Activation

Input image 1 227 � 227 � 3 e e e

1 Convolution 96 55 � 55 � 96 11 � 11 4 relu
Max pooling 96 27 � 27 � 96 3 � 3 2 relu

2 Convolution 256 227 � 227 � 256 5 � 5 1 relu
Max pooling 256 13 � 13 � 256 3 � 3 2 relu

3 Convolution 384 13 � 13 � 384 3 � 3 1 relu
4 Convolution 384 13 � 13 � 384 3 � 3 1 relu
5 Convolution 256 13 � 13 � 256 3 � 3 1 relu

Max pooling 256 6 � 6 � 256 3 � 3 2 relu
6 FC e 9216 e e relu
7 FC e 4096 e e relu
8 FC e 4096 e e relu
Output FC e 1000 e e softmax
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training, and introduce the problem of over-fitting.
This paper suggests a hazy image classification
technique based on Alexnet network transfer to
improve precision and reduce training difficulty.
As depicted in Fig. 2, the source task (ImageNet

classification task) is used to train the AlexNet
network and evaluate its training precision. Then,
move the last three elements to the target task (hazy
image recognition task) to achieve network element
transfer. When the elements of the original network
are transferred to the target task, the new network
needs to be trained. The classification precision can
be improved by repeatedly modifying the elements
because of the differences between the transferred
network's dataset (Datasets 1 and 2) and the original
network.

3.2. Mean channel prior

This paper introduced an essential prior for
transmission map estimation using MCP. According
to a comprehensive study utilizing some hazy
datasets, such as the Reside dataset, released in
2017, available at https://sites.google.com/view/
reside-dehaze-datasets/reside-standard; FRIDA
dataset, released in 2010, available at http://perso.
lcpc.fr/tarel.jean-philippe/bdd/frida; and D-HAZY
dataset, released in 2016, available at https://
paperswithcode.com/dataset/d-hazy. The three
channels' mean value increases continuously with
the haze level. Based on a statistical analysis of the
histograms depicting the mean value of the hazy
image and ground truth, it was determined that
there is a positive correlation between haze con-
centration (precisely, depth) and the mean channel
value. Also, the distribution of mean pixel values
throughout the whole scale. It can be seen clearly
that 75% of the pixel values are below 0.6. However,
when the concentration of haze grows, the mean
pixel values tend to concentrate at higher values.
The mean channel of the hazy images may be
computed using the following formula:

Mch¼
�
mean
c¼R;G;BI

Cði; jÞ
�

ð4Þ

Where I is the hazy image, i,j is the pixels index, and
Mch denotes the mean channel, which can roughly

be described as a depth map representing the haz-
ing intensity. The transmission map may be
computed using Equation (5) based on the atmo-
spheric scattering model.

tði; jÞ¼ e�bðMchÞ ð5Þ

Where b is the attenuation parameter, which is
sensitivity to wavelengths and, therefore, different
for the three color channels, and Mch is the depth
map derived from the MCP.

3.3. Gamma correction for transmission map

The gamma correction equation to calculate the
transmission map is defined as follows.

T2ðiÞ¼T1ðiÞ
1
ƛ ð6Þ

T1(x) stands for the original transmission map
derived from Equation (5). Fig. 3 shows two lines
with ƛ ¼ 1 and 4. For ƛ ¼ 4, the image's dynamic
range increases in the low gray value region,
increasing the image's contrast. Conversely, the
dynamic range decreases in the large gray value
area, resulting in lower contrast in the image.

3.4. Adaptive image fusion for transmission map
estimation

This paper employed a weighted average image
fusion technique of different transmission estima-
tion strategies for normal and bright regions to
enhance the precision of transmission map calcu-
lation. The transmission map obtained by MCP is

Fig. 2. Transfer learning-based Network model.

Fig. 3. Gamma correction curve.
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generally excellent in typical areas. Therefore, a
greater weight is assigned to the first transmission
map produced by MCP and a lower weight to its
corrected map. However, in bright regions, the
transmission map produced by MCP is always
inflated. Therefore, the original transmission map is
assigned a lower and higher weight to its corrected
map. Consequently, the fusion formula can be
defined as follows.

TFðiÞ¼T1ðiÞWFðiÞ þ T2ðiÞð1�WFðiÞÞ ð7Þ
Where T1(i) is the transmission map produced by
MCP, T2(i) is the transmission handled by Gamma
correction. WF(i) represents the fusion weighting
and the computation process, illustrated in Fig. 4.
The transmission map estimated by MCP (orig-

inal) and its corrected map is first filtered using a
guided filter.

G1ðiÞ¼GuidFt;eðT1ðiÞÞ ð8Þ

G2ðiÞ¼GuidFt;eðT2ðiÞÞ ð9Þ
The weighting is then created by.

WFðiÞ¼ T1ðiÞT2ðiÞ
ðG1ðiÞ þ aÞðG2ðiÞ þ aÞ ð10Þ

Where a is a variable value defined by.

a¼Max
�
IdarkðiÞ�
K

ð11Þ

Where k is a fixed value, the proposed approach
adaptively restores various hazy photos by calculating
adaptive weighting maps. Next, a guided filter is
employed on the fused transmission map to improve
its visible effect performance, thereby resolving the
halo issue and blocking artifacts of the dazed image.

TFðiÞ¼GuidFt;eðIgrayðiÞ;TFðiÞÞ ð12Þ
Igray(i) is the original image's grey map (guided

map).

3.5. Atmospheric light calculation

Estimating airlight (A) is another crucial aspect of
haze model processing (3). According to the haze

model, there is a remarkable relationship between
haze concentration and brightness. As the haze
concentration increases, the image's brightness in-
creases, too. The air light, denoted by (A) in Ref. [5],
corresponds to the maximum value of the input
image. Nevertheless, it is worth noting that there are
instances where images may contain white items
that appear brighter than the real object. It could
lead to inaccurate estimations. This study estimated
air light by calculating the average value of the top
0.1% pixels inside the dark channel, as referenced in
Ref. [14]. The calculation of the dark track may be
determined as follows.

JdarkðiÞ¼
�
min
c¼R;G;BJ

CðiÞ
�

ð13Þ
Jdark (i) is the lowest channel in the input J(i).

Using (9) as a basis, air light can be computed as
follows:

A¼
Pn

i¼0JdarkðiÞ
n

ð14Þ

Where n is the number of pixels in Jdark (i) that
correspond to the top 0.1% in brightness, arranged
in ascending order.

3.6. Scene radiance recovery

Upon performing the necessary calculations for
the airlight and transmission map, the scene irra-
diance has been successfully recreated from (1). The
final scene irradiance recovery can be achieved by
implementing Equation (11); by rearranging Equa-
tion (1), the ground truth J(i,j) can be expressed as.

JðiÞ¼ IðiÞ �A
TFðiÞ þA ð15Þ

4. Experimental results and discussion

In this section, the classification of hazy images is
discussed first. Then, the free parameters are set up.
Finally, the performance of the suggested method is
compared with the eight latest or classical ap-
proaches on both authentic and synthetic images.
The eight methods are He et al. [2], Berman et al.
[31], Dhara et al. [32], Zheng et al. [33], Zhang and
Patel [34], Ju et al. [35], Zhu et al. [19], Cai et al. [26].

4.1. Hazy image classification

In the experiment, 700 images were used as
experimental data, selected from different re-
positories, including RESIDE, FRIDA, D-HAZY, andFig. 4. A flowchart for calculating the weighting map.
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Google. These images consist of 350 hazy images
and 350 free images. To prevent the overlapping
and merging of the training set and test set, 700
images were randomly shuffled. Three hundred fifty
images were randomly chosen from this pool to
form the training set, while the remaining 100 im-
ages were designated as the test set. The number of
categories in the Alexnet network has been reduced
from 1000 to 2. The network is configured to un-
dergo 7 epochs, each with 14 training iterations. This
process is repeated 97 times in all. The first learning
rate for the network is established at 0.002. Each it-
eration's learning rate is automatically halved. Fig. 5
and Table 2 show the experimental results.
The results indicate that the training precision can

attain a value of 1 while the accuracy in the test set
can achieve 0.98. Based on the results shown in
Fig. 5 and Table 2, it is clear that the precision curves
for the training set and the test set show a high
degree of similarity. This indicates the absence of
over-fitting, as indicated by precision values close to
1 and 0.97, respectively.

4.2. Parameter settings

The parameters t 3 in equations (8) and (9) are
determined by empirical methods, with values of 15
and 0.001 selected. Gamma in (6) and k in (11) have
significant implications in the context of the sug-
gested objective metrics. They are called PSNR and
SSIM, respectively. Consequently, a series of tests
were conducted to examine the optimal values for
the parameter.
Firstly, k is changed from 1 to 8, and Gamma is set

to 4. Fig. 6 illustrates the results of PSNR and SSIM
on a selection of images taken from the open-source
dataset RESIDE. Fig. 6(a) and (c) illustrate the PSNR
and SSIM objective metrics line charts when k is
about 3. Both objective metrics provide the highest

results. Then, k is set to three, and Gamma is
adjusted from one to eight. Fig. 6(b) and (d) illustrate
the PSNR and SSIM objective metrics with Gamma
values ranging from one to eight. When the value of
Gamma attains 4, it is clear that the PSNR and SSIM
performances stay stable. As a result, in the pro-
posed technique, k and Gamma were set to 3 and 4,
respectively.

4.3. A comparative analysis of subjective
perceptions between real and synthetic images

Five real-world hazy images labeled RI1, RI2, RI3,
RI4, RI5 and five synthetic images labeled SI1, SI2,
SI3, SI4, and SI5 were chosen from RESIDE dataset,
FRIDA dataset, and D-HAZY dataset for compari-
son analysis, and the results are explained in Fig. 7
and Fig. 8, respectively. In Figs. 7 and 8, He et al. [2]
demonstrate effective dehazing, but it has been
observed that the He et al. approach [2] is not
applicable in the white and sky areas, which results
in color distortion and excessive enhancement in
these regions. This issue is evident in images RI3,
RI5, SI1, SI3, and SI4. Similarly, the dehazed out-
comes obtained by the approach proposed by Ber-
man et al. [31] exhibited excessive enhancement. It
can be attributed to the inaccurate calculation of the
transmission map for specific images, as exempli-
fied by RI3, RI4, and RI5. Dhara et al. [32] proposed a
color correction technique inspired by the method
developed by He et al. [2]. This approach demon-
strates significant efficacy in addressing the issue of
color distortion. Hence, the visual outcome of
dehazed images achieved by the method proposed
by Dhara et al. [32] is deemed suitable. The meth-
odologies proposed by Zheng et al. [33] and Zhang
et al. [34] both center around image enhancement.
Despite exhibiting dehazing solid capabilities, the
dehazed results are marred by artifact colors. This
issue arises from the heavy reliance on the
improved images, as evidenced by color artifacts in
images RI1, RI3, RI4, and SI1. The dehazed outcomes
obtained from the method proposed by Ju et al. [35]
exhibit noticeable over-lightning. The enhancementFig. 5. Training and validation precision.

Table 2. Training and validation precision.

Epoch Learning rate Precision

Training precision Test precision

1 0.002 0.98 0.92
2 0.002 1 0.93
3 0.002 1 0.95
4 0.001 1 0.96
5 0.001 1 0.97
6 0.001 1 0.97
7 0.005 1 0.97
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Fig. 6. The PSNR and SSIM of the dehazed images using various settings (k and Gamma) (a) PSNR with different k, (b) PSNR with different Gamma,
(c) SSIM with different k, and (d) SSIM with different Gamma.

Fig. 7. Result of different dehazing methods and proposed method on real-world images.
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of overall brightness in the atmospheric scattering
model (ASM) results can be attributed to introduce
the light absorption coefficient. Collectively, the
approach proposed by Zhu et al. [19], the method
proposed by Cai et al. [26], and the method pro-
posed in this study demonstrate effective haze
removal capabilities in source images. Additionally,
the colors of recovered images are realistic and
natural.

4.4. A comparative analysis of quantitative
perceptions

Given the inherent subjectivity of individual
viewers' judgments, the introduction of objective

indicators serves the purpose of quantitatively
evaluating the performances of various methodolo-
gies. The indicators encompassed in this study are
the natural image quality evaluator (NIQE) [36], the
peak signal-to-noise ratio (PSNR) [37], and the
measure of structural similarity (SSIM) [38]. One of
the non-reference indicators is NIQE. The degree of
realism and naturalness of restored images is
inversely proportional to the magnitude of the
NIQE metric. Table 3 presents the NIQE index
values obtained from evaluating several dehazing
techniques on real-world images. The instances
highlighted in bold indicate the highest quality ac-
cording to the Natural Image Quality Evaluator
(NIQE). At the same time, those underlined

Fig. 8. Result of different dehazing methods and proposed method on synthetic images.
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represent the second highest quality as determined
by the same metric. According to the data presented
in Table 3, our method demonstrates an average
NIQE ranked second, with only Dhara et al.'s
method [32] achieving a lower score. The Normal-
ized Image Quality Evaluations (NIQEs) of the
methods proposed by Zheng et al. [33] and Zhu et al.
[19] exhibit high values due to the presence of
noticeable color distortion in their dehazed output.
The dehazed outcomes obtained from the method-
ologies proposed by He et al. [2], Berman et al. [31],
and Ju et al. [35] tend to excessive enhancement.
Consequently, the average NIQE of the group

above is comparatively elevated. In general, the
method proposed by Zhu et al. [19], the method
proposed by Dhara et al. [32], and the method
proposed in this study demonstrate the ability to

achieve relatively low Natural Image Quality Eval-
uator (NIQE) scores. It can be attributed to the fact
that the dehazed images produced by these
methods exhibit a higher degree of realism than
other approaches.
PSNR is a metric that quantifies the relationship

between an image's highest achievable power and
the noise power that compromises the precision of
the signal representation [38]. The formula can be
expressed as.

PSNR¼10 log10

"
MAX2

IHFðiÞ
MSE

#
ð16Þ

Where IHF (i) is the clear image, and MAX2
IHF(i) de-

notes the square of the highest pixel value in IHF (i).
MSE is the mean square error as:

Table 3. Comparison of the proposed method with different methods in terms of NIQE on real-world images.

Image He et al.
[2]

Berman et al.
[31]

Dhara et al.
[32]

Zheng et al.
[33]

Zhang et al.
[34]

Ju et al.
[35]

Zhu et al.
[19]

Cai et al.
[26]

proposed
method

NI1 2.548 2.697 2.624 2.561 2.659 2.643 2.713 2.685 2.607
NI2 2.478 2.417 2.408 2.594 2.521 2.43 2.43 2.543 2.409
NI3 2.287 2.143 2.381 2.379 2.609 2.297 2.411 2.482 2.5
NI4 1.955 1.829 1.824 2.075 1.957 1.767 1.922 1.903 1.925
NI5 2.785 3.028 2.661 3.479 3.241 2.63 2.519 2.459 2.49
Average 2.411 2.423 2.380 2.618 2.597 2.353 2.399 2.414 2.386

Table 4. Comparison of the proposed method with different methods in terms of PSNR on the synthetic images.

Image He et al.
[2]

Berman et al.
[31]

Dhara et al.
[32]

Zheng et al.
[33]

Zhang and
Patel [34]

Ju et al.
[35]

Zhu et al.
[19]

Cai et al.
[26]

Proposed
method

SI1 17.384 19.501 20.585 20.338 22.532 18.508 19.365 25.196 29.596
SI2 16.951 18.587 19.09 17.877 19.373 21.559 22.152 22.839 28.004
SI3 11.567 13.058 13.002 18.702 22.129 15.962 16.625 19.734 28.17
SI4 15.976 19.634 25.755 19.981 25.744 17.397 21.739 24.25 26.262
SI5 15.94 18.321 18.041 20.366 24.478 17.144 32.64 22.877 26.628
Average 15.564 17.820 19.295 19.453 22.851 18.114 22.504 22.979 27.732

Table 5. Comparison of the proposed method with different methods in terms of SSIM on the synthetic images.

Image He et al.
[2]

Berman et al.
[31]

Dhara et al.
[32]

Zheng et al.
[33]

Zhang and
Patel [34]

Ju et al.
[35]

Zhu et al.
[19]

Cai et al.
[26]

Proposed
method

SI1 0.882 0.945 0.923 0.683 0.938 0.983 0.971 0.964 0.969
SI2 0.907 0.940 0.944 0.905 0.889 0.974 0.950 0.942 0.988
SI3 0.715 0.766 0.895 0.933 0.808 0.936 0.841 0.943 0.990
SI4 0.845 0.914 0.926 0.909 0.943 0.962 0.938 0.929 0.981
SI5 0.857 0.928 0.962 0.784 0.934 0.981 0.988 0.959 0.984
Average 0.841 0.899 0.930 0.843 0.902 0.967 0.938 0.947 0.982

Table 6. Average values of PSNR and SSIM for RESIDE dataset.

Metrics He et al.
[2]

Berman et al.
[31]

Dhara et al.
[32]

Zheng et al.
[33]

Zhang and
Patel [34]

Ju et al.
[35]

Zhu et al.
[19]

Cai et al.
[26]

Proposed
method

PSNR 14.678 18.059 17.166 18.368 19.512 15.524 19.993 22.627 22.668
SSMI 0.819 0.873 0.886 0.851 0.888 0.820 0.870 0.918 0.930

The values in bold represent the best PSNR and SSIM. Our method achieves better results compared to other methods.
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MSE¼ 1
w� h

Xw
i¼1

Xh

j¼1

ðJðiÞ � IHFðiÞÞ2 ð17Þ

Where h and w are height and width, respectively,
and J (i) is the dehazing result. The SSIM index
quantifies the degree of similarity between dehazing
images and clear images. It assesses the outcomes in
three areas: lighting l(i), contrast c(i), and structure
s(i).

SSIM¼ f ðlðiÞ; cðiÞ; sðiÞÞ ð18Þ
The utilization of PSNR and SSIM as reference

metrics necessitates the comparison of dehazing
outcomes with haze-free images. Hence, the
employment of PSNR and SSIM is limited to the
exclusive assessment of synthetic images. Greater
values of PSNR and SSIM indicate superior per-
formance in the dehazing outcomes. Tables 4 and 5
present the PSNR and SSIM metrics for synthetic
images. Tables 6e8 show the average performance
for the RESIDE, FRIDA, and D-HAZY datasets.

4.5. A comparative analysis of time complexity

Table 9 depicts the proposed approach's time
consumption and the comparative approaches
across different image sizes (excluding the
computing time required for the classifier). The
studies by Zhu et al. [19] and Zheng et al. [33] use a
multi-exposure fusion method to accomplish image

dehazing. The authors of Zheng et al. [33] proposed
an adaptive structural decomposition combined for
every image patch in their fusion model. However,
this approach exhibits a relatively high computation
complexity, increasing processing time. In the study
conducted by He et al. [2], soft matting was
employed to enhance the precision and quality of
the transmission map.
All the same, using soft matting significantly

augmented the total duration of the execution
process. Dhara et al. [32] proposed using color
correction as an alternative to soft matting to
enhance the precision of transmission map esti-
mates. This approach has the potential to cut pro-
cessing time to a certain extent. The study
conducted by Cai et al. [26] showed that using deep
networks for estimating transmission maps
increased the overall execution time, primarily due
to the extensive parameter computations involved.
The k-means technique was utilized by Berman
et al. [31] to cluster pixels into a haze line and
subsequently estimate the transmission map using
the haze line. Meanwhile, a sparsely populated
linear system, known for its time-consuming na-
ture, was employed to enhance the transmission
map, resulting in a corresponding increase in the
overall execution duration. According to the data
presented in Table 9, it is evident that the sug-
gested method exhibits the shortest duration of
consumption for source images of varying sizes.

Table 7. Average values of PSNR and SSIM for the FRIDA dataset.

Metrics He et al.
[2]

Berman et al.
[31]

Dhara et al.
[32]

Zheng et al.
[33]

Zhang and
Patel [34]

Ju et al.
[35]

Zhu et al.
[19]

Cai et al.
[26]

Proposed
method

PSNR 15.285 17.942 16.265 18.223 21.512 18.511 19.325 20.329 21.432
SSMI 0.711 0.767 0.854 0.822 0.847 0.824 0.877 0.932 0.951

The values in bold represent the best PSNR and SSIM. Our method achieves better results compared to other methods.

Table 8. Average values of PSNR and SSIM for the D-HAZY dataset.

Metrics He et al.
[2]

Berman et al.
[31]

Dhara et al.
[32]

Zheng et al.
[33]

Zhang and
Patel [34]

Ju et al.
[35]

Zhu et al.
[19]

Cai et al.
[26]

Proposed
method

PSNR 16.586 16.610 17.166 18.368 19.112 15.524 14.45 14.72 19.254
SSMI 0.865 0.750 0.868 0.851 0.866 0.825 0.785 0.791 0.873

The values in bold represent the best PSNR and SSIM. Our method achieves better results compared to other methods.

Table 9. Comparison of the proposed method with different methods in terms of time complexity.

Image He et al.
[2]

Berman et al.
[31]

Dhara et al.
[32]

Zheng et al.
[33]

Zhang and
Patel [34]

Ju et al.
[35]

Zhu et al.
[19]

Cai et al.
[26]

Proposed
method

3346 � 2032 19.501 11.456 29.788 31.936 20.896 2 19.493 6.317 23.709 4.358
1200 � 992 3.389 6.055 8.337 5.599 4.375 37.928 1.025 3.210 0.705
1024 � 668 1.972 3.488 5.533 3.287 2.599 21.699 0.575 1.750 0.373
768 � 497 1.198 1.781 4.992 1.906 1.329 12.395 0.329 1.338 0.208
400 � 450 0.632 1.075 4.706 1.023 0.807 6.627 0.208 0.804 0.113
398 � 265 0.374 0.745 4.338 0.677 0.376 3.176 0.170 0.441 0.045
Average 4.511 4.771 9.616 7.405 5.064 50.220 1.437 5.209 0.967
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5. Conclusion

This paper presents an Alexnet hazy image classi-
fication network for automated hazy image identifi-
cation, and it is executed and obtained a verification
precision of 93.4% over 50 epochs. Also, a practical
approach for image dehazing was introduced based
on estimating the transmission map and fusion
strategy. This technique is based on the MCP, which
has a solid theoretical foundation and good dehazing
results. This paper intends to address the issue of a
color shift in the sky and white regions inMCP while
preserving dehazing performance. Therefore, it pre-
processes the transmission map acquired from the
MCP using gamma correction. Then, an adaptive
fusion strategy can be proposed to combine the cor-
rected image with the MCP-obtained initial trans-
mission image. Adaptively fusing an approach that
preserves the details in recovered images and aims
for various levels of image haziness is effective and
adaptive. Finally, a guided filter is employed for the
fused transmission map to eliminate the block and
halo effects of the sky region. It uses PSNR, SSIM, and
NIQE to assess the effectiveness of image recovery.
This paper compares the proposed method to the
eight latest and classic methods on real-world and
synthetic haze images. Additionally, time complexity
is compared. Based on the obtained results, the pro-
posed method can effectively address the issue of
color shift of the recovered image and its computa-
tion speed.
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