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Abstract

The late 1990s saw the rise of the edge computing network paradigm, as well as an increase in the number of IoT
devices. This concept is viewed as a link between cloud servers and end-devices, bringing processing and storage re-
sources closer to clients. As a result of its low latency and high performance, researchers and developers have expressed
interest in it. However, this paradigm confronts a number of obstacles and restrictions, including restricted and het-
erogeneous resources at network edges. In this paper, we provide a detailed review of heterogeneous resources in edge
network infrastructures using a three-dimensional method. These three dimensions in this concept correspond to the
edge computer layers, hardware layers, and software layers of the edge network paradigm infrastructure ecosystem. This
review considers Artificial Intelligence (AI), which classifies cutting-edge works into two categories: AI-based and non-
AI-based solutions based on research issues such as fault tolerance, power consumption, resource utilization, resource
allocation, latency, device ID, clustering, heuristic-based, and meta-heuristic-based. Because reviews in this field rarely
address full research concerns linked to this research topic. This review provides a sufficient overview to address the
majority of open research questions. We examine and compare outstanding issues in AI-based and non-AI-based sys-
tems, focusing on evaluation metrics for meeting Quality of Services (QoS) and Quality of Experience (QoE) standards.
We expect that this evaluation will assist developers and researchers in determining the appropriate solution from
research issues to achieve their objectives in building IoT technology and edge computing networks.

Keywords: Edge computing, Fog computing, Cloudlet, Heterogeneous resources, Federated learning, Data center

1. Introduction

M ost Internet of Things (IoT) gadgets and ap-
plications now access remote resources

through cloud platforms provided by service pro-
viders. Typically, data generated by end machines
such as laptops, mobile phones, sensors, and auto-
mobiles is transferred to the resources of a remote
cloud for computation. This approach is deemed
wasteful and unsatisfactory due to increased la-
tencies when IoT units and apps are spread on a
wide scale [1]. Edge computing is an emerging geo-
distributed computational model that has currently
piqued the interest of the research community by
bringing cloud computing capabilities closer to

users and data sources to meet the services and
requirements of end users [2,3].
Edge computing (EC) encompasses a variety of

paradigms, including fog computing (FC), mobile
edge computing (MEC), and local cloud computing
(cloudlet). These paradigms are implemented to
reduce latency while meeting massive processing
demands at the network's edge. To increase
application capacity, as is always assumed in
theoretical research, the edge's resources should be
combined into a consistent resource grouping and
diverse edge devices should collaborate. However,
this cooperative is difficult to implement since
heterogeneous organizations lead to siloed facil-
ities [4].
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Heterogeneity refers to the existence of various
types of hardware and software, most likely with
vastly different storage spaces, computing power,
and fundamental architecture; the substitution of a
data source with a variety of structures, controls,
and applications; and the interaction paradigm is
limited to hardware and software itself [5]. Hetero-
geneous machines are another important feature of
any Internet of Things environment [6]. This envi-
ronment is designed to deal with varying levels of
machine heterogeneity, which implies differences in
not only protocols or machine operations, but also
computational resources [7].
This study aims to conduct a complete assessment

and categorization of cutting-edge research on het-
erogeneous infrastructure resources in the edge
computing paradigm. We begin by providing an
overview of the methodologies and tactics used to
address the consequences caused by heterogeneity
in edge computing networks. The three-dimen-
sional scheme is then presented: the first dimension
represents the ecosystem's edge layer components,
the second dimension represents the hardware
ecosystem's components, and the third dimension
represents the software ecosystem's components.
Furthermore, we classified the most recent research
in the field of heterogeneous resources into two
categories: AI-based and non-AI-based solutions,
based on the most important research issues such as
fault tolerance, power consumption, resource utili-
zation, resource allocation, latency, device ID, clus-
tering, heuristic-based, and meta-heuristic-based.
The main contributions of this study are as follows:

1 Offering an outline of the important issues of
heterogeneous resources of infrastructure in
edge computing.

2 Offering a review of related surveys.
3 Classifying the components of the infrastructure
in the ecosystem for edge computing according
to the heterogeneous facilities into a three-
dimensional scheme.

4 Conducting a taxonomy of the research issues
with AI and without AI.

5 Offering the research issues and future works
that methods and techniques can be applied in
edge computing in order to improve
performance.

The remaining parts of the research are structured
as follows: In Section 2, we investigate diverse
methods and techniques that study heterogeneous
resource issues according to their goals. Section 3
addresses the scheme for layers and components of
infrastructure in three dimensions. Section 4

provides methods and techniques for heteroge-
neous resources. Section 5 gives a discussion and
analysis of the heterogeneous resource issues.
Finally, Section 6 concludes the major outcomes and
proposes future work.

2. Related works

Edge computing is defined as the investment in
devices and applications located at the network
edge [8,9]. While fog computing is defined as an
investment in both edge resources and the cloud
[10,11], local cloud (cloudlet) is a notion that ex-
presses a small geographic area as a set of servers.
This local cloud is used to provide services that are
placed near the network edge. The local cloud aims
to reduce response time and traffic in the global
cloud by bringing computing capabilities closer to
clients [4]. Hong et al. [12] conducted a review to
distinguish and categorize the sectors that address
the implementation fog/edge paradigm's resource
management requirements. There are numerous
challenges in different levels of heterogeneous set-
tings, with several of them focusing on features such
as latency, resource investment, fault tolerance, ac-
celeration, and real-time communications [13]. The
network edge architecture is introduced in several
cooperative resource management methods,
providing a unifying paradigm for two types of op-
erations: centralized and decentralized [14].
The resource management strategies were inves-

tigated using an infrastructure of edge computing
and cloud computing. This infrastructure is taken in
the style of a classic category to determine the most
recent approaches to the issue of infrastructure. The
most essential research subjects covered include
shorter reaction times and faster communication
between end users, as well as some metrics and
assessment tools [15]. The resource management
approaches are based on classification and subse-
quent deconstruction in order to identify difficulties
in the current state of the art. The study focuses on
non-functional characteristics [16].
Liu et al. [17] conducted a survey of several ar-

chitectures for dynamic edge devices and settings.
Mach and Becvar [18] presented a study of ap-
proaches for computing in the vicinity of users in
the field of dynamic edge computing. Mouradian
et al. [19] created a taxonomy of architectures based
on whether they are application-accessible or not,
and they also considered numerous criteria, the
most important of which was heterogeneity.
Fahimullah et al. [20] focused their study on ma-

chine learning's contribution to many fog
computing research concerns. Goudarzi et al. [21]
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used reinforcement learning and deep neural net-
works based on their experience with application
placement. The Directed Acyclic Graphs approach
was then used to describe applications with chang-
ing job numbers and paradigms. However, they
built the nonrealistic Directed Acyclic Graphs
dataset with varying priorities to simulate the sce-
narios of the Internet of Things causing heteroge-
neity of Directed Acyclic Graphs. The resources of
the end user, fog, and cloud are a collection of
decentralized heterogeneous things in fog settings.
Given the fog environment's inherent heterogeneity
and dynamic nature, resource assignment is difficult
and susceptible to NP difficulties [22]. When
assigning resources to new users, some character-
istics of the fog computing network must be
considered, including as heterogeneous applica-
tions, a random workload environment, and dy-
namic [23]. Shi and his colleagues [24] used deep
reinforcement learning techniques to maximize
utility while minimizing response time in a hetero-
geneous vehicular fog network.
The proposed approach was based on the method

of horizontal collaboration in fog layers, fractional
computational offloading, and a centralized learning
technique in the data sink. Sarkar and Kumar [25]
used a deep reinforcement learning technique in a
heterogeneous fog environment that incorporates
automated judgments via multiple parallel deep
neural networks for offloading computing. These
decisions are then applied to training and testing
operations.
The authors of [26] gave a recap of the primary

technologies used to construct a network edge
platform, as well as a framework for a network edge
platform based on decentralized storage. The edge
computing environment uses virtualization tech-
nology that is based on a representation method.
This method works by assembling heterogeneous
machines such as switches, routers, gateways, stor-
age, and servers into an on-premises network. The

next phase is virtualization, which involves con-
verting to a virtual machine and then deploying the
specific application on it.
This technology has radically altered the concept

of network architecture devices, allowing for the
installation of various service applications on a vir-
tualized system. Indeed, edge computing can be
defined as a scene in which a large number of het-
erogeneous nodes interface and collaborate to
handle user requests for computation and storage.
As a result, in this research, we focused on devel-
oping a new scheme in three-dimensional archi-
tecture for edge computing that provides more
insight and knowledge of the edge network
ecosystem. In addition, whether or not AI is used,
the most essential research challenges associated to
homogeneous resources will be classified. “Table 1"
lists the acronyms that will be used often
throughout this review.

3. Infrastructure

The infrastructure for the network edge paradigm
provides partitions that include layers of edge
computing, hardware, and software to initialize all
capabilities for applications that use this paradigm
[27]. “Fig. 1” depicts the scheme of infrastructures in
the edge computing ecosystem, illustrating various
infrastructure entities, which are divided into three
layers: edge computing, hardware, and software.
The infrastructure layers for edge computing are
divided into three tiers: end-user, edge, and cloud.
Hardware infrastructure consists of three tiers:

device, node, and server. Software infrastructure
consists of three tiers: data, control, and application.
The infrastructure taxonomy in the ecosystem,
which includes hardware and software. The hard-
ware side's device layer includes Raspberry Pi,
desktops, laptops, smartphones, and IoT devices.
The node tier includes switches, gateways, routers,
and WiFi access points, whereas the server tier

Table 1. Outline of acronyms frequently applied in this review.

Acronym Definition Acronym Definition

AI Artificial Intelligence FC Fog Computing
APs Access Points IoT Internet of Thing
CDN Content Delivery Networks GENI Global Environment for Network Innovations
CNN Convolutional Neural Network MEC Mobile Edge Computing
CPU Central Processing Unit QoS Quality of Services
DC Data Center QoE Quality of Experience
DL Deep Learning PC Personal Computer
ECDs Edge Computing Devices RAMs Random Access Memories
EC Edge Computing SBC Single-board Computer
FiWi Fiber-Wireless OS Operating System
FL Federated Learning VM Virtual Machine
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includes servers. The data layer on the software side
contains data sources, whereas the control tier en-
compasses system virtualization (VMs and con-
tainers) and network virtualization. The application
tier contains application-related services. The pre-
vious layers correspond to end-devices, fog/edge
computing, and cloud computing, respectively.

3.1. Layers of edge computing

Edge computing originated in the late 1990s, when
Akamai introduced content delivery networks
(CDN) to improve online efficiency. Edge
computing is a more advanced version of CDN that
makes use of global cloud infrastructure [9]. The
main purpose of edge computing is to have a layer
that sits between the cloud computing layer and the
end device layer to perform computing. As a result,
the edge computing ecosystem is divided into three
layers: the cloud, the end device, and the edge layer.

3.1.1. Cloud layer
Cloud computing is a type of computer resource

that is accessible to end devices over a network. A
cloud is a data center that provides processing and
caching services to end devices via the network.
Cloud computing frequently distributes services

across numerous positions, each of which is a DC.
This technique decreases traffic, lowering applica-
tion response times [28].

3.1.2. Device layer
A significant collection of devices that create large

amounts of data can be found near the network's
edges.
These devices swap. They transmit data via a

communication network and monitor and operate
the infrastructure. End devices at the edge typically
use Internet of Things machines to connect to the
network [29].

3.1.3. Edge layer
Edge computing devices (ECDs) are distributed

computing resources that can be found between the
cloud and end devices. These devices are scattered
and can be placed in a variety of settings. ECDs
characterize device heterogeneity, allowing
communication between different protocol tires and
non-IP-based technologies [30].

3.2. Hardware

The edge of the network consists of reachable IoT
devices that activate cloud computing components

Fig. 1. Represents the scheme of infrastructures at the edge computing ecosystem in a three-dimensional.
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such as servers, routers, switches, gateways, base
stations, and other edge nodes [2,31,32]. Currently,
these resources are embedded with Raspberry Pi,
which has tremendous computational power. Edge
computing makes use of items such as PC com-
puters, portable devices, and mobile phones [12].
Hardware used at the network edge can be divided
into three types: computing resources, network re-
sources, and traditional data centers.

3.2.1. Computation resources
Computation resources for the local cloud include

single-board computers and commodity items
designed to handle local cloud data [12].

1. Single-board computers (SBCs), such as the
Raspberry Pi, are frequently utilized as local
cloud devices [33e35]. A single-board computer
is a complete computer built on a single circuit
board that includes a central processing unit,
cache, and networking. The microdevice lacks
slots for terminal equipment. FocusStack [34]
creates a cloud environment by connecting
many Raspberry Pi boards to linked cars and
drones. FocusStack created a video sharing ser-
vice in which cameras in vehicles collect moving
views and address and deploy them using
Raspberry Pi boards. Bel-lavista et al. [35]
introduced a single board computer for Internet
of Things gateways that is located near sensors,
allowing for accurate data collecting. Hong et al.
[36] employed single-board computers to pro-
vide crowd-sourced local cloud computing and
flexible Internet of Things analytics.

2. Commodity Products: PC computers, portables,
and mobile phones have all been employed as
local cloud devices. For example, a recent study
aimed to build a global cloud computing layer
employing the aforementioned devices at
educational institutions as well as public places.
Because the owners of these resources may not
always fully utilize their processing capabilities,
local cloud computing companies may invest in
resources to rent idle equipment to other con-
sumers [12].

3.2.2. Network resources
Local cloud computing network resources include

end-of-network switches, routers, gateways, WiFi
APs, and edge racks [12].

1. Switches, Routers, and Gateways: Local cloud
computing capability resources include network
switches, routers, and gateways, which prepare a

data route between end users and service pro-
viders. Aazam et al. proposed a shared gateway
to assess if data collected from Internet of Things
resources should be sent to data center clouds
[37].

2. WiFi APs: ParaDrop [38], a local cloud
computing framework, assumes that WiFi APs
or other wireless gateways are ubiquitous and
always turned on.

3. Edge Racks: The Global Environment for
Network Innovations (GENI) integrates network,
compute, and storage components onto a single
rack [39]. GENI provides a local cloud
computing layer by publishing GENI racks
across many networked locations.

3.2.3. Classical data center
Hardware is a physical reality that is critical for

constructing data center networks. Recently, the rise
of large-scale cloud services has been driven by the
efficiency of hardware in data center networks. The
gear used in data centers is characterized as follows:
switch, router, gateway, server, storage, rack, and
cable, all of which are coupled to construct network
topologies. The traditional key topologies of data
center networks can be classified as multi-stage or
multi-rooted [40]. “Fig. 2" depicts the topology of a
multi-stage data center network (16 servers).

3.3. Software

The software operates directly on network edge
devices such as CPUs, storage, cache, and network
components. It manages devices and routes them to
edge computing applications. As an example of
software, consider virtualization [12]. Middleware
operates on an operating system and provides
supplemental duties that are not enhanced by vir-
tualization software. The middleware integrates
deployed compute devices and works to distribute
instances (VMs) or containers to each network edge
device [12].

Fig. 2. A multi-stage data center network topology [40].
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The network edge describes a computer layer that
uses low-energy resources like routers and gate-
ways. These resources now have computational
power and are connected to a network. The com-
bination of these modest resources creates a cloud
computing layer that may be used by an existing set
of Internet of Things (IoT) services [12].
Edge computing requires software to handle multi-

tenancy since it includes several applications deliv-
ered by various tenants. System virtualization allows
many operating systems to run simultaneously on the
same server. It enables performance and fault isola-
tion between groups of users in local cloud
computing. System virtualization divides resources
across users, preventing one user from exploiting the
resources of another. As a result, a customer'smistake
has no effect on other customers. System virtualiza-
tion manages each user's resource use by evenly
distributing resources across numerous users. A vir-
tualmachine (VM) is a collectionof virtualizeddevices
used to simulate a physical component. Virtualized
devices include processors, RAMs, wireless NCs,
Hard Disk (HDD) [12], and even computer graphics
resources [41]. The user selects an operating system
and does tasks in the Virtual Machine as if it were a
physical component. The hypervisor (virtualization
software) separates the enforcement region from local
cloud computing users. Each user maintains its own
Virtual Machines, and the user's Internet of Things
sends messages to the Virtual Machines for
processing.
The microCloud [42] avoids this issue by

leveraging the capabilities of other edge resources.
The microCloud provides the Cloudy software [43],
a Docker-based container. Using the framework, a
client can deploy tasks to a collection of containers
running on various edge resources. The microCloud
has the same elasticity as other public clouds. The
microCloud focused on locally homogenous re-
sources, but Khan et al. [44] coined the term
“microCloud” to describe regionally distributed and
heterogeneous resources.

4. Solutions of heterogeneous resources

Given the intrinsic variety of peripheral devices
and disparately distributed devices and computing,
developing an application in them can be compli-
cated [45e47]. As a result, this evaluation focuses on
a set of methods for analyzing and categorizing
heterogeneous infrastructure resources. Qian and
his colleagues [48] argued that artificial intelligence
is an effective strategy for dealing with data het-
erogeneity. They provided a centralized model

derived from a set of local models that had been
tested with data relevant to categorical heterogene-
ity and edge sampling. This section addresses open
concerns such as fault tolerance, power consump-
tion, resource usage, latency, device identification,
and clustering, as well as AI-based and non-AI-
based solutions.

4.1. Research issues

This subsection discusses research issues that
arise when dealing with heterogeneous resources at
the network's edges. It identifies a number of un-
resolved concerns, including (fault tolerance, power
consumption, resource utilization, resource alloca-
tion, latency, device identification, and clustering).

4.1.1. Fault tolerance
Fault tolerance refers to a system's ability (device,

edge network, cloud) to continue operating without
interruption when one or more of its components
fail [14]. The goal of developing a fault-tolerant
system is to prevent disruptions caused by a single
point of failure, ensuring the high availability and
continuity of task-critical applications.

4.1.2. Power consumption
Power consumption refers to the amount of elec-

trical power used per unit time to run something,
such as a device, edge network, or cloud. Watts or
kilowatts are regularly used units for measuring
power use. Because no gadget is 100% efficient, the
power used by it is usually greater than what is
actually required. Energy is lost as heat, vibrations,
and/or electromagnetic radiation [40].

4.1.3. Resource utilization
Resource utilization is the process of determining

how efficient resources are. By assigning a task, you
structure it, but usage ensures its success [15].

4.1.4. Resource allocation
Resource allocation relates to selecting the

appropriate devices for a task, managing them
during task execution, and re-assigning or convert-
ing the burden as needed [23].

4.1.5. Latency
The term “latency” refers to the time it takes for

data to get from one point to another across a
network. A network with high latency will respond
slowly, whereas a network with low latency will
respond quickly [19].
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4.1.6. Device ID
The device ID is a concealed string of letters and

numbers that uniquely identifies mobile devices. It
is mainly used to indicate the model of a mobile
device. Mobile applications and programs typically
retrieve the device ID while connecting with servers
to identify themselves [39].

4.1.7. Clustering
A cluster network is a type of computer network

in which all devices are connected with one another
using a central device. The central device normally
does not have a dedicated connection to the rest of
the network, but it does have access to all devices in
the cluster. Cluster networks are widely used for
distributed computing because they can handle
large volumes of traffic and provide fault tolerance if
one or more units fail. Cluster networks are partic-
ularly renowned among research communities that
demand data participation across several labora-
tories because they provide an appropriate pattern
for researchers in diverse positions to collaborate on
activities without the requirement for costly hard-
ware connections across laboratories. Cluster-
network systems could consist of a large number of
individual devices connected into clusters that span
continents [2]. Each of these devices has access to all
of the information on every other device in the
system, and that information is constantly updated.
All cluster devices operate simultaneously, allowing
clients to query any information they want and
receive an instant response. A network like this
would be extremely expensive to set up, requiring
physical hardware connections between all ma-
chines. However, software methods that exist that
allow you to create virtual networks over current
commodity Internet connections without the need
for costly gear or dedicated support staff [33].

4.2. AI-based

Artificial intelligence (AI) refers to the apps or
technology that replicate human decision-making.
This section addresses the AI-related research is-
sues raised in Section 4. The artificial intelligence
techniques in this study will be classified into four
categories: machine learning (ML), deep learning
(DL), convolutional neural network (CNN), edge
learning (EL), federated learning (FL), and federated
edge learning (FEEL).

4.2.1. Machine learning (ML)
Machine learning (ML) is a subfield of artificial

intelligence (AI) that focuses on creating programs
that learn and improve performance using data. For

example, to lower the rate of offloading failure in a
heterogeneous environment, address the job off-
loading issue in a device dynamically. The method
utilized was based on modeling an edge network,
which is fundamentally mobile and dynamic, and
measuring the device cost, penalty of failure, and
variety of quality of service needs. The task of
loading is changed into an ongoing decision-making
issue in a random process [49]. Hou et al. [50]
developed an edge network paradigm in which a
platform provides incentives for tools to orchestrate
task and resource heterogeneity. This paradigm is
an included optimization in which the platform sets
scheduling and incentive schemes while edge nodes
decide service capabilities. At the same time, each
handling task minimizes its overall cost by self-
redirecting through accessible edge nodes. Gupta
et al. [51] proposed enhanced storage for informa-
tion-centric networking with the Internet of Things
by enabling AI-centric collaborative filtering at the
cloud edge to cement IoT design heterogeneity.
Tsung et al. [52] proposed a design for efficient
processing and energy consumption using an ad
hoc parallel artificial intelligence CPU. Immediate
data access is used to transmit data between
network terminals and CPUs, reducing DRAM
traffic. Li et al. [53] presented the HLPN technique
to model collection in edge environments, as edge
computing consists of three diverse environments,
and the HLPN technique addresses heterogeneity
by validating acceptability using machine learning.
Heterogeneity-Aware Approaches: The heteroge-
neous nature of edge computing systems, in
contrast to typical cloud techniques that have sup-
posed homogeneous devices, while at the same time
is a requirement to consider heterogeneous chal-
lenges [54e56].

4.2.2. Deep learning (DL)
Deep learning (DL) is a machine learning

approach that involves dealing with numerous
levels in an artificial neural network. For example, a
technique is developed that employs a cluster-
centric heterogeneous edge network by integrating
a collection of tools such as Docker, Kubernetes,
Prometheus, Grafana, and Node Exporter to
administer the network in a variety of ways,
including assessment and monitoring [57]. Sun et al.
[58] proposed deep learning as a new blueprint
based on a mathematical paradigm for enabling the
Internet of Things to adaptively cooperate in order
to produce high-quality applications of heteroge-
neous devices. Han et al. [59] proposed a method-
ology designed specifically to accelerate the training
of distribution and gossip-centric deep learning in
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heterogeneous edge computing systems. Carlier
et al. [60] proposed multi-agent systems for resource
management that blend Avatar and IoT-A archi-
tectures to share diverse resources. The authors of
[61] presented an EdgeAgent-based solution for
managing a set of entities. This paradigm in-
corporates some of the characteristics that define
diverse resources. Shi et al. [62] discussed this study
of problem edge network heterogeneity. They
developed the mathematical framework for adap-
tive deep neural network paradigm breakdown and
compute offloading. This modeling contains a large
number of binary variables, which increases the
solution area substantially, making it challenging to
solve in multi-job scenes. Thus, they used mobility
programming and greedy policy to reduce the so-
lution area under the hypothesis of an acceptable
solution. Cheng et al. [63] conducted a STELF-
related investigation in which they looked for and
examined the precision and processing efficiency of
FF-DNN and R-DNN models.

4.2.3. Convolutional neural network (CNN)
The convolutional neural network (CNN) is a

component of the deep learning network architec-
ture that is used for classification and computer
vision applications. Huang et al. [64] presented
‘RoofSplit’, a framework for combining bandwidth,
storage, and CPU capabilities. Machine learning
(CNN) can be used in this framework to obtain
excellent performance in edge computing while
avoiding the issue of characteristic heterogeneity.
Chen and Qin [65] developed a distributed feder-
ated training technique by breaking down a training
label convolutional neural network paradigm into
individually trainable sub-paradigms that are
compatible with a subset of learning jobs for each
edge machine. When sub-paradigms are well-
trained on edge servers, the paradigm variables for
specific learning jobs can be collected from each
edge machine and combined into the universal
training paradigm on a single machine.

4.2.4. Federated learning (FL)
Federated learning (FL) is a machine learning

method that trains a methodology over numerous
separate sessions, each with its own dataset. A new
collaborative learning scheme, known as the Het-
eroFL approach, is developed to deal with hetero-
geneous clients that have different CPU and
communication capacities. This strategy focuses on
training varied local paradigms with dynamically
changing local capacities [66]. In this study [67], the
authors of this study developed a way to categorize
customers based on data and create a training

network for each group. The method relies on
determined weights to locate data matching among
customers and adaptively pools them into the
optimal number of groups after investing in the
interconnection between weights and data of the
federated learning network. Zhang et al. [68] pro-
posed a HyFEM technique based on Hybrid
collaborative learning that uses a characteristic-
resembling formulation to balance consumers
establishing accurate local paradigms and servers
learning an accurate global paradigm. Zhang et al.
[69]. This study developed the Federated Learning
model (FedAda) for combining environment ca-
pacity and client data merits to adaptively assign
appropriate jobs to each customer. This solution is
based on an adaptive job allocation mechanism that
addresses the runtime issue among customers while
increasing communication in a heterogeneous edge
network. Ryffel et al. [70] created the FedSGD al-
gorithm, which simulates a collaborative setting by
investing in a random portion of the devices and all
of the data on this device. The mean of the gradients
is calculated using the server in a way that is pro-
portional to the amount of training samples on each
device, and it is used to perform a gradient descent
phase. McMahan et al. [71] created the FedAvg al-
gorithm, which allows local devices to do several
batch modifications on local data and transfers
updated weights rather than gradients. Acar et al.
[72] introduced the FedDyn approach to address
dataset heterogeneity difficulties. This technique
dynamically modifies each node's loss function,
bringing the updated node losses near to the true
global loss. Vahidian et al. [73] proposed the Sub-
FedAvg technique to open a new collaborative
learning technique model by introducing Hybrid
Pruning. Sub-FedAvg aims to create a “Lottery
Ticket Hypothesis” that compares centralized ma-
chine learning techniques to collaborative learning
techniques developed neutrally. Yeganeh et al. [74]
introduced Inverse Distance Aggregation, a variable
weighing method for consumers based on metadata
that analyzes dependent and non-identical central-
ized data. It uses the distance between paradigm
weights and biases as a policy to reduce variation
and improve convergence. Overman et al. [75] pro-
posed a HyFDCA to address convex difficulties in
the hybrid collaborative learning adjustment. Jaggi
et al. [76] and Smith et al. [77] showed this technique
in a scenario in which both samples and character-
istics are split down by customers. Jiang et al. [78]
proposed a customized federated learning tech-
nique with a gradient descent optimization to ac-
count for accuracy heterogeneity and accelerate
training. Furthermore, they implemented an
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equitable universal aggregation policy for the edge
node to limit the difference in precision gaps
amongst machines' heterogeneity. Chen et al. [79]
proposed an algorithm that differentiates service
species and assigns various cloud-centric coopera-
tive resources based on service providing species in
order to meet the corresponding high performance
computing requirements of services and grantee
ideal assignment of edge devices. Deshmukh et al.
[80] presented an approach known as Data Spine,
which involves a unified platform capable of over-
coming IoT difficulties by collaborating among end
devices from various IoT platforms. Ahmed et al.
[81] established a paradigm of federated transfer
learning that takes users' heterogeneity into
consideration and provides services for them. Wang
et al. [82] proposed an algorithm named (CoCo) to
accelerate decentralized federated learning by
improving network design and paradigm compres-
sion to overcome system mobility and heteroge-
neous traffic constraints. Chen et al. [83] used a
collaborative learning technique to improve training
performance for diverse IoT terminal machines in
crucial communication environments. They specif-
ically configure a collaborative learning model and
expand a lightweight server choice algorithm to
efficiently execute learning jobs. Cai et al. [84]
investigated ways to solve the issue of heterogeneity
in edge resources for cooperation. By studying
diverse edge resources, we can identify collabora-
tion challenges and device sharing opportunities.
However, Khan et al. [44] pioneered the concept of
microCloud large-scale deployment with heteroge-
neous resources.

4.2.5. Edge learning (EL)
Edge learning is a subfield of AI that focuses on

tackling problems on-machine, or at the end ma-
chine of the data source, using a pre-trained set of
approaches. Compared to other approaches like
deep learning and CNN, it is simple to set up, takes
less time, and requires fewer photos for learning
[85]. Zhan and Zhang [86] Provide the optimum
pricing approach that can learn autonomously by
mechanism edge learning. Liao et al. [87]. Intro-
duced a distributed EL solution to improve fault
tolerance among computing resource helpers and
requesters in cognitive systems. Jia et al. [88].
Worked using Lyapunov optimization theory to
construct and analyze a cost-effective optimization.
Zhang et al. [89] employed a memristor device to
improve the learning algorithm while reducing en-
ergy consumption. Li et al. [90] proposed an Edge-
LaaS framework for knowledge-centric linked
healthcare that locally processes health supervision

data. Wen et al. [91] proposed a partitioned edge
learning approach for routinely training an AI
model across several end devices. Ding et al. [92]
proposed a strategy to aid unmanned aerial vehicles
with mobile edge computing by increasing secure
computation efficiency. Liu et al. [93] suggested the
importance aware automatic-repeat-request proto-
col to address the retransmission decision issue
during each communication round.

4.2.6. Federate edge learning (FEEL)
Federated edge learning is the coordination of

edge nodes through an edge server to build a
collaborative machine learning model using locally
distributed data samples [94]. Zhang et al. [95]
attempted to formulate and solve the latency issue
through a multidisciplinary effort that combined
learning and communication. Taïk et al. [96] pro-
posed data-aware scheduling for federated edge
learning that considers both data and resource
perspectives. Sun et al. [97] proposed an approach
to improve training performance while considering
machine energy limits, including communication
and processing. Mo et al. [98] demonstrated suc-
cessful answers to the outlined power reduction
concerns using convex optimization techniques.
Zeng et al. [99] proposed a power-efficient strategy
that involves adjusting to machines' path cases and
processing capabilities in order to minimize their
total power usage. Zeng et al. [100] proposed het-
erogeneous computing to improve power efficiency
and performance, contributing to the energy-effi-
cient implementation of federated edge learning.
Albaseer et al. [101] provided fundamental archi-
tectural ideas for enabling federated learning at
edge networks while taking into account the issue of
unlabeled data. They adopted the FedSem tech-
nique, which invests anonymous data in high per-
formance. Lin et al. [102] established a framework
known as the Social Federated Edge Learning
Framework (SFEL) over the internet, which enlists
dependable Who is qualified to participate in
learning? Du et al. [103] proposed a dynamic ma-
chine scheduling method that can identify quali-
fying edge machines and deploy their local models
with an appropriate energy control strategy to share
model training over-the-air. Feng et al. [104] pro-
posed a framework for heterogeneous computing
and resource allocation based on a heterogeneous
mobile architecture in order to achieve accurate
federated learning processing. Luo et al. [105]
introduced the Hierarchical Federated Edge
Learning (HFEL) technique, in which paradigm
aggregation is partially transferred from the cloud to
edge servers. He et al. [106] developed a method for
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importance-aware common data selection and
resource allocation to improve learning perfor-
mance while including the federated edge learning
(FEEL) technique. Wen et al. [107] developed a
training process for the hierarchical federated edge
learning framework that included ML model
updating phases, local gradient computing, and
weighted gradient uploading. Guo et al. [108] pro-
posed a federated edge learning technique, Light-
Fed where the edge devices deploy merely vital
partial local models, and attain model aggregation
and efficiency communication. Furthermore, they
suggested a Training Filling Model (TFM) to deter-
mine the entire data distribution of edge devices
and train a filling model to address uneven training
data while protecting data privacy. In addition, a
blockchain-powered confusion transmission
approach was given to specify the assaults that
safeguard model data. Zhu et al. [109] developed a
digital version of broadband using AirComp ag-
gregation, known as one-bit broadband digital ag-
gregation (OBDA). This version addresses a
difficult-to-implement FEEL technique in wireless
networks using digital modulation. Kang et al. [110]
proposed a many-to-one matching approach to
address the mission assignment issue between
mission publishers and servers that are trustworthy.
The block chain methodology is used to maintain
training records and handle reputation data in a
decentralized and secure manner, eliminating the
possibility of a single point of failure.

4.2.7. Heuristic-based and meta-heuristic-based
The term heuristic-based refers to a set of prob-

lem-solving techniques that favor discovering an-
swers quickly rather than ensuring ideal results.
While heuristics have proven useful in many artifi-
cial intelligence applications, they also present
several research challenges and limitations that
must be carefully considered. On the other hand,
meta-heuristics reflect common methodologies that
can be used to address complex and challenging
search problems. These problems are difficult for
computer scientists to solve because they require
the examination of a large number of combinations,
which are frequently exponential. The developers of
[111] concentrated on a solution module composed
of several modules that launches clients' requested
virtual machines on scale-down of available effec-
tive servers in order to reduce total data center
power consumption. The approach is proposed,
which is based on finding a solution for thermody-
namic simulated annealing due to resource skew-
ness, which may compel it to scale up VMs. Because
many optimization difficulties are NP-Hard

classification issues, heuristics and meta-heuristic
techniques are used to tackle these types of prob-
lems. In unique objective issues, just one objective
function needs to be optimized. Some works
attempted to solve unique objective engineering
problems using heuristic and exact methods [112].
Other articles have evolved meta-heuristics, such as
genetic algorithms [113], particle swarm optimiza-
tion [114,115], and skewness-aware-related [116], to
tackle optimization challenges in the engineering
field. Multi-aim optimization solutions, such as the
Non-dominated Sorting Genetic Algorithm II [117],
multiple objective particle swarm optimization
[118], multiple objective genetic algorithm [119],
multiple objective Bat algorithm for multi-objective
[120], and multiple objective grey wolf optimizer
[121], have been developed in the state-of-the-art to
address multi-objective optimization issues. Belo-
glazov and Buyya [122] proposed a solution based
on ideal online deterministic approaches and heu-
ristics for power and performance efficient dynamic
consolidation of virtual machines in cloud data
centers.

4.3. Non AI-based

This section shall discuss edge computing
research concerns without AI, such as fault toler-
ance, power consumption, resource utilization, la-
tency, device identification, and clustering. Canali
et al. [123] investigated the sequential forwarding
strategy in terms of load and delay. Furthermore,
they proposed an improved version of the technique
that incorporates a delay-aware concept in the event
of variable device connectivity in the network.
Rodríguez et al. [124] proposed a framework focused
on low-expensive and low-energy heterogeneous
process units, with the goal of boosting pro-
grammers' capabilities and enabling runtime with
full investment in computing resources.
Zhou et al. [125] proposed HetMECC, a mecha-

nism for merging end-users, edge nodes, and cloud
servers for data aggregation and deployment. Par-
titioning workloads allows peripheral applications
to receive robust and effective cloud services.
Beraldi et al. [126] introduced two decentralized
load balancing strategies designed to work in a
diverse setting. These strategies combine emulation
with theoretical frameworks. Koo et al. [127] devel-
oped a system for translating and evaluating ma-
chines on the network, identifying devices and
coordinating resource requests. As a result, clients
can use a variety of Internet of Things applications.
Li et al. [128] proposed a software-determined edge
network heterogeneity to separate the control and
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data tires. Based on various needs, jobs in edge
network heterogeneity are broken down into mul-
tiple sub-jobs at the control tire, and the edge server
pact that responds to the jobs is built to execute
decomposed sub-jobs. Cooke et al. [129] suggested a
paradigm for inference based on decentralized
processing in edge computing, utilizing hardware
heterogeneity and substituting software and GPUs.
This paradigm considers the processing cost of ap-
plications, uses a variety of device platforms, and
takes into consideration environmental heteroge-
neity. Wang et al. [130] addressed the issue of
compute-offloading heterogeneity in an OFDMA-
centric CRAN using a mixed mobile edge
computing node. An integrated subcarrier, energy
allocation, and task breakdown issue is developed to
lessen each client's delay. Furthermore, they pre-
sented an improved technique known as HFFE to
address the challenging improvement issue by
converting channel allocation pointers into unde-
tached variables. Several recent works aim to
address heterogeneity-related issues in dynamic
contexts. For example, Honeybee has been pro-
posed as a work sharing protocol that is used in
cycles of heterogeneous dynamic devices to serve
the application from a specific device [131]. Nishio
et al. [132] proposed a method for managing het-
erogeneous devices based on service-oriented ar-
chitecture that share functionality. Bellavista et al.
[133] utilized Docker-based containers on a small
single-board computer that serves as an edge device
for gathering data from many sources. Thus,
microCloud provides flexibility similar to traditional
cloud computing. It focused on resources that were
local and homogeneous. Yao et al. [134] proposed a
technique for distributing cloudlet resources
without exceeding QoS criteria by dividing the
problem into two parts: heterogeneous cloudlet
resource determination and distribution. Nguyen
et al. [135] proposed a strategy for allocating re-
sources based on an economic theory that includes
geo-distributed heterogeneous devices and a set of
services. Zhang et al. [136] discussed resource allo-
cation in heterogeneous vehicle systems and edge
computing. Kert�esz et al. [137] presented the Skippy
model, which is an ongoing scheduler that enables
the seamless placement of serverless edge functions
across decentralized and heterogeneous networks.
Abedpour et al. [138] tackled an optimization
problem by articulating resource allocation in four
levels of heterogeneity for IoT applications. Hosseini
and Ramzanpoor [139] proposed a method called
MOGA that takes into account resource usage and
bandwidth waste rate, as well as dependability and
application quality of service, in its constraints.

5. Discussion and analysis

In Section 3 of this review, we described the edge
computing (EC) ecosystem's infrastructures using a
taxonomy scheme. This technique classified EC into
three dimensions, as shown in “Fig. 1". Despite the
fact that this scheme divides EC infrastructures into
three dimensions, EC management infrastructures
can only be achieved if all three dimensions are
combined into a single unit. For example, the
hardware cannot be used without suitable software.
As a result, EC infrastructures should be carefully
studied, with all three dimensions working together
in a federated manner to achieve the management
infrastructures of the edge computing ecosystem.
In this section, we examine the state-of-the-art

literature listed in the preceding section based on
whether or not it uses artificial intelligence, as
shown in “Table 2”. We observe that the majority of
methodologies and strategies work with heteroge-
neous data. In contrast to research issues that
employ artificial intelligence techniques, we
discover that research issues that do not use these
techniques must transfer their local data to the
location of the models for testing and training, as
indicated by the yellow-shaded rows in “Table 2”.
Research projects that use artificial intelligence
techniques do not need to send their data some-
place else; instead, testing and training are per-
formed locally.
Based on a decomposition of different methods

and techniques for heterogeneous resources that are
used for managing infrastructures in the edge
computing (EC) ecosystem, we discovered that
techniques of federated learning (FL) and deep
learning (DL) received significant attention in fields
of infrastructures in the edge computing (EC)
ecosystem, as shown in “Fig. 3”. Meanwhile, ma-
chine learning (ML) and convolutional neural
network (CNN) techniques have garnered little
attention because the neural network is simple and
the iterations are complex, making ML and CNN
black boxes, respectively.
Federated learning techniques have proven useful

in allowing clients to train and test their models
while also deploying them via the network. This
means that the client frequently updates her model
based on her own data and the behavior of other
customers. Therefore, the excellent performance of
this technique can be shown in low-latency and
other research concerns such as fault tolerance,
power consumption, resource usage, device ID, and
clustering, as demonstrated in “Fig. 4", as well as
this technique's capacity to solve heterogeneous
resource challenges.
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Table 2. Research issues AI-based and non AI-based.

Refer. AI-based Research issues Heterogeneous
type

Method

No. Year ML DL CNN FL EL FEEL heuristic Meta-
heuristic

Fault
tolerant

Power
consumption

Resources
utilization

latency Device
ID

cluster Resources
allocation

[123] 2020 ✓ ✓ Network SFS
[124] 2021 ✓ ✓ ✓ Multi-Processors scheduler
[66] 2021 ✓ ✓ ✓ Clients HeteroFL
[67] 2022 ✓ ✓ Data AdaCFL
[68] 2020 ✓ ✓ Data HyFEM
[69] 2022 ✓ ✓ ✓ MEC environment FedAda
[70] 2018 ✓ ✓ Data FedSGD
[71] 2017 ✓ ✓ ✓ Data FedAvg
[72] 2021 ✓ ✓ ✓ ✓ Data & Device FedDyn
[73] 2021 ✓ ✓ Statistical Sub-FedAvg
[74] 2020 ✓ ✓ Statistical IDA
[75] 2022 ✓ ✓ Data HyFDCA
[76] 2014 ✓ ✓ Data CoCoA
[77] 2018 ✓ ✓ Data general-purpose

framework
[49] 2019 ✓ ✓ Network Decision-making
[50] 2023 ✓ ✓ ✓ Resource & Request LFID
[78] 2020 ✓ ✓ ✓ ✓ End-device CuFL
[51] 2021 ✓ ✓ IoT architecture ICN-IoT
[125] 2020 ✓ ✓ ✓ ✓ Multilayer-devices HetMECC
[57] 2022 ✓ ✓ ✓ ✓ Devices Integrating of

platforms
[79] 2020 ✓ ✓ ✓ Devices distinguishes

service types
[58] 2021 ✓ ✓ ✓ Devices ADC
[127] 2019 ✓ Devices & services DNS
[80] 2021 ✓ ✓ Platforms Data Spine
[81] 2021 ✓ ✓ ✓ Resource &

architecture
FTL

[82] 2023 ✓ ✓ ✓ Bandwidth CoCo
[126] 2020 ✓ ✓ Resources distributed load

balancing
[64] 2023 ✓ ✓ Resources RoofSplit
[83] 2021 ✓ ✓ Nodes Asynchronous

scheme
[59] 2020 ✓ ✓ Platforms EdgeGossip
[60] 2020 ✓ ✓ ✓ ✓ Resources New EdgeAgent
[61] 2020 ✓ ✓ ✓ resources EdgeAgent
[128] 2022 ✓ ✓ networks SDN
[62] 2021 ✓ ✓ ✓ Architecture SDN
[63] 2022 ✓ ✓ ✓ ✓ Database FF-DNN and R-DNN
[129] 2020 ✓ Hardware model for reasoning
[130] 2020 ✓ ✓ Tasks offloading HFFE
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[84] 2023 ✓ ✓ ✓ ✓ Paradigms SmallC,
MobInt and
FrontAH

SDN/NFV

[65] 2020 ✓ ✓ Devices decentralized
collaborative training

[52] 2019 ✓ ✓ ✓ Computation parallel AI processor
[53] 2017 ✓ ✓ ✓ Devices HLPN & RedEdge
[131] 2016 ✓ ✓ ✓ Nodes Honeybee
[132] 2013 ✓ ✓ ✓ Resources service-oriented
[133] 2017 ✓ Devices Docker-based

containers
[44] 2017 ✓ Resources Docker
[134] 2016 ✓ Cloudlet servers low-complexity

heuristic
[135] 2021 ✓ Devices market-based

framework
[136] 2017 ✓ ✓ Vehicular mean-field

approximation
[137] 2021 ✓ ✓ Device Skippy
[86] 2020 ✓ ✓ nodes DRL-based
[87] 2020 ✓ ✓ nodes CFCRB
[88] 2021 ✓ ✓ ✓ IoT Lyapunov
[89] 2023 ✓ ✓ memristor chip crossbar array
[90] 2019 ✓ ✓ Sensors, devices EdgeLaaS
[91] 2020 ✓ ✓ devices PABA
[92] 2022 ✓ ✓ UVA OELO
[93] 2020 ✓ ✓ dataset Importance ARQ
[95] 2022 ✓ ✓ devices 3D objective
[96] 2021 ✓ ✓ Devices, data DAS
[97] 2021 ✓ ✓ devices Energy-aware
[98] 2021 ✓ ✓ devices NOMA, TDMA
[99] 2020 ✓ ✓ Devices scheduling priority
[100] 2021 ✓ ✓ devices CCRM
[101] 2020 ✓ ✓ devices FedSem
[102] 2021 ✓ ✓ plaforms SFEL
[103] 2023 ✓ ✓ devices scheduling
[104] 2022 ✓ ✓ Computing, Lagrangian dual
[105] 2020 ✓ ✓ ✓ Computing HFEL
[106] 2020 ✓ ✓ ✓ data importance-aware
[107] 2022 ✓ ✓ ✓ Resource closed-form
[108] 2021 ✓ ✓ IoT LightFed
[109] 2020 ✓ ✓ devices OBDA
[110] 2021 ✓ devices blockchain
[111] 2021 ✓ ✓ ✓ devices SA-based
[112] 2022 ✓ ✓ components of

applications
MOCSA

[113] 2021 ✓ ✓ devices ID3 tree, SVM, GA

(continued on next page)
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6. Conclusion

The edge network paradigm, along with the
advancement of IoT technology, has become
increasingly important given its role in improving
human lives. As a result, several research have
presented approaches and techniques for achieving
higher performance while avoiding the problem of
heterogeneous resources between the cloud
computing layer and the end user layer. In this light,
we conducted a thorough analysis of previous
research on heterogeneous resources in edge
network infrastructures and presented them in a
three-dimensional system. Furthermore, the state-
of-the-art literature is classified into two categories:
research concerns including artificial intelligence
(AI) “Intelligent edge” and without AI. A compari-
son and breakdown of research difficulties with and
without AI in order to determine an evaluation
metric for meeting Quality of Services (QoS) and
Quality of Experience (QoE) standards. Further-
more, a discussion of the overall findings and limi-
tations of the existing study is provided. In future
work, for heterogeneous resources in edge network
paradigm infrastructures to be thoroughly exam-
ined, we emphasize state-of-the-art researchTa
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Fig. 3. Percentage of the presented evaluation AI techniques in the
review.

Fig. 4. Numbers of the presented evaluation research issues in the review
with AI.
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difficulties and look forward to greater research in-
vestment in blockchain technology to safeguard and
maintain the privacy of client data.
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