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Abstract

This is a novel conceptual attempt to introduce freedom as a consistent physical notion. The present consideration is
limited to mechanics of a material point. Adapted to physical representation, freedom is tested throughout the paper to
conform to its general perception. It is first tried on such physical notions (but not restricted to) as potency of a set,
Lagrangian, action, degrees of freedom. Defined as angular and essentially nonlinear variable, it appears to be dual as that
the domain affords and that the material point possesses within the domain, not necessarily equal to one another. Freedom
has to degrade if its bearer experiences an external impact. The two classical problems of Newtonian and relativistic me-
chanics illustrate the freedom non-linear dynamics whose key factors are the impact power and duration as well as total
mechanical energy of the material point. Reversibility of freedom is discussed. Hints to possible relations with quantum
mechanics and commonly used numerical techniques as well as to advanced mathematical modeling are proposed.
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1. Introduction

A lthough the notion of freedom has been
present in the circulation of philosophical

thought since ancient Greece [1], the everyday
perception of the term does not carry a veil of an-
tiquity, because it is associated with the very
essence of a living being in a conscious or uncon-
scious form “here and now” [2]. The discussion of
freedom as a philosophical concept is not the sub-
ject of this paper, as it requires different research
objectives and competences than those I chose and
possess. Nevertheless, some definitions of freedom
that are widespread outside the circle of philo-
sophical researchers and have become public
knowledge are to be given. At the same time, in the
context of this work, I have given preference to
those definitions that are not related to human
consciousness in any form. After all, freedom as a

subconscious or instinctive necessity is probably
inherent in any living being. Thus, one definition of
freedom that allows for some distancing from con-
sciousness, although it has human relationships at
its foundation, is Abwesenheit von Zwang1 [3]. The
other definition originates from Hegel and equates
freedom with autonomy [4]. Particularly interesting
in the context of our subject is MacCallum's triadic
concept [5]: there is always someone2 whom3

freedom is a certain state for, the absence of some
possible constraint and unhindered ability to do or
not do something.
In the following discussion of the term freedom, I

shall mean it exclusively in the sense of physical
science, unless otherwise specified. One of the
guidelines for further reasoning is the expediency of
such an understanding of the term that would allow
it to be used for solving practical problems. Another
guideline is a certain dissatisfaction related, for
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example, to the fact that the generally accepted
notion of “degrees of freedom” relies, in fact, on the
term still undefined in physics. Of course, physics is
not an axiomatic science (nor is mathematics to a
certain extent), but to have a rigorous or at least
rational definition of the terms in use (and even
more so, of essential terms) is never bad.

2. Heuristic

It is of lively interest to introduce some physical
quantity that would characterise the freedom in
physical systems. To clarify the idea, consider a
material point (hereinafter MP) on a straight line (a
one-dimensional case in Fig. 1a).
In the absence of external forces, it can have a

certain freedom. Received some momentum, it can
move infinitely uniformly and rectilinearly either to
the left or to the right. Note that if the momentum
was directed to the right, MP will never move to the
left. Thus, freedom seems to be a certain charac-
teristic of potentialities.
Consider MP on a ray (Fig. 1b). Given momentum

to the left, MP will reach the boundary and bounce
back (here, we consider a perfectly elastic collision
with the boundary as a feature of freedom, whereas
a perfectly inelastic adhesion to the boundary would
mean a full loss of freedom; still no extra in-
teractions are present as in Fig. 1a). MP cannot enter
the region to the left of the boundary when within
the framework of classical mechanics. Thus, MP
here has less freedom than before, i.e., its potenti-
alities in Fig. 1b are smaller than in Fig. 1a. The
objection that, compared to Fig. 1a, MP may actually
have a larger range of motion upon receiving the
momentum (moving first to the left, then to infinity
on the right) seems to be partly motivated. How-
ever, if we speak of freedom as a potentiality, such
an argument seems to fall short.

2.1. Analysis of existing “consonant” concepts

Potency of a set. An attempt to use the notion set
potency [6] to describe freedom did not appear to be

successful, since for potency, only the packing
density of elements is important, not the domain
itself. In particular, if set A is a segment, its potency
is equal to that of the set A � A. For freedom, this
seems to be false as the freedom of MP inside a
square (a two-dimensional case) is intuitively ex-
pected to be greater than on a segment of length
equal to the side of the square (one-dimensional
case). Furthermore, for potency, a segment and a
straight line are equivalent. However, one cannot
completely ignore the ideas related to the notion
potency of a set, since it may be necessary to consider
both continuous and discrete domains. In this
paper, however, we consider the continuous cases,
which are the most ordinary in physics.
Let us consider the case of an applied force

(Fig. 2).
In the one-dimensional case, we can imply

Hooke's law (Fig. 2b). Clearly, in the potential sense
and in the sense of a common perception of the
concept of “freedom”, the presence of a spring limits
the MP's potential ability to reach “desired” coor-
dinate magnitudes. This is especially clear when
comparing Fig. 2a and b with the spring unstretched
and uncompressed when MP receives momentum.
Lagrangian, action. It is interesting to consider in

this context the Lagrangian and the action [7]. The
Lagrangian is hardly suitable as a measure of MP's
freedom, since it represents just kinetic energy.
Without a dissipation, it hardly fully characterises
freedom. Potential energy has the feature of relation
to a point of reference, whereas we expect to define
freedom as a concept less dependent on a point of
reference (but possibly having a reference to some
other system). I.e., if the relativity of the notion
freedom arises here, it is rather in configurational
than in calculative sense. Considering such a phys-
ical concept as action, we note that there is a prin-
ciple of least action, which allows us to characterise
trajectories of motion. Were it possible to define
freedom as a set of all possible trajectories, action
could be promising. The difficulty lies, in my
opinion, in the fact that calculation of the number of

Fig. 1. Material point (MP) a) on a straight line, and b) on a ray. Fig. 2. MP on a ray with and without a spring.
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trajectories would invoke comparison of infinite
quantities, for which it is necessary to define some
common measure, including systems of different
dimensions. The attempt I had undertook led to
results which I took for speculative and rejected. In
any case, it is useful to keep in mind the dimen-
sionality of action:

Energy � Time ¼ Moment of Momentum
¼ Momentum � Distance

Action, when known, fully determines the motion
of a system of particles. Freedom characterises not
so much the law of motion of the system as the
motion domain. Besides, action is not universal. For
example, it misses dissipative forces.
Degrees of freedom. Freedom has to be associated

with degrees of freedom, and not only in the sense
of space (beyond the scope of our consideration) as,
for example, rotational (applied to a solid body)
and oscillatory (applied to a system of MPs, starting
from two) degrees of freedom, spin (beyond the
scope of classical mechanics; it implies, by the way,
the ability to work with freedom on discrete do-
mains). In our context, the concept of degrees of
freedom is remarkable in the sense that it is used
as a physical concept in solving physical problems
as, in particular, for determination of the number
of holonomy bonds in a system with contacting
bodies [8].

2.2. Some inherent properties of the notion
“freedom”

Since both finite and infinite motion are to be
considered, we need a measure whose calibration
would suit both cases. We would rather be able to
answer the question of how many times less
freedom MP has on a segment than on a straight
line. In doing so, we should expect that “here and
now” should have a prevailing weight over that of
“there and then”, because in the practical world, no
one uses infinite possibilities. MP can go to infinity
rather in a mathematical than in a physical or
computational sense. Hence, there has to envisage
some reduction of “infinite freedom” into some
measure, infinite (certainly calibrated) or finite.4

Another important aspect is superposition of
freedoms in different dimensions (or in different
degrees of freedom). Without introducing a defini-
tion of freedom, some reasoning on this topic has

sense. Suppose that MP has two degrees of freedom
(it moves in two dimensions). Let MP's freedom in
one of these dimensions be characterised by a
relatively big value, while in the second it is small. If
the measure of freedom allows expression in
numbers both smaller than and greater than one,
then in the case of multiplicativity, the superposition
of freedoms may turn out to result in a smaller value
of the measure than the freedom in one of the di-
mensions is, which seems absurd. Therefore, in the
case of multiplicativity, the scale of the measure
technically should not contain numbers smaller
than 1. In fact, this means that a measure of freedom
equal to 1 would correspond to a loss of freedom,
while higher values would correspond to a
nontrivial freedom. This would diverge, in some
part, from the usual perception that the loss of some
attribute would rather correspond to zero while a
positive value would mean the presence of that.
Besides multiplicativity, one can consider additivity
as well as more complex superposition rules like,
e.g., the definition of the cumulative experimental
error as a function of a number of factors A, B, C …

as

k k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAk2 þkBk2 þkCk2 þ…

q
Anyway, we believe that MP in Fig. 3a and c

possesses more freedom than in Fig. 3b.
Another useful fact is that almost any problem in

mechanics can be solved in different coordinate
systems. Probably, the freedom value should be
invariant in this sense. As an example, consider a
fractional linear function: it can translate a bounded
set into an unbounded set, and vice versa. The
question is, is it the mapping of the physical space
onto itself? Probably, space compression is not an
acceptable kind of mapping if freedom is desired as
an invariant, since it changes the density of points
on a line or in space i.e., the metrics. Acceptable
transformations are rotation (in multidimensional
cases) and translation.

3. Measure of freedom

The parameter characterising freedom has to have
a connection with the space metrics. While within
the classical physics framework, we consider con-
nected sets only. The one-dimensional set of real
numbers along each axis of Cartesian coordinates is
to be upgraded now with the set of imaginary
numbers to a complex plane.5 In the one-

4 Note that in the case of potency of sets, this turned out to be possible (see, for example, sets of measure zero).
5 Like an ascension to the space of higher dimensionality.
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dimensional case, we arrive thereby at the configu-
ration in Fig. 4a. If the free movement of MP is
restricted within the segment [a; b], we define the
freedom the segment affords (hereinafter freedom
of the domain) as follows

F d¼ӕ¼ tan�1k½a;b�k ð1Þ
If b/þ ∞, then F d/p=2. If a/� ∞, we can

make the coordinate transformation x0 ¼ �x out of
those admissible, and then have a0 ¼ � a/ þ ∞,
and F d/p=2 takes place again. It follows that under
natural additivity of freedom in the framework of
one-dimensional free motion, we obtain F d/ p at
а/� ∞, b/þ ∞. Thus, an infinite straight line
endows MP with freedom of measure p. Obviously,
the measure zero has to correspond to the complete
loss of freedom, since it is the constriction of
segment ½a; b� to a point.

In the two-dimensional case (Fig. 4b), the mea-
sures of freedom each of the segments ½ax1 ; b� and
½ax2 ; c� affords along axes x1 and x2 respectively, are
equal to (I am writing the norm in the most used
way in Cartesian coordinates) 1F d ¼ ӕ1 ¼ tan�1

ðb� ax1Þ and 2F d ¼ ӕ2 ¼ tan�1ðc� ax2Þ respectively.
The question arises, in which way one is to define a
superposition operation in the equation for measure
of freedom F d ¼ 1F d � 2F d for the domain in
Fig. 4b, keeping in mind that as in just considered
one-dimensional case, 1F d/p=2 takes place at
b/þ∞ and 2F d/p=2 at c/þ ∞. Additivity in the
context of dimensions does not seem to be an
adequate solution, since some square of finite size
would turn out to afford less freedom than a
segment sufficiently longer than the side of the
square, what is in contradiction with the general
sense. Really, it is easy to imagine a segment

Fig. 3. Comparative examples of MP domains in the context of freedom. l is a characteristic unit of length.
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characterised by freedom p=4, with its length ðb�
ax1Þ ¼ tan p

4 ¼ 1, and it suffices to present a square
with the side shorter than

ffiffiffi
2

p � 1 as the inequality

2F d < 2 tan�1ð ffiffiffi
2

p � 1Þ ¼ p=4 for the freedom it af-
fords takes place. The expectation is that a two-
dimensional domain of any finite size together with
its boundary is to provide more freedom than any
one-dimensional segment of finite length. An alge-

braic superposition F d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1F dÞg þ ð2F dÞgg

q
with g>

0 does not do much for that either. Looking for a
better definition, consider an extension of the
method proposed in Fig. 4a.
For the two-dimensional case, we define the

quasi-complex space by some analogy with the
complex plane, namely by introducing the iz axis

orthogonal to the plane xy of pairs of real numbers
(Fig. 5).
The most compact convex figure bounding a part

of the plane is a triangle. Let us raise a perpendic-
ular parallel to axis iz from vertex A to point
PA ¼ ðax; ay;iÞ in the quasi-complex space. The solid
angle ӕA (or PAABC) then arises. Similarly, there
arise solid angles ӕB and ӕC (not shown in Fig. 5 to
avoid cluttering) due to the perpendiculars to
ðbx; by;iÞ and ðcx; cy;iÞ, and in general, the set K2 of all
possible angles fӕg with vertices on raised per-
pendiculars from all points of the figure boundary
does. Thus, the following equation seems to be a
natural extension of the freedom definition from
one- to two-dimensional case:

F d¼pþ 1
2
inf K2 ð2Þ

where inf K2 is the greatest lower bound of set K2,
equal to the smallest6 of all solid angles subtended
by the figure in the plane, with a vertex at the cor-
responding point of the quasi-complex space with
imaginary coordinate iz ¼ i. Evidently, inf K22K2:
The freedom definition (2) meets inequality F d >p.
Really, for any figure in plane xy, the solid angle
inf K2/0, if the figure square S/0. If, on the con-
trary, the figure fills the whole plane with S/∞, we
obtain inf K2/2p. Thus, freedom of a finite domain
in the two-dimensional case necessarily meets the
condition p<F d < 2p.
We briefly discuss the notion of freedom and

define it in the three-dimensional case. Similar to
those above, we introduce a quasi-complex 4-
dimensional space whose axis i₼ is orthogonal to
each of the three spatial axes x, y and z. The full
solid angle in the 4-dimensional space is equal to
2p2, the three-dimensional subspace appears to
fully subtend its half. The following equation gen-
eralises the freedom definition (2) to the three-
dimensional case:

F d¼2pþ
�
1� 2

p

�
inf K3 ð3Þ

where K3 is the set of all possible solid angles with
vertices with the imaginary coordinate i₼ ¼ i, and
thus positioned over the spatial boundary of the
three-dimensional figure considered. Like above,
inf K32K3. As in definition (2), the tendency of the
three-dimensional figure volume to zero means
F d/2p, and the expansion of this figure with its

Fig. 4. Upgrade of real dimensions to corresponding complex planes. a)
one-dimensional case, b) two-dimensional case (point a has coordinates
(ax1; ax2 )).

6 Should not be believed unique which is especially obvious in one-dimensional case.
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volume V/∞ up to filling the whole three-dimen-
sional sub-space corresponds to F d/p2.
Let's make five points:

(i) By chance or not, p in definition (2) corre-
sponds to the sum of interior angles of a tri-
angle as the most compact convex figure
bounding a part of the plane, and 2p in defi-
nition (3) corresponds to the smallest possible
value of the sum7 of all dihedral angles of a
tetrahedron as the most compact convex
figure bounding a part of 3D-space;

(ii) Equations (2) and (3) are written based on
linearity of freedom with respect to the solid
angle, in analogy with Equation (1);

(iii) Equations (1)e(3) convey the principle of
favouring “here and now” over “there and
then”. Really, because of arctangent, points
adjacent to the reference position contribute
more to the angle value than those remote;

(iv) the cases with segment length l ¼ 0, 2D-
figure square S ¼ 0 and 3D-figure volume
V ¼ 0 may require especial discussion.
Formally, we get from Equations (1)e(3) the
respective results F d ¼ 0;p and 2p out of
which only the first one is correct. The situa-
tion is similar to that someone is to meet in
the quasi-classical limit in quantum me-
chanics while trying to undergo a passage to
the limit Z/0 by letting Z ¼ 0 and thereby
destroying the non-stationary Schr€odinger

equation [10]. The physical MP is a point only
in that model when the corresponding object
size is small compared to the characteristic
length of the problem under consideration.
For example, the earth is MP in the context of
the Universe problems. While the earth size is
then considered as tending to zero, to take it
equal to zero would be a mistake. Therefore,
for existing domains with concern with
Equations (2) and (3), the limit S;V/0
simultaneously means S;Vs0 respectively;

(v) I have admitted addition of angle values to
which by convention are assigned different
angle dimensionalities, namely radian in two-
and steradian in three-dimensional space.
Entering the four-dimensional space (one of
whose dimensions is imaginary), we would
face the angle values unspecified in SI.
Indeed, on the one part, the angle values
appear to be dimensionless by their nature
(beyond any conventions), contrariwise, they
can be characterised as incoherent [11].
However, the coherence of plane or spatial
angles in spaces with different dimensionality
matters, according to Ref. [11], if it deals with
the dimensional analysis what is not the
subject in the context of freedom as the
physical notion.

To summarise: angle ӕ is defined with reference
to either of the two finite boundary points of a

Fig. 5. Upgrade of the plane of pairs of real numbers to a quasi-complex space.

7 Depending on a tetrahedron, it is between 2p and 3p [9].
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segment in the one-dimensional case. If there are no
finite boundaries, then ӕ ¼ p; 2p or p2 depending
on the space dimensionality. Were angle ӕ
measured in some other way than based on one of
the boundary points, it would lead to a bigger (if the
perpendicular-originating point is inside the
domain under consideration) or smaller (if outside)
value of ӕ. Since the domain freedom value should
not depend on the observer's position, I chose an
unambiguous anchoring of the angle vertex.

4. Freedom of a material point

The above convention for the reference point of a
solid angle concerns the freedom F d the region in-
side a figure with its boundary (altogether domain)
affords. Thus, the datum is bound to the domain,
not to MP. At the same time, it is expedient to define
the notion of MP freedom FMP, since this is the
object of the present study. As it follows from what
was pointed out to at the end of the previous sec-
tion, freedom MP is expected to meet inequality
FMP � F d. Further consideration will be carried out
in the one-dimensional case, whose results extrap-
olate organically to the plane and space, but their
exact obtaining in the two- and three-dimensional
cases would be associated with somehow cumber-
some calculations.

4.1. MP on a segment

Let MP with coordinate p be positioned within
segment ½a; b� (Fig. 6).
Angle ӕ characterises freedom of the domain.

Geometrically, it is clear for angles in Fig. 6 that ӕ �
f1 þ f2 ¼ f. The equality takes place only when MP
is a boundary point of the segment, with f1 ¼ 0 or
f2 ¼ 0. I define freedom FMP of MP with coordinate
p as the angular size of the segment as seen from
point ðpþiÞ on the complex plane:

FMP¼f ð4Þ
If MP is an internal point of the segment, then f ¼

tan�1ðb� pÞþ tan�1ðp� aÞ, and if it is a boundary
one then f ¼ ӕ. The interpretation of MP freedom
not smaller than the domain freedom may have a
philosophical connotation: at the beginning of free
motion, the MP as the segment's interior point has
the freedom to choose the direction, absent for MP
as a boundary point. MP has maximum freedom
when it is the midpoint of the segment, then

Fmax
MP ¼2 tan�1ð½ðb� aÞÞ

The relationship between the maximum MP
freedom in the domain and the freedom of the
domain is expressed by the equation:

Fmax
MP ¼2 tan�1ð½tanF dÞ

It is easy to obtain an expression showing how
many times the maximum MP freedom exceeds the
freedom of the domain:

Fmax
MP

F d
¼2 tan�1ð½ðb� aÞÞ

tan�1ðb� aÞ
In the case of MP in spaces, the freedom of choice

of direction is even richer than on a segment, and
some interior point has to exist in the spatial domain
D bounded by the figure under study, in which MP
has the maximum freedom:

Fmax
MP ¼ sup

D
fFMPg

where the right-hand side of the equality indicates
the lowest upper bound of the set of MP freedom
values in D.

4.2. MP on a closed path of motion

Let us consider a potentially possible motion of
MP along some circular orbit (Fig. 7a).
This motion is one-dimensional, like the motion

considered earlier, but not rectilinear. At such mo-
tion, MP would be constantly under the action of
centrifugal force and would experience centrifugal
acceleration. This does not have to reduce the MP
freedom, since such a state is natural for this
particular geometry of one-dimensional motion.
The length of a segment coiled into a circle of radius
r is 2pr. To unfold the circle into a segment would
require transformations like “translation” and
“rotation” applied to each infinitesimal fraction of
the trajectory. However, the action of some force has
to be preserved, which in the new coordinates isFig. 6. To the definition of MP freedom on a segment.
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difficult to identify as centrifugal. A certain equiva-
lence between the geometry of space and the forces
acting in this case is not a news in physics [12,13].
Let us discuss other differences. MP motion along a
circle is one-way, since there are neither boundaries
nor bounce from them. Therefore, one cannot
distinguish between the freedom the circle affords
and the MP freedom. The philosophical implication
accompanying this circumstance is perhaps some
cost for that MP cannot bounce and change the di-
rection of motion, and also perhaps the constant
experience of the centrifugal force.
One-dimensional are also the motion along a

closed trajectory with variable curvature (oval) and a
continuous transition between closed trajectories of
different curvature (Fig. 7b). In this case, r ¼ rðtÞ is
not only piecewise (motion along circles), but also in
the sense of continuous change of the radius of
curvature along the transition path. Consideration
of such motion is also possible with the trajectory
decomposition into sub-segments of lengths 2pr1l1
and 2pr2l2, where l1 и l2 are the number of revo-
lutions (possibly, non-integer) on each of the circles,

and also
Z42

41

rð4Þd4ðtÞ, where 41 and 42 are the angles

of the beginning and end of the transition to a cir-
cular orbit with a different radius. At the same time,
changing the tangential velocity by changing the
radius does not necessarily change the freedom,
which can be unambiguously affected only by non-
zero tangential acceleration.

4.3. One-dimensional piecewise rectilinear motion
in the presence of external forces

Consider an MP experiencing gravity when
moving within the segment [a, b] (Fig. 8).

Under new circumstances, let us continue the
discussion of the issue raised in the previous sec-
tion. Does MP have more freedom on the sub-
segment [c, b] than on [a, c]? The motion within [a, b]
occurs in the field of gravity.
Let us first consider the idealised case assuming

no frictional force (Fig. 8a). On the sub-segment [a,
c], gravity accelerates MP while on the sub-segment
[c, b] MP moves rectilinearly before and after
bounce from the boundary, and so on. Considering
the gravity field as a natural and inherent factor for
such a case, I assume MP motion in Fig. 8a to be
free. In doing so, I also appeal to the term “free fall”
as if MP were moving vertically downwards only
under the influence of gravity. The situation in
Fig. 8a has a direct analogy to this as a projection of
such motion onto the vertical axis exists. In Fig. 8b,
the gravity force both favours and hinders the mo-
tion of the body along the inclined plane in the sub-
segment [a, c] by inducing a bearing reaction force
with thereby emerging frictional force Ff. In the sub-
segment [c, b], the gravity force only hinders the
motion by the same mechanism until MP stops
(possibly upon bouncing off the boundary as
depending on the initial velocity of MP and the
magnitude of the friction coefficient). At the point
with coordinate c, MP will experience d-overload,
but it is as natural as if there were a smooth
roundabout at this point (see “MP on a closed path
of motion” above).
Let us assess in this context two alternative

descriptive definitions of freedom: (i) a state without
any influences brought into the ordinary environ-
ment; (ii) the full absence of any influences. In the
second case, travelling along a circle would be
associated with some limitation of freedom
compared to travelling along a straight line. I
believe that the first definition is closer to the usual
everyday meaning. In this case, MP on earth under
the action of gravity and in space without any forces
is equally free (with a reservation concerning the
region of motion). Thus, freedom is a relative notion
whose sense is attached to some usual state.8

Another conclusion to be drawn is that freedom is
limited not by individual forces, but their super-
position in a particular situation that differs from the
usual state of motion.
Thus, one can speak of freedom only if there is

motion or potentiality tomove (for example, in a state
of unstable equilibrium).9 Possession of some energy
becomes an integral property of freedom, while the

Fig. 7. MP motion along an orbit. Trajectory: a) circle, b) change of
circular orbit at continuous motion.

8 Perhaps, a certain parallel with such quantum-mechanical notion as the ground state is appropriate here.
9 See Introduction for MacCallum's concept with ability to do or not do something [5].
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amount of this energy is less important from the point
of view of freedom than the fact of its possession itself.
For example, in the absence of dissipation, it is irrel-
evant how fast a freely moving MP would travel an
interval or a certain distance in infinite motion.
While considering and formulating these cir-

cumstances, I felt that it was very important to
comply with the commonly established categories.

4.4. Harm to freedom caused by third forces

Following the above, I deliberately chose the pre-
sent subtitle in a form not exclusively related to
physical phenomena. Let some external force start to
act on a moving or possessing some potential energy
MP. It seems very reasonable to associate the current
harm caused to the freedom of its bearer with the
power N of the resulting impact. According to the
generally accepted definition of power, the equation

NðtÞ¼ ±
dðT þHÞ

dt

takes place, where T and H are current kinetic and
potential energy of MP so that with sign «þ» the
impact contributes to MP's total mechanical energy,
while with sign «e» reduces it. Let us divide the left
and right parts by ðT0 þ H0Þ, where T0 and H0 are
the corresponding values of the energy components

at some previous moment, perhaps at the moment
of impact inception:

d
dt

T þH
T0 þH0

¼ ±
NðtÞ

T0 þH0
ð5Þ

With the intention of considering the quantity
associated with TþH

T0þH0
as expressing the extent which

freedom is restricted to, we keep in mind that under
any influence whether it increases or decreases MP's
total mechanical energy, freedom decreases.
Therefore, let us integrate Equation (5), choosing in
any case the sign "þ" and further treating the extent
of impact by its absolute value:

T þH
T0 þH0

¼ 1
T0 þH0

Z t

t0

NðxÞdxþ 1 ð6Þ

where t � t0 ¼ Dt is the time interval within which
the impact is considered, the last term is the inte-
gration constant. The integral in Equation (6) is the
work done on MP during such an impact:

W¼
Z t

t0

NðxÞdx� 0

Equation (6) at T þ H > 0 can be easily trans-
formed to the form

Fig. 8. Piecewise rectilinear motion in the field of gravity. Frictional force Ff is: a) absent (idealisation), b) present.
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T0 þH0

T þH
¼ T0 þH0

T0 þH0 þW

The following is proposed as a definition of
freedom evolution due to work W by an external
force on MP:

FMP¼Fð0Þ
MP

T0 þH0

T0 þH0 þW
� ½TþH > 0� ð7Þ

where Fð0Þ
MP is MP freedom at the initial moment

when T ¼ T0 and H ¼ H0, Iverson's bracket repre-

sents the considerations made earlier about the
necessity of possessing energy, with the reference
point of potential energy taken to be zero. Defined
so, FMP ¼ Fð0Þ

MP in the case W ¼ 0 and T0 þ H0 > 0. If
work reduces MP's mechanical energy, then at some
position, MP loses its freedom (T þ H ¼ T0 þ H0 �
W ¼ 0). Further force action means fully dependent
behaviour of MP (the prehistory is erased by
reaching zero of its own energy). If the work in-
creases MP's mechanical energy, then MP behav-
iour is treated as controlled by an external force in
an ever-increasing fraction, and its freedom tends to
zero asymptotically.

4.5. Examples

1. The problem in Fig. 8b is a simple example where
the sliding frictional force acts as an external force,
which reduces MP's total mechanical energy down
to zero. Let MP be initially positioned at a. Then,
unless MP's energy is zero, the current freedom FMP

is equal to

FMP¼Fð0Þ
MP

H0

W þH0

where H0 ¼ mgðc� aÞsin a, Fð0Þ
MP ¼ tan�1ðb� aÞ. If

the friction coefficient10 k> tan a, MP will not move
and W ¼ 0. k ¼ tan a is the boundary value, below
which the MP motion on the inclined plane begins.
At the boundary value, fluctuations can give an
impetus to the motion9 uniform due to the resul-
tant force equal to zero. At k< tan a, MP will move
along the inclined plane with acceleration and,

depending on the exact relationship between the
friction coefficient and inclination angle a, will stop
on the horizontal section (possibly after elastic
bounce from the right boundary) or will rise to
some height smaller than ðc� aÞsin a when moving
back along the inclined plane. MP velocity at the
end of descent down the inclined plane can be
easily found from the energy conservation condi-
tion H0 ¼ T þ W , travel to a complete stop from the
equations of motion, then calculate the work of
frictional force:

The multipoint means that MP, having stopped at
the turning point a2 located below a1≡a, will start
moving downwards again, and if now the relation
sin a� k cos a � 2k b�c

c�a2
is fulfilled, the movement

will end within the horizontal section (possibly upon
bouncing from the boundary b), otherwise MP will
rise again along the inclined plane by some height
to a new turning point a3 > a2, and so on. We explore
the behaviour of work W at infinitesimal sliding
friction coefficient k, letting thereby the number of
cycles consisting of MP round trips between the
variable turning point on the left and the stationary
on the right, become infinitely big. In the limit k/0,
it is easy to calculate the coordinate of the turning
point on the left at the beginning of the nth cycle:

an¼ c�
�
tan a

k

�n�1

ðc� a1Þ þO
�

1
kn�2

�
;

n¼2;3;…

When n/∞, MP will make an asymmetric periodic
motion about point b with the amplitude asymp-
totically tending to zero. Work W can be repre-
sented in this case as the sum of works Wn: W ¼P
n
Wn. The expression for the work of the frictional

force in an nth cycle is derived easily:

Wn¼mgðc� a1Þtan a sin a

�
tan a

k

�n�1

þO
�

1
kn�2

�

Now let us sum the dominant terms of the expan-
sions of Wn:

WðxÞ¼mg

2
64k cos aðc� aÞ þ

8><
>:

ðc� aÞðsin a� k cos aÞ; if sin a� k cos a� 2k
b� c
c� a

2kðb� cÞ þ tan aððc� aÞðsin a� k cos aÞ�2kðb� cÞÞ þ…;otherwise

3
75

10 Considered independent of possible motion velocity.
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W � mgðc� a1Þtan a sin a
X∞
n¼1

�
tan a

k

�n�1

The infinite series on the right is a progression with
the geometric ratio tan a

k . It converges only when
tan a< k, i.e., when a/0 faster than k/0, which
means that there is no inclination from a to c. In
other words, at any practically significant inclination
angle, the series diverges, W/∞ and, conse-
quently, FMP/0. Thus, in our hypothetical example
with an infinitesimal friction coefficient, an infinitely
large number of cycles appears to have a higher rate
of divergence than the rate with which the friction
coefficient tends to zero. If the friction coefficient is a
nonvanishing number, the number of cycles is
finite, and FMP becomes zero within finite time.
2. Let MP of mass m, performing one-dimensional
unbounded motion with velocity v0, begin to expe-
rience the action of a co-directional constant force F.
MP's freedom is expressed by the equation

FMPðtÞ¼ p
T0

W þ T0
ð8Þ

Since MP accelerates infinitely, the relativistic case
is a must. To keep generality, we will assume that
the velocity modulus v0 can also be commensurable
with light velocity c. Then

T0¼mc2
 

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v20=c2

p � 1

!
ð9Þ

Work in the relativistic case is expressed through
the integral

W¼
Z

vdp¼mc2
 

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v20=c2

p
!

ð10Þ

where p is momentum. The change of MP's mo-
mentum originates from the constant acceleration
preserving its form in the relativistic case: w ¼ F=
m. The velocity of a particle at motion with accel-
eration in the special relativity theory is equal to

vðtÞ¼ u0 þwtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðu0 þwtÞ2

.
c2

r

where u0 ¼ v0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v20=c2

q
. Substituting the velocity

into Equation (10), we obtain an expression for the
work done on MP:

W¼mc2

0
BBBB@

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

c2
ðu0þFt=mÞ2

1þðu0þFt=mÞ2=c2

r � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v20=c2

p
1
CCCCA ð11Þ

Substituting Equations (9) and (11) into Equation
(8), we obtain the expression for freedom:

FMPðtÞ¼ p
�1þ 1

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v20=c2

p
�1þ 1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

c2
ðu0þFt=mÞ2

1þðu0þFt=mÞ2=c2

r ð12Þ

As it follows from Equation (12), FMPðtÞ is an
asymptotically decreasing function of time. We find
the order of decreasing at t[mu0=F by expanding
the expressions in Equations (11) and (12) by powers
of 1/t. For work, it's easy to obtain the representation

W¼mc2
"
Ft
mc

þu0

c

�
1� 2

u2
0

c2

�
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v20=c2
p

#
þO

�
1
t

�

Substituting the expansion into Equation (12), we
obtain the ultimate expansion for freedom:

FMPðtÞ¼p

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v20=c2
p � 1

!
mc
Ft�

1�mc
Ft

�
u0

c
� 2

u30
c3

� 1
��

þO
�
1
t3

�

Thus, the dominant term is decreasing � t�1.

4.6. The freedom derivative

Let us write equation in differentials while MP
mechanical energy is positive (in case the work
being done on MP were aimed at reducing that),
keeping in mind in general that the force may not be
constant11:

dFMP¼ �Fð0Þ
MP

T0 þH0

ðW þ T0 þH0Þ2
jFdlj

Thus, the freedom is a curvilinear integral of the
second kind along the MP trajectory with the cosine
between F and dl (or v) always taken positive. Let us
write the equation for the derivative:

dFMPðtÞ
dt

¼ �Fð0Þ
MP

T0 þH0

ðWðtÞ þ T0 þH0Þ2
jFðtÞvðtÞj ð13Þ

11 I write dF instead of dF because freedom at production of work on MP by an external force is not a total differential, exactly as mechanical work is not
either.
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that is the derivative of MP freedom is proportional
to modulus of the scalar product of the force
acting on MP by its velocity, which has the dimen-
sion of power, but is not power, since the velocity
in this case is not an exclusive result of the force
action. The proportionality coefficient contains MP's
initial freedom and mechanical energy, as well as
the total work done on MP by the time t. It follows
from Equation (13), in particular, that freedom
cannot increase smoothly. Any impact leads to a
more or less rapid decrease of freedom. The only
possibility to increase the freedom of MP is to
completely eliminate the impact of external forces
with preservation of its positive total mechanical
energy.

4.7. On freedom reversibility

A reasonable question arises as to what is the cost
of returning MP to its former freedom after the
impact has been exhausted. Is this cost, in partic-
ular, equal to the work previously done? Let us turn
to the events above in Example 2. Suppose that at
some point the force F has ceased its action. MP
continues to perform uniform and rectilinear mo-
tion, only with a different velocity. If we determine
its freedom again at this moment, it will be equal to
p, as it had been before force F emerged. Indeed, the
“coercion” is over, freedom is restored. However, to
return MP to its initial position in phase space,
much more work would have to be done, namely
stopping MP, sending it in the opposite direction,
then stopping it again and accelerating it back to the
initial velocity. Freedom is not related to MP's po-
sition on an infinite interval. However, in a finite
space, the cancellation of the impact does not mean
that freedom is restored, since it is the position
relative to the boundary(s) that is significant. In
addition, it follows from the above reasoning that it
may require more work to restore freedom in [semi-
]bounded space than was done with the initial
impact. An exception, in particular, may be the case
when the impact had been made on MP orthogo-
nally approaching the boundary and, after its ve-
locity had been changed as a result of the impact, it
was bounced in the opposite direction of motion.
The geometric factor is so significant that it should
not be surprising to see the change of freedom of a
uniformly and rectilinearly moving MP in [semi-]
bounded space. In this case, inffFMPg ¼ F d (see the
beginning of the present section). Practically,
because of dissipative processes, recovery of MP's
pre-existing freedom may require even more work
than in their absence.

5. Conclusions

This paper introduces the concept of freedom as
applicable to mechanics of a material point. When
formulating definitions and investigating the prop-
erties of freedom as a physical concept, I traced its
connection with ordinary perception of freedom as
an integral part of existence of various objects of
both animate and inanimate matter, as well as the
implications of these ideas in physics. It seems
reasonable to distinguish between such notions as
freedom Fd the domain (possibly unbounded)
containing MP affords, as introduced in Equations
(1)e(3), and freedom FMP MP itself possesses in this
domain as in Equation (4). MP freedom in some
spatial domain of dimension n as well as the
freedom this domain affords, are associated with
solid angles with a vertex in some space of dimen-
sion nþ 1, constructed according to certain rules. A
rigorous definition allows us to introduce the com-
mon measure of freedom independently of the
dimensionality of space, and for a freely moving
MP, the regions of freedom values are transparently
distinguished: the highest freedom on an infinite
line is equal to p, freedom in the plane is contained
within the interval from p to 2p, and in three-
dimensional space from 2p to p2. An obvious
extension of the formulated definitions of freedom
to the case of n-dimensional spaces with n> 3 is
allowed. The relation Fd � FMP is valid. The
equality takes place in the two cases, when either
MP is positioned in those domain boundary points
where the greatest lower bound of set Kn of solid
angles subtended by the domain boundary is
reached, or the domain is unbounded.
Freedom is defined as a concept relative with

respect to the MP's usual lifeline in each particular
situation i.e., in the context of some problem. The
degradation of MP's freedom due to external forces
and the evolution of freedom generally depending
on the circumstances related to the mechanics of
MP are considered. The properties of freedom as a
physical concept are illustrated in various situations
typical for mechanics of MP. The notion is defined
irrespectively of the coordinate system and with-
stands any coordinate transformation which does
not deal with scale change. Therefore, freedom ap-
pears to be invariant, in particular, with respect to
Galilean transformation.
Conformity to a number of common notions is

ensured, in particular “free motion”, “degrees of
freedom”, “free fall”, “equilibrium state”. On the
basis of defined notion “freedom”, it is easy to
formally define the notion “degrees of freedom” in
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the context of translational motion. It is the number
of dimensions corresponding to MP's freedom.
Indeed, if, for example, a domain affords MP
freedom 3 =2p, then the number of degrees of
freedom is 2.
At present, I consider it premature to outline the

scope of how freedom as a physical concept can be
put into circulation when analysing physical phe-
nomena or mathematical properties of objects.
However, one application is obvious: freedom as
physical concept can be used to compare MP states
in spaces of different dimensionality. The study of
objects' behaviour (e.g., solutions of differential
equations in the form of trajectories [14]) under a
substantial restriction of their freedom may be a
promising direction for analysis. Particular consid-
erations related to unreasonable behaviour of nu-
merical solutions of differential equations near
finite boundaries due to incorrectly set boundary
conditions [15] make me think about it. Thus,
perhaps operating on the freedom properties of
objects would help in finding true solutions of
differential equations. Upgraded to elastic bodies,12

the concept of freedom is to be applied e.g., to
deformation of beams [16e18] where it is especially
interesting to trace freedom of infinitesimal ele-
ments subjected to mechanical displacements, from
one bending theory to another and finally judged
by measurements. It seems promising to charac-
terise with freedom the mechanical displacements
due to Rayleigh, Love and SH-waves in piezo- and
flexoelectric structures [19e21]. Another potential
field of application can be related to the family of
Monte Carlo methods [22] in the sense that their
convergence rate is determined by, among other
things, the dimensionality of the space, and thus
may explicitly depend on the freedom the domain
affords.
The concept of freedom can be further developed

in the direction of its extension from MP to a solid
body [23] as a set of MPs by integration over vol-
ume, introduction of rotational (with respect to the
axes passing through the solid body) and vibrational
degrees of freedom, and also to discrete spaces and
quantum objects. For the latter, we note that in
quantum mechanics [24] the square of the wave
function modulus represents the probability density
of finding a particle in a point of space that gives the
particle certain possibilities i.e., the corresponding
freedom. In this case, the probability is normalised
in space by one, and the connectivity of the region in
which the particle is considered is irrelevant. The

non-zero probability of finding a particle at any
point in space represents a qualitatively different
freedom, substantially greater than in the classical
case. Thus, in a situation similar to Example 1 dis-
cussed above in connection with Fig. 8b, the turning
points [25] would not completely restrict the MP
motion. I believe that clarification of the notion
freedom in these cases is possible, as well as
answering possible questions related to circum-
stances beyond the classical MP mechanics.
The motivation for the present work was my re-

flections on a concept so important both in human
society and in relation to other subjects of animate
and inanimate nature [26], freedom, which seems to
be still underrepresented in physics.
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