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Abstract

The a-amylase enzyme, sourced from diverse organisms, including plants, animals, and bacteria, plays a crucial role in
multiple industries, notably food processing sectors like cakes, fruit juices, and starch syrup. Research identifies ther-
mophilic organisms as prime sources of this enzyme thriving at temperatures ranging from 41 �C to 122 �C. The enzyme
purification was carried out using liquideliquid extraction, which involved the exchange of substances between two
liquid phases that were immiscible or partially soluble. The optimal temperature for a-amylase was 45e90 �C. The best
pH for bacterial and fungal a-amylases ranged from 5.0 to 10.5 and 5.0 to 9.0. Based on industrial application, de-sizing,
scouring, stone washing, bleaching, dying, printing, and polishing were all processes that used a-amylase in the textile
industry's finishing phase. The paper business also used a-amylase to modify coated paper starch, while the soap in-
dustry applied it to boost the detergency of laundry bleaching compositions and bleach without color darkening. This
review underscores the potential of thermostable a-amylase enzymes from thermophilic microorganisms, highlighting
their unique high-temperature tolerance properties and broad applicability in food sectors, textiles, paper production,
and soap manufacturing.

Keywords: a-amylase, Food, Paper, Soap, Textile

1. Introduction

A n extremophile is a species that can survive
outside the typical range of at least one envi-

ronmental element. This signifies that the organism's
optimum temperature is not found in its natural
habitat [1,2]. Variousmolecular techniques have been
discovered to help extremophile organisms survive in

ecological niches characterized by extreme conditions
such as high temperatures, pH, salt concentrations,
and pressure. This leads to activating metabolic
pathways and enzymes, which operate normally at
conditions ranging from �5 �C to 130 �C, pH 0e12,
35% salt content, and pressures up to 1000 bar [3,4].
The generation time of microorganisms is signifi-

cantly short, and they are one of the main sources of
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a-amylase. Based on previous investigations, ther-
mostable a-amylase could be found in the thermo-
philic, extremophilic, and mesophilic bacteria [5,6],
which were optimally achieved at high temperatures.
Due to the Generally Recognized as Safe (GRAS) sta-
tus honored by the U.S. Food and Drug Administra-
tion (FDA), Saccharomyces cerevisiae, an edible yeast,
and other fungi such as Aspergillus oryzae, as well as
bacteria including Bacillus licheniformis and Stear-
othermophilus sp have been used to produce a-
amylase, particularly in the food industry [7].Although
there are many types of organisms, those that can
survive in temperatures between 41 �C and 122 �C
(106 �F and 252 �F) are known as thermophiles [8,9].
Extreme thermophiles, also called “hyper-

thermophiles,” are microorganisms that live at tem-
peratures greater than 80 �C [1,10]. Thermophiles can
be categorized in several ways; however, the most
useful ones are moderate (50e64 �C), extreme ther-
mophiles (65e79 �C), and hyperthermophiles (80 �C).
The thermostable a-amylase are heat resistant due to
their unique tertiary structure, thus surviving in
these extreme environments [3,4].
Thermophilic microbes produce thermostable

enzymes such as a-amylase, which catalyzes the
hydrolysis of a-1,4-glycosidic bonds in starch and
related polysaccharides at high temperatures.
Thermophilic Lipase catalyzes the hydrolysis of fats
into fatty acids and glycerol at high temperatures.
Thermophilic Protease catalyzes the breakdown of
peptide bonds in proteins at high temperatures.
Thermophilic Cellulase catalyzes the breakdown of
b-1,4-glycosidic bonds in cellulose [10]. Thermo-
stable a-amylase enzymes have wide-ranging ap-
plications across various industries, including food,
textile, paper, and soap industries [13].

2. Research methods

Online databases such as Science Direct, MDPI,
Google Scholar, Springer Link, and Research Gate
were used to conduct a literature search for this
review. The search approach was centered on
principal keywords utilized in different combina-
tions, such as geothermal bacterial, thermophilic
bacterial, a-amylase thermostable, geothermal
Indonesia, and geothermal Sulawesi. The full-length
publications on this topic were published between
2017 and 2023 in peer-reviewed journals.

3. Thermophilic microbes and their a-amylase
enzymes

a-amylase, also known as glucan-1,4-a-glucano-
hydrolase (E.C 3.2.1.1), is an enzyme responsible for

starch degradation. It is classified as a calcium
metalloenzyme, requiring calcium ions to properly
function. Starch molecules are broken down by a-
amylase, which helps break down the a-1,4
glycosidic bonds in starch polysaccharides. This
enzymatic reaction results in the production of
smaller carbohydrate molecules, such as maltose
and glucose, which are more readily useable by
organisms for energy production and other meta-
bolic processes [11]. a-amylase is obtained from
various species, including plants, animals, and
bacteria, through industrial extraction and purifi-
cation [12]. Microbial a-amylase can also be isolated
using substrate specificity, repeated dilution,
extreme pH, and temperature. Meanwhile, this
enzyme is designed and improved through media
optimization and genetic engineering approaches
for industrial applications [13].
Microorganisms are used as enzyme sources

because of their physiologically and physicochem-
ical regulated access, greater product yield, simple
recovery in downstream processes, and cost savings
in processing [14]. Using microorganisms to express
a-amylase is advantageous due to its affordability,
flexibility, stability, seasonal insensitivity, and cata-
lytic variability. Microorganisms expressing alpha-
amylase are distinguished by their thermostability
and halotolerance. In addition, alpha-amylase-
producing bacteria can be modified using genetic
engineering techniques to produce a more stable
enzyme.
It was reported that using bacteria such as

Escherichia coli as an expression host for yeast pro-
teins can form inclusion bodies (IBs) carrying in-
fectious prions, making fungi the preferred source
over other microbial organisms. Post-translational
modifications (PTMs) in yeast, a eukaryotic expres-
sion host, are more akin to those in higher-level
eukaryotes than bacteria [14,15].
Thermophilic bacteria produce an active and sta-

ble a-amylase at high temperatures. Starch hydro-
lyzing enzymes can be produced by different types
of Bacillus, including Geobacillus stearothermophilus
[16], Bacillus subtilis [17,18], Bacillus licheniformis [1],
Anoxybacillus [7], Bacillus amyloliquefaciens [2,19],
Bacillus cereus [20], and Bacillus alvei [6]. Only a few
species of Penicillium, namely Penicillium brunneum,
are known to produce fungal a-amylase [21], while
others come from terrestrial isolates of the genus
Aspergillus. A strain of Aspergillus spp. yeast is the
starting material for the commercial manufacture of
a-amylase. A. oryzae, Aspergillus niger, and Aspergillus
awamori are the three most popular species used in
industrial production [15]. Table 1 presents various
types of microbe sources of thermostable a-amylase.
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4. Purification of the thermostable a-amylase
enzyme

Mass-produced industrial enzymes do not usually
require much work after they have been harvested;
therefore, manufacturing and preparation are basic.
Generally, a-amylase does not need to be purified
commercially, but high-purity a-amylase is required
for enzyme uses in the pharmacological and clinical
sectors. Pure enzymes are also required to investi-
gate structure-function correlations and biochemical
properties. Several methods of purifying enzymes
have been explored, each with a different set of
features unique to the isolated biomolecule [35].
Some ways a-amylase can be purified in the
laboratory are ion exchange, reversed phase,
hydrophobicity interaction, and gel filtration chro-
matography. a-amylase extraction methods, on the
other hand, often use organic solvents like ethanol,
ammonium sulfate, acetone precipitation, and ul-
trafiltration [36]. Traditional multi-step processes
are difficult to repeat due to the high equipment
cost used at each stage and are potentially wasteful
because of the time and effort involved [37]. Since
various aspects of pre-processing procedures can
be merged into a single operation, liquideliquid
extraction represents an appealing purifying alter-
native. A previous report showed that when two
immiscible or partially soluble liquid phases were
brought into contact with one another, a process
known as liquideliquid extraction occurred. This
technique's simplicity, low cost, and scalability have

made it popular in the chemical industry [37]. For
almost a decade, liquideliquid extraction has suc-
cessfully been used to purify biomolecules on an
industrial scale. This method produces less viscos-
ity, inexpensive chemicals, and a short-phase sepa-
ration process. Exploring and understanding the
dynamic behavior of these systems is also important
to optimize plant-wide control of continuous liquid
extraction and evaluate safety and environmental
concerns early in the design process [24]. Fig. 1 il-
lustrates the flow chart of the purification process of
the a-amylase enzyme.

5. Characterization of the thermostable a-
amylase enzyme

It is possible to learn about a-amylase by looking
at its temperature and pH stability, as well as its
metal ions and chelating reagents, substrate speci-
ficity, kinetic constants, inhibitors, and activators.
Therefore, when searching for the best microor-
ganisms to use in specific industrial production
processes, it is necessary to determine the optimal
temperature, pH, and stability. The DNS method
[24] is used in each characterization to measure
enzyme activity.

5.1. Optimization of temperature and pH

For optimal operations in industries that use a-
amylase, there is a need to determine which tem-
perature and pH conditions produce the best results

Table 1. Several types of microbe sources of a-amylase thermostable and their optimum temperature.

Enzyme Source Optimum
Temperature (�C)

Types of Microbe Sample Source References

Bacillus licheniformis 60 Bacteria Tuwa hot-spring [1]
Bacillus licheniformis 60 Bacteria Geothermal Spring of Odisha [5]
Bacillus sp. 55 Bacteria Agro-industrial waste dumping areas [7]
Bacillus sp. 90 Bacteria Bora hot Spring [9]
Bacillus licheniformis 70 Bacteria Thermal spring mud in Şõrnak [22]
Bacillus megaterium 90 Bacteria Pediatric intensive care unit [23]
Geobacillus sp. 65 Bacteria Balçova geothermal region [14]
Bacillus amyloliquefaciens 60 Bacteria Honey [19]
Bacillus cereus 60 Bacteria Indian Ocean Equator region [20]
Chaetomium thermophilum 70 Fungus Bhurung geothermal spring [24]
Bacillus licheniformis 70 Bacteria Thermal spring mud in Şõrnak [22]
Pichia pastoris 62 Fungus Chinese Nong-flavor liquor starter [25]
Anoxybacillus thermarum 80 Bacteria Remboken hot spring [26]
Aspergillus flavus 50 Fungus Sago humus [27]
Geobacillus 70 Bacteria Manikaran hot spring [28]
PL16 90 Bacteria Pulu hot spring, Central Sulawesi [29]
Bacillus caldotenax 55 Bacteria Likupang Marine Hydrothermal [30]
Bacillus caldotenax 55 Bacteria Likupang Marine Hydrothermal [30]
BHSS10 55 Bacteria Waepella Hot Spring, Sinjai South Sulawesi [31]
Geobacillus sp. DS3 60 Bacteria Sikidang Crater, Central Java [32]
Bacillus sp. 50 Bacteria Bora Hot Spring, Central Sulawesi [33]
Panninobacter phragmatetus 60 Bacteria Natar Hot Spring, Lampung [34]
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for the enzymes from Bacillus licheniformis B4-423
[41]. Therefore, the optimal temperature for B3 [22]
activity is 100 �C, higher than Streptomyces fragilis
DA7-7 [44] in terms of bacterial a-amylase. The
optimal temperature for a-amylase produced by
Komagataella phaffii is 90 �C, while Aspergillus flavus
NSH9 and Trichoderma are at 50 �C. The optimal pH
for bacterial amylases ranges from 5.0 to 10 [22].
Table 2 displays the optimum temperature and pH
of a-amylase sourced from various thermophilic
bacteria.
The expression hosts of the enzymes, bacteria,

and fungi may have different features, leading to
optimal temperature variations [42]. Since thermo-
philic bacteria are better and can withstand high
temperatures, the optimal temperature of its a-
amylase is also greater [25].

5.2. Thermal and pH stability

The pH stability and thermostability of enzymes
are critical because most industrial operations are
carried out at temperatures above room tempera-
ture and a non-neutral pH. The optimum tempera-
ture for a-amylase has been used in most
thermostability studies. The results showed that

Anoxybacillus sp. a-amylase activity peaked at 80 �C
during characterization [26]; hence, 70�C-90 �C was
selected as the temperature range. The a-amylase
expressed by the strain also maintained >49% of its
activity after 30 min of incubation at 80 �C, making it
a good candidate for use in the starch saccharifica-
tion process [26,43].
The enzyme retains more than 80% of its activity

for pH stability after 210 min of incubation at pH 8.0
and 9.0. Furthermore, after 210 min of pre-incuba-
tion at pH 10.0, a-amylase from the strain retains
45% of its initial activity [44]. It was also found that
a-amylase produced by A. flavus was stable at 50 �C,
with 87% of its activity still there after 60 min of
incubation [27]. After 24 h of incubation at pH 6.0
and 7.0, the a-amylase enzyme from strain NSH9
retained nearly all of its initial activity [27,45].
The stability of enzymes when held at 30 �C and

chilled at 4 �C is significant to be determined, even
though a-amylase's thermostability needs to be
characterized. According to a study, the recovery of
a-amylase, expressed in Bacillus sp. using glycerol as
a carrier or stabilizer, was higher at 4 �C (114%) than
at 30 �C (103%) [46,47]. However, 4 �C is significantly
higher than the sample held at 30 �C (30.7%), when
only water acts as the carrier and no glycerol

Fig. 1. Flow chart of the standard purification process (A) and liquideliquid extraction (B) of the a-amylase enzyme.

Table 2. Optimum temperature and pH of the a-amylase enzyme from several thermophilic bacteria resources.

Enzyme Source Optimum pH and Temperature (�C) Sample Source References

Bacillus amyloliquefaciens BH072 pH 7 and 80 �C Honey [19]
Bacillus licheniformis B4-423 pH 6 and 100 �C Tangshan and Laoshan hot spring [38]
Bacillus licheniformis So-B3 pH 8 and 90 �C Thermal spring mud [22]
Aeribacillus pallidus BTPS-2 pH 7 and 70 �C Geothermal spring of Nepal [24]
Bacillus cereus pH 8 and 50 �C Chilika Lake [39]
Bacillus cereus pH 10 and 80 �C Indian Ocean Equator region [20]
Geobacillus icigianus BITSNS038 pH 6 and 7 �C Hotspring Surajkund [40]
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stabilizes. These results demonstrate the signifi-
cance and necessity of shipping a-amylase with
glycerol as a stabilizer at a temperature of about 4 �C
due to variations in ambient temperatures in
different countries [48]. Table 3 presents the ther-
mostability and pH stability of several a-amylase
enzymes.

5.3. Activators and inhibitors

a-amylase is an enzyme that breaks down starch.
Some metal ions at the right concentration can
improve it, while other chemicals and inhibitors can
work less well [28]. Since a-amylase is a calcium
metalloenzyme, the activity increases when a cal-
cium ion (Ca2þ) or salt (CaCl2) is introduced to the
reaction mixture. Meanwhile, the activity increases
by 8 ± 5% when 4 mM of Ca2þ and Hg2þ is added to
the mixture containing a-amylase generated from
Bacillus licheniformis [22,28].
Adding 5 mM of Ca2þ and Hg2þ to a mixture with

purified a-amylase from the T. fontinaldi strain
increased its activity by 55 ± 3.9% [12]. On the other
hand, the mercury ion (Hg2þ) stops 15 ± 3% of
a-amylase's ability to break down amylo groups. This
occurs because the enzyme binds to it and sticks
together undefinedly [12,49]. Fig. 2 depicts the struc-
tural illustrations of a-amylase without and with a
calcium ion (Ca2þ) activator and zinc (Zn2þ) inhibitor.

6. a-amylase enzyme in the industry field

An enzyme is preferred to thermophiles because
it is highly stable and attractive for several industrial
processes.

It also has greater thermostability and stability
under extreme conditions, such as high pH or low
water concentrations, which is useful in many ap-
plications. Table 4 presents various types of microbe
sources of a-amylase for industrial applications.

6.1. Food industry

a-amylase is commonly used in the food industry
to make cakes, fruit juices, and syrup made from
starch [63]. The starch in flour can be broken down
into simpler sugars called dextrins with the help of
enzymes and become more amenable to fermenta-
tion by yeast. A previous study stated that
increasing the fermentation rate and decreasing the
dough's viscosity by adding a-amylase might in-
crease the volume and texture of the final product
[28,53]. The additional sugars produced during
fermentation enhance the bread's flavor, crust color,
and baking quality. a-amylase also prevents the
bread from stalling, helps baked goods retain a soft
texture, and lengthens its shelf life. Bacillus stear-
othermophilus currently produces a thermostable
maltogenic amylase that is widely used in com-
mercial baking [54,64]. Fig. 3a illustrates the appli-
cation of enzymes in the food industry.
In order to manufacture chocolate syrup, amylase

is combined with cocoa pulp, which dextrinizes the
chocolate starch and prevents the syrup from
thickening [65]. Amylolytic enzymes can also make
a cocoa-flavoured syrup with a high cocoa content,
excellent stability, and flowability at room temper-
ature, with pH ranges from 5.5 to 7.5 [66]. The syrup
is prepared by combining cocoa powder, sugar, and

Table 3. Thermal and pH stability of the a-amylase enzyme from several thermophilic bacteria resources.

Enzyme Source pH and Temperature optimum Sample Source References

Bacillus amyloliquefaciens BH072 7 and 60 �C Honey [19]
Bacillus licheniformis B4-423 6 and 90 �C Tangshan and Laoshan hot spring [38]
Bacillus licheniformis So-B3 pH 5 and 70 �C Thermal spring mud [22]
Aeribacillus pallidus BTPS-2 pH 7 and 80 �C Geothermal spring of Nepal [24]
Bacillus cereus pH 8 and 73 �C Chilika Lake [39]
Bacillus cereus pH 10 and 80 �C Indian Ocean Equator region [20]
Geobacillus icigianus BITSNS038 pH 6 and 70 �C Hotspring Surajkund [40]

Fig. 2. Structure of a-amylase (A) [50], a-amylase with Ca2þ (B) [51], a-amylase with Zn2þ (C) [52].
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enough water to reach the desired solids content of
58e65% by weight and stirring in amylolytic en-
zymes. This is followed by heating to 175e185 �F for
at least 10e15 min, increasing the temperature to
200 �F, and allowing it to cool [67]. Meanwhile, a
stabilized cocoa-flavored syrup must be added to
regular non-acidic candy mixes at room tempera-
ture to manufacture chocolate-flavored candies that
harden slowly in the freezer [63,65].

6.2. Textile industry

An enzyme is an alternative biocatalyst for textile
manufacturing that converts synthetic materials into
clothing [55]. Desizing, scouring, stone washing,
bleaching, dying, printing, and polishing are all
procedures included in the finishing process [73,74].
Meanwhile, fabrics' texture, quality, strength, and

market value can be significantly improved using
enzymes such as cellulase, amylase, catalase, pecti-
nase, laccase, etc. [55]. Desizing with amylase
removes starch; bio-scouring with pectinase can
eliminate non-cellulosic pollutants; cellulase makes
fabrics softer and more water-repellent; and catalase
and laccase make fabrics more retentive. It was also
reported that peroxidase and catalase could break
down synthetic colors and eliminate excess oxidants
during bleaching [56].
An enzyme is distinguished by a complex organic

structure, effective catalysis, solubility, specificity,
and lack of environmental toxicity because of the
biological catalyst's status [56]. Generally, the textile
industry frequently uses enzymatic de-sizing pro-
cesses [68]. The enzymes used include amylase,
maltase, dextranase, and cellulose from diverse bio-
logical sources to break down and remove

Table 4. Several types of microbe sources of a-amylase for industrial application.

Source Temperature (oC) Industrial Application Reference

Tepidimonas fonticaldi 80 Detergent [49]
Thermotoga petrophila 98 Noddle [53]
Bacillus licheniformis 70, 87 Bakery [28]
Geobacillus bacterium 80 Bakery [54]
Thermotoga petrophila 100 Textile [55]
Bacillus subtilis 55 Textile [56]
Bacillus licheniformis 70 Textile [57]
Bacillus sp. 60 Paper [58]
Bacillus cereus 60 Paper [59]
Actinomadura keratinilytica sp. 70 Detergent [60]
Exiguobacterium sp. 45 Detergent [61]
Geobacillus sp. 50 Detergent [62]

Fig. 3. Application of enzymes in the food industry (a), schematic outline of textile processing and application of enzymes in the textile industry (b).
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components, increasing the size of the material,
mainly starch, from textiles [68]. Fig. 3b illustrates the
schematic outline of textile processing and the
application of enzymes in the textile industry. Unlike
the acid and oxidative approaches, enzymatic de-
sizing does not damage the cloth while destroying
the sizing substance. This is because the starch in
polystyrene, silk, and cotton materials is efficiently
sized or removed with the help of amylase. There-
fore, the entire de-sizing process is designed for the
specific enzyme concentration and temperature [69].
The maximum fabric size is achieved through

starch removal, which necessitates optimizing
enzyme concentration, treatment duration, and
fabric temperature [69,70]. The weight of starch-
coated fabrics is compared before and after they are
subjected to enzymatic treatment in settings that are
optimum for starch removal to analyze the created

fabrics. Therefore, the starch-coated fabrics are first
incubated separately for 0.5e8 h at intervals of 0.5 h.
Starch elimination from polystyrene, silk, and cotton
fabrics all reaches 70%, 75%, and 85%, respectively,
while using the enzymatic approach [57].

6.3. Paper industry

In the pulp and paper business, a-amylase pro-
duces a modified starch for coated paper with high
molecular weight and low viscosity [58,71]. This
strengthens the paper's surface and makes it easier
to write on. Since natural starch has extremely high
viscosity for paper size, the polymer can be partially
degraded with a-amylase in a batch or continuous
process [59]. Starch is a suitable covering for paper
and is also used as a sizing agent to improve the
paper's quality and era's ability. Due to its size,
paper becomes more rigid and durable [59]. Fig. 4
depicts the application of various enzymes utilized
in the paper and pulp industries and their specific
functions.

6.4. Detergent industry

a-amylase is a crucial enzyme in the production of
detergents and is commonly used in laundry
bleaching formulas since it boosts detergency and
prevents color loss [49,60]. The addition of enzymes
to laundry detergent bar formulas helps stabilize the
bleaching component and keep it working as
intended. Meanwhile, gypsum boards generally
used in drywall installation are made from modified
starch [60]. Fig. 5 illustrates the schematic diagram

Fig. 4. Application of various enzymes including amylase used in the paper and pulp industries and their specific functions.

Fig. 5. Diagram schematic of application of a-amylase enzyme in the
detergent industry.
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of applying the a-amylase in the detergent industry.
The addition of enzymes to the detergent improves
the stain-removing power and makes it ecologically
friendly [60]. About 90% of liquid detergents contain
the second enzyme, namely amylase [61,72].
Meanwhile, cleaning instruments and endoscopes
with detergents is a common practice in hospitals
[75]. Dishwashers and washing machines use this
enzyme to break down the starch left behind by
foods such as potatoes, gravy, chocolate, custard,
etc., into simpler sugars, namely dextrins and oli-
gosaccharides [62].

7. Conclusions

Thermostable enzymes derived from thermophilic
microorganisms are highly favored due to their
rapid growth and efficient production capabilities.
These enzymes have garnered significant attention
for their applications in industrial processes that
operate at elevated temperatures. Businesses across
various sectors seek out thermostable enzymes
because of their ability to maintain activity under
extreme heat conditions. Thus, the a-amylase
enzyme, highlighted in this review, is extensively
utilized in the food, textile, paper, and soap in-
dustries due to its remarkable heat resistance and
functional versatility. Exploring novel thermophilic
microorganisms in diverse environments could
uncover new a-amylase variants with unique char-
acteristics, further expanding their industrial utility.
Integrating these enzymes into sustainable pro-
cesses, such as biofuel production or bioremediation,
represents another exciting avenue for future
development. Overall, the future of thermostable a-
amylase appears promising, driven by continuous
innovation and expanding industrial applications.
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