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Road Signs Detection Using SSD MobileNetV2

Abstract

One of the most critical challenges for self-driving vehicles is accurately identifying traffic signs, which are
essential for self-navigation and decision-making. Systems for the detection and recognition of road
signs play a crucial role in this process by providing vital information for the vehicle's decision-making.
This study proposes an approach for road sign identification and recognition utilising the TensorFlow
Object Detection API and the SSD MobileNet V2 FPN Lite model.

In this proposal, we combine the efficiency and accuracy of SSD with the lightweight architecture of
MobileNet to achieve excellent performance in object detection benchmarks while maintaining a small
model size and low processing power requirements. The model was trained using the German Traffic Sign
Recognition Benchmark (GTSRB) dataset. The proposed methodology achieved a mean detection
accuracy of 100% while requiring 0.317 seconds to detect and recognise each sign.
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Abstract

One of the most critical challenges for self-driving vehicles is accurately identifying traffic signs, which are essential
for self-navigation and decision-making. Systems for the detection and recognition of road signs play a crucial role in
this process by providing vital information for the vehicle's decision-making. This study proposes an approach for road
sign identification and recognition utilising the TensorFlow Object Detection API and the SSD MobileNet V2 FPN Lite
model.

In this proposal, we combine the efficiency and accuracy of SSD with the lightweight architecture of MobileNet to
achieve excellent performance in object detection benchmarks while maintaining a small model size and low processing
power requirements. The model was trained using the German Traffic Sign Recognition Benchmark (GTSRB) dataset.
The proposed methodology achieved a mean detection accuracy of 100% while requiring 0.317 s to detect and recognise

each sign.

Keywords: Object detection, Obstacle detection, Deep learning, Feature pyramid network (FPN), TensorFlow

1. Introduction

D eep learning is proving its worth every year in
many vision based applications, including
vital ones like traffic monitoring and autonomous
driving. In this field, semantic road identification
and precise traffic sign recognition are becoming
essential elements for enhancing computer vision
safety [1]. The development of advanced driving
assistance systems (ADAS) and self-driving cars
depends on efficient object detection. Although
many algorithms have been developed for reliable
object detection using machine learning techniques,
the challenges unique to traffic sign recognition are
currently being studied [2].

Understanding traffic signals is crucial for all
drivers before operating a vehicle on public roads, a
fundamental skill tested in the theoretical driver's
licence exam [3]. Traffic signs, the oldest and most
widely utilised method of traffic control, are crucial
tools for conveying directives, warnings, and re-
minders. Traffic signs are essential in conveying the
information needed by the driver to avoid accidents

in which driver errors such as lack of attention or
misinterpretation of signals cause a substantial
number of accidents [4]. These signs must be both
identified and categorised: while classification tasks
identify subclasses of objects, detection tasks aim to
precisely determine their position and size [5]. In
computer vision, traffic sign identification involves
locating areas of images with bounding boxes
around these signs, defined by their distinctive
shapes, reliable colours, and spatial relationships
with the other objects by the roadside [6].

Some research using deep learning frameworks
like the TensorFlow Object Detection API has been
limited to specific object detection categories, such
as traffic light and mobile weapon detection. Similar
results have been observed in studies using the
TensorFlow Object Detection API to identify vehi-
cles. However, applying deep learning frameworks
for comprehensive road sign identification, such as
the TensorFlow Object Detection APIL offers the
advantage of scalability, even though they have
primarily been used for traffic signal and vehicle
detection [7]. Google's TensorFlow Object Detection
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API provides a flexible platform for developing ob-
ject recognition models, enabling the creation and
training of object detection models with ease due to
its user friendly interface. Additionally, it imple-
ments various models pre-trained for object detec-
tion, such as SSDs, R-FCN, and Faster R-CNN.
Using TensorFlow's ability to train models with
large datasets facilitates the development of
increasingly complex object detection models [8].

This study addresses the significant object detec-
tion challenges at various scales, specifically small
ones, by integrating the Feature Pyramid Network
(FPN) into the detection process. FPN, designed with
a feature pyramid concept, improves both accuracy
and speed. To enhance the precision and effective-
ness of object detection in the context of traffic sign
identification for ADAS and self-driving cars, we
propose using SSD MobileNetV2 in this study.

The structure of the remaining paper is as follows:
Section Two delves into related studies. Section
Three outlines the research problems. Section Four
explains the main algorithm used in this proposal,
the SSD MobileNetV2 Object Detector Architecture.
The tools used for the evaluation of the model are
introduced in Section Five. A detailed explanation of
the proposed system and its implementation is
introduced in Section Six. Results and discussion
are presented in Section Seven. Finally, Section
Eight concludes the findings and presents limita-
tions and future work.

2. Related works

One of the hottest research subjects in the last ten
years has been the creation of autonomous vehicles.

Researchers in Ref. [9] suggested a real-time
method for detecting tiny traffic signs, using a small
region proposal generator and combining Faster R-
CNN with Online Hard Examples Mining (OHEM).
The system is robust for small signs only, and the
mean average precision increased by 12.1%
compared to the first object detection algorithm,
demonstrating satisfactory performance in various
videos. The proposed approach is based on the
updated Faster R-CNN architecture and has been
tested on various videos. For quick and precise
traffic sign recognition in photos, a Traffic Sign
Recognition (TSR) system was developed by the
authors in Ref. [10] using two carefully designed
convolutional neural networks (CNNs). Regarding
scale-invariant detection, the suggested CNN uti-
lises a fully convolutional network incorporating
two multi-scale designs. Modified “Online Hard
Example Mining” is used by the training network to
decrease false positives. For efficiency, the

classification network combines multi-scale charac-
teristics with an “Inception” module. Through
extensive testing, the system outperformed state of
the art techniques, achieving 99.88% precision and
96.61% recall on the Swedish Traffic Signs Dataset
(STSD). Compared to existing deep learning net-
works for traffic sign identification, it is lighter and
faster. Two stages were proposed by Ahmed Hechri
and Abdellatif Mtibaa [11] to detect and identify
traffic signs in real time. Traffic signs are detected
and classified into circular and triangular forms in
the first stage using histograms of oriented gradi-
ents (HOG) features and support vector machine
(SVM). In the second step, traffic signs are cat-
egorised into their respective categories using a
CNN. The performance is tested on the German
traffic sign detection benchmark (GTSDB) and
German traffic sign recognition benchmark
(GTSRB) datasets, showing comparable detection
and recognition rates with less complexity. Its suit-
ability for real-time processing applications is
demonstrated by the average processing time. An
effective traffic sign detection and recognition
(TSDR) system was developed by Safat B. Wali et al.
[12], utilising an enhanced collection of traffic signs
from Malaysia. The system has a short computing
time and a low false positive rate, and it is invariant
in terms of lighting, rotation, translation, and
viewing angle. The three stages of the system are
detection, recognition, and image preprocessing.
The system's results included a processing time of
0.43 s, a low false positive rate of 0.9%, and an ac-
curacy of 95.71%. To evaluate recognition perfor-
mance, the area under the receiver operating
characteristic (ROC) curves was introduced. A novel
method for real-time traffic sign detection and
recognition was proposed by Faming Shao et al.
[13]. The method converts road scenes to grayscale
images, filters them with simplified Gabor wavelets,
strengthens traffic sign edges, extracts the region of
interest, and classifies traffic signs using SVM.
CNNs classify traffic signs into subclasses. The
experimental results meet real-time processing de-
mands with better processing efficiency and are
equivalent to state-of-the-art performance ap-
proaches. Chang Sun et al. [14] proposed a tech-
nique for a deep learning based model called
(Dense-RefineDet) uses a single shot object detec-
tion framework and a dense connection related
transfer-connection block to optimise contextual
information. It achieves competitive accuracy at
high speed detection of small, medium, and large
scale traffic signs, with a 54.03% miss rate compared
to other methods. Zhe Zhu et al. [15] created a large
traffic sign benchmark, Tsinghua-Tencent 100K,
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from 100,000 Tencent Street View panoramas,
covering 30,000 traffic-sign instances. The bench-
mark is annotated with class labels, bounding boxes,
and pixel masks. Unlike prior CNN methods that
target large objects, the resilient end-to-end CNN is
shown to identify and categorise traffic signals.
Experimental results demonstrate the network's
robustness and superiority to alternatives.

3. Research problem

Several impediments and difficulties are present,
including fluctuations in light, shifting meteorolog-
ical conditions, and objects that occlude. Among
these problems and difficulties are the following:

1. In a real-time application, sight may be impeded
by the shadows and headlights of approaching
vehicles, fog, clouds, rain, and snow.

. The weather might affect the sign's colour.

3. Various man-made objects that resemble traffic
signs in terms of colour, form, and size could be
shown in a scene.

4. More than one road sign may overlap or be in
one frame.

5. It is not feasible to observe traffic signs consis-
tently from the same perspective. Shapes and
patterns on signs are typically warped.

6. The accuracy and speed of classification detec-
tion while considering hardware requirements
are two of the most challenging and significant
challenges in a real-time setting. The majority of
systems require expensive GPUs with extremely
high specifications.

7. Blurred visuals are typically caused by moving
cars.

N

4. SSD MobileNetv2 object detector
architecture

The SSD MobileNet model combines the Mobi-
leNet and SSD models. MobileNet, a CNN, is used
as a feature extractor to generate high-level features,
while SSD, a widely used method, serves as the
object detector [16]. MobileNetV2, one of the lightest
and most popular network topologies in recent deep
learning techniques [17], was developed by inte-
grating inverted residual and linear bottleneck
modules into MobileNetV1 [18]. MobileNetV2
significantly reduces processing memory re-
quirements through its inverted residuals with
linear bottleneck layers [19]. Its core building block
is a bottleneck depth-separable convolution with
residuals, and ReLU6 is used as the nonlinearity due
to its robustness in low-precision computations.

Modern networks typically employ a 3 x 3 kernel
size and use batch normalisation and dropout dur-
ing training. MobileNetV2 is employed as the
feature extractor in the SSD model [20]. SSD, a
widely used single stage object detector, is known
for its fast computation [21]. The SSD technique
uses a feed forward convolutional network to pro-
duce a fixed-size set of bounding boxes, each with a
score indicating the presence of objects. The final set
of detections is refined through a non-maximum
suppression step. The initial network layers are
based on a well-established architecture for high
quality image classification and are truncated before
the classification layers [22]. Fig. 1 illustrates the
SSD MobileNetV2 architecture.

5. Model evaluation

The effectiveness of the current proposal is
assessed using several metrics, including mean
average precision (MAP), which is a widely utilised
metric to assess the precision of classifiers and ob-
ject detectors like SSD Mobile Net. The average
precision per class for any model is determined by
finding the area beneath the provided precision vs.
recall curve. This value is averaged across all clas-
ses. To determine whether the prediction is accurate
or inaccurate, the predicted bounding box is
compared to the ground truth bounding box using
Intersection Over Union (IOU). The percentage of
predicted bounding boxes that overlap with real
reality is shown by the IOU, which is the other
metric. The forecast is deemed a true positive (TP) if
the IOU is greater than 40%; otherwise, it is deemed
a false positive (FP) [24]. Precision and recall are
determined by the confusion matrix shown in Fig. 2.
Equations (1)—(3) are used to calculate IOU, preci-
sion, and recall, respectively.

IOU = (Area of the intersection of bounding boxes) /

(Area of the union of bounding boxes)

(1)
. . TP
Precision = 7(TP - FD) (2)
TP
Recall = m (3)

Using various IOU thresholds, the metrics for
common objects in context (COCO) detection
specify a range of average precision and recall
values that are computed over small, medium, and
large object scales. Fig. 3 displays the metrics uti-
lised to gauge the detector's performance.
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Fig. 1. SSD MobileNet v2 architecture [23].

6. Proposed system and implementation

6.1. Stages of proposed system

The suggested model includes two main parts:
training and testing. For the training phase, we used
images from the GTSRB dataset, which contains
collected images with various backgrounds. The
dataset is organised into 43 folders, each corre-
sponding to a specific road sign and containing mul-
tiple images. The testing phase focuses on video data
rather than still images. We utilised the pre-trained
MobileNetV2 FPN Lite 320 x 320 SSD model, which
was trained using TensorFlow Object Detection. The
proposed system was trained with 40,000 images per
epoch, achieving a learning loss of 0.0079. The archi-
tecture of the proposed model is shown in Fig. 4.

6.2. Datasets used in the training

In this proposal, we used the GTSRB dataset,
which consists of 43,000 images for 43 explicit clas-
ses (1000 images of each class). The classes, for
example, are Ahead Only, Beware of Ice or Snow,
Bicycle Crossing, Children Crossing, Speed Limit

Actual Class
Positive (P) | Negative (N)
Predicated | Positive | True Positive | False Positive
Class (P) (TP) (FP)
Negative | False Negative | True Negative
(N) (EN) (IN)

Fig. 2. Confusion matrix.

(50 km), Stop, and Traffic Signals, with different
backgrounds [26]. Fig. 5 presents an example of this
dataset.

Average Precision (AP):
AP % AP at ToU=.50:.05:.95 (primary challenge metric)

Ap 1= % AP at ToU=.50 (PASCAL VOC metric)

AP o= 5

% AP at ToU=.75 (strict metric)

Average Recall (AR)

Ap mxl % AR given 1 detection per image
AP raxet8 % AR given 10 detections per image
Ap max =100 % AR given 100 detections per image

AP/ AR across Scales

Ap smut % AP for small objects: area < 32?
AP medtun % AP for medium objects: 32 % < area < 96
Ap targe % AP for large objects: area > 96 ?

Fig. 3. COCO detection metrics [25].
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Training Testing
Prepare dataset
Webcam (Input Image or
Loading Datasets Video Frame)
(GTSRB)
Image Labelling A/
Load Train Model
Splitting Data 80:20
Display Bounding Boxes
Pre-processing Sign Roads Class and
" Confidence Score
Resize Image 320 x 320
i b. Test Stage

Training using the Tensor Flow
Object Detection with pre-trained
SSD Mobile Net 2FPNLite model

v

Train Model

a.Training stage

Fig. 4. Model planning: a. Training stage b. Test stage.
6.3. Preprocessing

The input image can be any type of image format;
the image was resized according to the SSD Mobi-
leNetv2 FPN Lite, which is 320 x 320. To preprocess
label images, the Roboflow application is used. The
file format used by TensorFlow is built by Roboflow
from images and a Pandas data frame. The data
frame has the following columns:

m “filename”: path of the image file.
m “class”: Object class name.

Fig. 5. Road signs [27].

LEINT3 LEINT3 LRI

® “ymin”, “xmin”, “ymax”, “xmax”: normalised co-
ordinates of the boundary detection box. Fig. 6
shows boundary boxes.

6.4. Training using TensorFlow API for object
detection

The TensorFlow object detection framework
version 2.8 and the pre-trained TensorFlow 2 ZOO
model are now being utilised in our training and
evaluation procedures. We enhance the Single Shot
Detector (SSD) architecture for object recognition and
the MobileNet v2 architecture for feature extraction
by adding the Features Pyramid Network Lite (FPN
Lite) module, resulting in the creation of the SSD
MobileNetV2 FPN Lite 320 x 320 architecture.

The MobileNet v2 architecture is a lightweight
CNN specifically designed for efficient data pro-
cessing on mobile and embedded devices. By
employing separable convolutions and residual
connections, the network's performance is enhanced
and the parameter count is reduced. To recognise
objects in the input image, MobileNet is used for
feature extraction, which involves identifying sig-
nificant features.

The popular SSD object identification technique
predicts the location and type of objects in the input
image using a collection of pre-made bounding
boxes known as anchor boxes. These fitting box
predictions are combined with the non-maximum
suppression (NMS) technique to obtain the final
detection results. The characteristics gathered by
the SSD are used to identify objects in the image
and determine their location.

In summary, the FPN concept combines low-res-
olution information from deeper levels with high-
resolution data from shallow layers to improve
detection accuracy. The outputs of the SSD and
MobileNet v2 layers are combined in SSD Mobile-
Net V2 FPN Lite 320 x 320 models using the FPN
Lite module. This increases the contextual data
available for the object detection task, enhancing its
accuracy by integrating data from various scales.

(0,0) >xmin SCITIa>< (1;(0)
Yyming-----
A
B
ymadd-----
©, DYy 1.1

Fig. 6. Boundary boxes.
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The SSD MobileNet V2 FPN Lite 320 x 320 is a
practical object identification model for real-time
applications due to its fast speed of 22 ms and MAP
value of 22.2. It performs exceptionally well on ob-
ject detection tasks. Table 1 explains the parameter
values used by SSD MobileNet V2 FPN Lite
320 x 320.

6.5. Recognition

After the trained model is loaded, the webcam
inputs the video. When using video data, the system
continually analyses each frame of the video stream,
identifying and categorising traffic signs instantly, at
30 frames per second. The model's output will
display a bounding box for each road sign, along
with a confidence score. Consequently, the system
swiftly and accurately detects road signs.

7. Results and discussion

The measures used for evaluating the road sign
detection model obtained in the final step (40k) are
displayed in Table 2.

7.1. Losses

Losses indicate the efficiency of the model and
determine the amount of error in it. Understanding
error is crucial to gauge the extent to which the
model benefits from training, as shown in Fig. 7. It
consists of several forms:

Table 1. Training parameter values of SSD MobileNet V2 FPN Lite
320 x 320.

parameters SSD MobileNetv2 FPN Lite 320 x 320
Batch/epoch 40000

Batch Size 16

Learning rate 0.0319994

Size image 320 x 320 px

Table 2. Metrics for evaluation of the road sign detection model.

Metric Area @ IOoU MaxDets  Value
Average all 0.50:0.95 100 1.000000
Precision (AP)
0.5 1.000000
0.75 1.000000
small 0.50:0.95 1.000000
medium  0.50:0.95 1.000000
large 0.50:0.95 1.000000
Average all 0.50:0.95 1 1.000000
Recall (AR)
10 1.000000
100 1.000000
small 1.000000
medium 1.000000
large 1.000000

o Localisation_loss function: This indicates the
correctness of the model by providing the di-
mensions of the box around the object.

o _ S NTB qoby
localization loss = Acgora Zi:OijOlij
—~ ~\2
[(xi ~%) + (- 7))
+(Vaw; — W)

+(Vhi - \/ﬁ—ﬂ

(4)

Where

o S?is the number of grid cells (typically, S = 7,
so S% = 49).

o B is the number of bounding boxes predicted
per grid cell.

o X; Vi are the coordinates of the centre of the
bounding box.

o Wy, h; are the width and height of the bounding
box. R

o Xi,V;, Wj, h; are the predicted values.

o 1??’ 7 is an indicator function that is 1 if object j is
in cell i and 0 otherwise.

o hcoord is a scaling factor that gives more
weight to localisation errors.

o Classification_loss function: This indicates the
correctness of the model, whether it performs
the classification process correctly or not.

Classification Loss = i 1% Z (pi(c) — }A%-(C))z (5)

i=0 c e class

Where

o pi(c) is the ground truth probability of class ¢
for grid cell i.

o p;(c) is the predicted probability of class c for
grid cell i.

1?b] is 1 if an object is present in grid cell i,
otherwise 0.

e Total_loss: It is an average of the types of losses

present.

The total loss function in SSD MobileNet V2 is the
sum of the localisation, classification, and confidence
losses. The confidence loss measures the error in pre-
dicting the objectness score, which indicates the like-
lihood of an object being present in the bounding box.

Total Loss = Localization Loss + Classification Loss
+ Confidence Loss
(6)
Where the Confidence Loss is given by the following:
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Localization_loss

Loss/localization_loss
tag: Loss/localization_loss

Number of Steps

(a) Localization_loss function curve

Classification Loss

Loss/classification_loss
tag: Loss/classification_loss

Number of Steps

(b) Classification loss function curve

Total Loss

Loss/total_loss
tag: Loss/total_loss

a Sk 10k 15k 20k 75k 30k 35k AQk

Number of Steps

(c) Total loss curve

Learning Rate

learning_rate
tag: learning_rate

Number of Steps

(d) Learning_rate curve

Fig. 7. The Losses num steps (a) Localization_loss (b) Classification loss (c) Total loss (d) Learning_rate.

2 PN
Confidence loss = Zio fzolfjh] (Ci—C)?
s B noobj ;75
+ Moot Zi:on:olij (Ci-G)

(7)
Where

o C; is the ground truth confidence score (usu-
ally 1 if the object is present, 0 otherwise).

C; is the predicted confidence score.

Anoovj 18 a scaling factor to down-weigh the loss
from predictions in which no object is present.
1:}00b] is 1 if no object is present in cell i, and
0 otherwise.

These equations represent the key components of
the loss function used to train the SSD MobileNet V2
model to detect road signs effectively. The total loss

is minimised during training to improve the accu-
racy of both object localisation and classification.

The proposed work minimises the losses by avoid-
ing overfitting. Many strategies are used for that
purpose: Adjusting learning rate, batch size, and
epochs, using techniqueslike learning rate scheduling
and early stopping to avoid overfitting. Using L2
regularisation and dropout to stabilise training and
prevent overfitting. Employing different techniques to
diversify training data (data augmentation). Ensuring
adequate representation of all road sign types in the
training data to minimise classification loss.

Table 3 presents some information on the losses
per step of the road-sign detection model obtained in
the number of epochs from 100 to 40,000. We notice
that in the initial epoch, the values were very large
for the localization and classification losses, but
during the process of training, these values began to
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Table 3. Information on the losses per step.

No. of Steps Localization_loss Classification loss Total loss Learning rate per-step time
100 0.044876754 1.1215405 1.3196056 0.0319994 0.834s
200 0.035248633 0.75162685 0.93968153 0.0373328 0.316s
300 0.059617925 0.4227719 0.6348752 0.0426662 0.321s
10000 0.0037299744 0.03044345 0.13079241 0.07352352 0.318s
15000 0.0023271034 0.02128285 0.09838165 0.064939596 0.319s
20000 0.0018106259 0.018629357 0.08078809 0.0538146 0.317s
25000 0.0012641152 0.012266388 0.0644014 0.04128206 0.319s
30000 0.0017922304 0.030422302 0.07704803 0.028618898 0.319s
35000 0.0011810567 0.015617614 0.05800961 0.017115325 0.317s
40000 0.0005427136 0.009527728 0.049387537 0.007943453 0.317s

Bicycles crossing: 99%

o

20

60

80

o 20 40

End no passing vehicle with a weight greater than 3.5 tons: 98%

o

10

20

30

50

60

70
o 10 20

Go straight or right:

60 80

Nighttime Image

30

94%

20

Occlusion effect

Road narrows on the right: 97%

40 60
Shadow effect

Fig. 8. Shows predicted road signs and confidence values.
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gradually decrease, even concerning the learning
rate, which was initially equal to (0.0319994), but in
the last step, it became (0.007943453), indicating the
success of the training process.

7.2. Model testing

The test was conducted on 250 images, and all the
signs in the images were detected correctly. Addi-
tionally, we tested the model under various chal-
lenging conditions, such as variations in lighting,
images at night, occluded signs, unclear images due
to shadows, and signs in various environments such
as rain, fog, and snow. The results in all the above
conditions showed high confidence values, as
shown in Fig. 8.

End of speed limit 80kmh: 99%

o 10 20 30 40 50 60 70

very bad illumination enviroment

40

Foggy Weather

stop: oa%

7.3. Comparisons

Many algorithms have been suggested to detect
road signs. We compared recent methods that focus

Table 4. A comparison of recent research on road sign detection.

Ref Algorithms Accuracy %
[28] Faster R-CNN 80.86
[29] TRD-YOLO 86.3
(Trans-Decoupled YOLO)
[30] Improved LeNet-5 CNN 99.75
[31] YOLO v3 and YOLO 95.85
v4-tiny algorithms and
a customised CNN model
The proposed MobileNetV2 SSD 100
method in
this paper

a0 60

Rainy Weather

eware of ice or snow: 99%

Foggy Weather

Snowy Weather

Fig. 8. (Continued).
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on detecting road signs with our proposed model, as
indicated in Table 4.

8. Conclusions

A second-generation MobileNet network, known
as Mobile Net V2, serves as the foundational network
model for the SSD detector in the Mobile Net SSD
network design. In addition to maintaining the ben-
efits of the original MobileNet-SSD's quick process-
ing, the MobileNet-SSDv2 detector significantly
increases detection accuracy. Being quicker than the
alternative current networks for detecting objects, the
MobileNet-SSD detector can function in real time.
This advantage demonstrates that MobileNet-SSD v2
is appropriate for use in this research. I used [SSD
MobileNet V2 Finite 320 x 320] to train my model's
real-time platform for detecting road signs, based on
SSD Mobile Net V2, which may help avoid accidents.
I trained the proposed model for 40k epochs,
achieving a learning loss of 0.0079. The platform ex-
hibits a high level of precision and speed in deter-
mining the state. To enhance detection accuracy, we
integrated the FPN and MobileNet V2 models to
improve the input image's feature map. Our pro-
posed system achieved 100% detection accuracy with
a processing time of 0.317 s per step. Thus, our
approach can be applied to the real-time detection
and categorisation of traffic signs. We have overcome
issues related to detection speed and classification
accuracy, successfully implementing the proposed
system in real time despite atmospheric influences
that hindered the detection process.

Although the current approach works efficiently,
there are still some limitations. While the 320 x 320
SSD MobileNet V2 FPN Lite offers benefits in terms
of speed and efficiency in specific scenarios, its
scalability and performance in various environ-
mental conditions are limited. Due to the 320 x 320
resolution, it may struggle to detect objects reliably
at longer distances or in crowded spaces where
objects might be smaller or closer together, which
may limit its scalability. Incorrect bounding boxes or
missed detections may result from attempting to
scale the model to larger image sizes. Operating the
MobileNet V2 FPN Lite SSD can also be challenging
due to its reliance on specific features or patterns
that might not be apparent under certain conditions.
Identifying objects in various environmental set-
tings, including shifting clouds, changing light, and
complex backgrounds, could reduce performance
and reliability in real-world applications when
environmental variables are continuously changing.

To enhance this study, we suggest expanding the
dataset and using other popular datasets such as the

Belgian Traffic Sign Dataset or the LISA Traffic Sign
Dataset. For future work, we recommend studying
the model's ability to generalise across different
geographical locations and road sign standards,
ensuring its applicability in various countries.
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